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Why Approximate Inference?

Why Approximate Inference?

Why inference (computing marginal posterior distributions)?
Essential backbone for (almost) anything todo with probabilistic
model

Answering queries (honest answer: with uncertainties)
Learning model parameters
Making good decisions
Direct further data acquisition
Planning strategies (beyond single decisions)

Why approximate inference?
Exact inference intractable for almost all real-world models

Loops in graphical model: Blow-up of intermediate representations,
with no efficient (dynamic programming) way around
Potentials not closed under conditioning / marginalization: Blow-up
of messages even for tree graphical models

Bottomline: Bayesian inference powerful, consistent idea.
Without approximate inference: Entirely academic exercise
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Why Approximate Inference?

Conjugate Priors

Transition Part I→ Part II
I’ll mention some things quickly, without us looking at them in more
detail

Sometimes, inference is simple
y Observation
θ Latent parameters (query)
P(y |θ) Likelihood potential (positive function of θ)

Family of distributions F = {P(θ|α)}, α fixed size: F2

For every y : P(θ) ∈ F ⇒ P(θ|y ) ∈ F
If P(θ) = P(θ|α0), P(θ|y ) = P(θ|α1): For every (α0,y ):
α1 easy to find

⇒ Inference a piece of cake! F conjugate to P(y |θ) (or to {P(y |θ)})
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Why Approximate Inference?

Markov Chain Monte Carlo

General, maybe most flexible framework for approximate
inference. Ideas from physics (thermodynamics, statistical
mechanics)
Not covered here (would need own course). I’ll just give you
cocktail party summary
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Why Approximate Inference?

Markov Chain Monte Carlo

1 Inference needs integrals
∫

f (x )P(x ) dx , x high-dimensional,
P(x ) coupled, complicated (posterior)

2 Law of large numbers: x1, . . . ,xN ∼ P(x ) independent:
N−1∑

i f (x i)→ EP [f (x )] almost surely.
Central limit theorem: P, f nice⇒ Convergence as 1/

√
N

independent of x dimensionality.
Catch: Sampling from P(x ) hard as well

3 Let’s just do something: Start with some x , draw x ′ ∼ K (x ′|x ),
keep doing that. At the very least:

P(x ′) =

∫
K (x ′|x )P(x ) dx

Such kernels K exist, need evaluation of ∝ P(x ) only
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Why Approximate Inference?

Markov Chain Monte Carlo

P(x ′) =

∫
K (x ′|x )P(x ) dx

4 MCMC magic: Under mild assumptions, that’s all we need:
x (j+1) ∼ K (·|x (j))⇒ Marginal x (j) D→ P(x ) as j →∞
Rough idea why:

K (x ′|x ) contraction of probability mass. Information propagation
with K brings marginal distributions closer together
There is only one fixed point (here: mild assumptions)
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Why Approximate Inference?

Markov Chain Monte Carlo

MCMC used for many things things besides approximate
inference

Theoretical CS: Counting of combinatorial sets. Volume estimation
Statistical physics: Evaluation of thermodynamical numbers
(entropy, volume of macrostates). Studying phase transitions of
coupled spin systems (magnets, spin glasses)

Rich theory in the discrete case
Related to, but different from stochastic optimization
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Why Approximate Inference?

Beware

BEWARE! MCMC sampling can be dangerous!
[OpenBUGS User Manual, page 1]

MCMC: Simple to code. Hard to use properly
You never exactly know when you’re done

No definite convergence test in general
Hard to spot failures. Very hard to debug
Slow convergence can happen even with unimodal distributions,
Gaussian tails

MCMC: Black box (in most cases), for good and for bad

Easy to code. For some problems, nothing else works.
Safe if answers can be checked (search, exploration)
Can be very slow, or fail without you noticing.
Always compare against something else if you can
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Why Approximate Inference?

Beware

BEWARE! MCMC sampling can be dangerous!
[OpenBUGS User Manual, page 1]

Dare to find out for yourself?
Neal: Probabilistic Inference using Markov Chain
Monte Carlo Methods (1993)

[http://www.cs.toronto.edu/∼radford/papers-online.html]

Gilks et.al.: Markov Chain Monte Carlo in Practice
(1996)
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Some Information Theory

Elements of Information Theory

Wake Up!
Transition time is over
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Some Information Theory

Elements of Information Theory

Information Theory (Shannon, 1948)
Narrow sense:

Limits of data compression (and how to achieve them)
Limits of error-free(!) communication over noisy channel

Wide sense:
Basis of communication (language)
What is information? How to best encode it
Basis of anything adaptive, of learning
Source of great simplifications in number of mathematical domains
Information theory↔ applied probability / decision theory:
Essentially equivalent in basic concepts, problems, methods

Good luck for students: Amazing textbook available:
Cover, Thomas: Elements of Information Theory (1991)
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Some Information Theory

Entropy of Distribution

H[P(x )] = EP [− log P(x )] = −
∑

x
P(x ) log P(x )

Game of questions: I draw x ∼ P(x ), give you P but not x .
How many questions [x ∈ E ] do you need to pin down x? F6

Shannon: On average: ≤ H[P(x )] + 1 questions if you’re smart,
no less than H[P(x )] even for a genius (log to base 2)
⇒ Equivalent: Number bits needed to encode x
⇒ Amount of uncertainty in P(x )
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Joint entropy H[P(y ,x )] = EP [− log P(y ,x )]
Conditional entropy H[P(y |x )] = EP [− log P(y |x )]

Chain rule of entropy: F6d

H[P(x1, . . . ,xn)] =
∑n

i=1
H[P(x i |x<i)]
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Some Information Theory

Relative Entropy

D[P(x ) ‖Q(x )] = EP

[
log

P(x )

Q(x )

]

Game of questions. This time, you get it wrong. You think
x ∼ Q(x ), but in fact x ∼ P(x ). How many questions? F7

On average: EP [− log Q(x )] = H[P(x )] + D[P(x ) ‖Q(x )]
⇒ Number of additional bits for using Q instead of true P
⇒ Natural divergence (distance) measure between distributions
Other name: Kullback-Leibler divergence.
No distance: D[P ‖Q] 6= D[Q ‖P]
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⇒ Natural divergence (distance) measure between distributions
Other name: Kullback-Leibler divergence.
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Conditional relative entropy:
D[P(y |x ) ‖Q(y |x )] = EP [log{P(y |x )/Q(y |x )}]
Chain rule of relative entropy:
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Some Information Theory

Mutual Information

I(x ; y ) = D[P(x ,y ) ‖P(x )P(y )] = EP

[
log

P(x ,y )

P(x )P(y )

]

x , y may be dependent. How many additional questions (bits) for
ignoring that? F8

Mutual information: Reduction in uncertainty of one random
variable due to knowledge of other

I(x ; y ) = H[P(x )]− H[P(x |y )] = H[P(y )]− H[P(y |x )]

⇒ Amount of information x about y , or y about x
Note: x⊥y (independent)⇒ P(x ,y ) = P(x )P(y )⇒ I(x ; y ) = 0.
We’ll see⇐. Mutual information: Measure of dependence
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Some Information Theory

Venn Diagram for Information F9
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Some Information Theory

Information Inequality

Something missing here
More questions for getting it wrong:
H[P(x )]→ H[P(x )] + D[P(x ) ‖Q(x )]
I(x ; y ) measures dependence. I(x ; y ) = 0 for x⊥y

Is D[P(x ) ‖Q(x )] ≥ 0? Is I(x ; y ) ≥ 0?

Information inequality: D[P(x ) ‖Q(x )] ≥ 0.
Since − log(·) strictly convex (nowhere linear):
D[P(x ) ‖Q(x )] = 0 ⇔ P(x ) = Q(x ) P-almost everywhere.

I(x ; y ) ≥ 0; I(x ; y ) = 0 ⇔ x⊥y
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Some Information Theory

Corollaries
Raking in the fruits

Conditioning reduces entropy (learning always helps) F11

H[P(x |y )] ≤ H[P(x )]

Conditional mutual information:
Measure for conditional independence

I(x ; y |z ) = 0 ⇔ x⊥y | z
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Corollaries
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Conditioning reduces entropy (learning always helps)

H[P(x |y )] ≤ H[P(x )]

Conditional mutual information:
Measure for conditional independence

I(x ; y |z ) = 0 ⇔ x⊥y | z

Entropy: Concave function

H[λP(x ) + (1− λ)Q(x )]

≥ λH[P(x )] + (1− λ)H[Q(x )]
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Variational Mean Field Approximations

Remember EM?
One approach to variational approximate inference:
Computations with P(x ) = Z−1eΨ(x ) hard (even log Z )?
⇒ Approximate it by Q(x ), for which computations simple

Remember derivation of EM? F12
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One approach to variational approximate inference:
Computations with P(x ) = Z−1eΨ(x ) hard (even log Z )?
⇒ Approximate it by Q(x ), for which computations simple

Remember derivation of EM?

log Z = log
∫

eΨ(x ) dx = supQ EQ[log{eΨ(x )/Q(x )}]

= supQ {EQ[Ψ(x )] + H[Q(x )]}
Was called variational mean field inequality. Let’s see why

Maximizer: Q(x ) = P(x ) itself. Attains log Z
Any other Q(x ): Lower bound. Q(x ) closer to P(x )?
⇒ Maximize the lower bound!
Relax this problem: Work with Q = {Q(x )}:

Lower bound can be evaluated for each Q ∈ Q
Bayesian computations can be done with any Q ∈ Q (not with P)
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Variational Mean Field Approximations

Naive Mean Field for Markov Random Fields
Distributions complicated, because they are coupled
⇒ Mean field: Approximate them by factorizing distributions

Naive Mean Field: Drop all edges
True MRF posterior P(x ) Approximations Q(x ) ∈ Q
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Variational Mean Field Approximations

Naive Mean Field for Markov Random Fields

Variational problem:

argmax
{Q(xk )}

{∑
j
EQ[Ψj(xCj )] +

∑
k

H[Q(xk )]

}
Our first variational algorithm:

Default-initialize Q(xk ) (say: uniform)
repeat

Pick some node k at random
Update Q(xk ), keeping all others fixed

Q(xk )← argmax
{∑

j∈Nk
EQ[Ψj(xCj )] + H[Q(xk )]

}
until Convergence

Prize question: How does that update look like? F14
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Variational Mean Field Approximations

Remarks

Does this always converge? Yes. To a unique solution? No F15

How to compare different fixed points? Or even different Q?
You get lower bound to log Z

Why “mean field”? P(x ): Random field. Q(x ) ≈ P(x ) has no
couplings (EQ[xjxk ] = EQ[xj ]EQ[xk ]).
True means at convergence (EQ[xj ] = EP [xj ])? No
(remember: EP [xj ] hard as well!)
General idea here: Relax variational problem

supQ(. . . ) ≥ supQ∈Q(. . . )
Q: Subset of all distributions (factorization constraints). Each
Q(x ) is distribution.
⇒ Maximize lower bound over Q
Note: Might not find maximizer Q ∈ Q, but local maximum
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Variational Mean Field Approximations

Variational Mean Field: Minimizing Relative Entropy

log Z = log
∫

eΨ(x ) dx ≥ EQ[Ψ(x )] + H[Q(x )], P(x ) = Z−1eΨ(x )

What is the slack in this bound?
Hint: ≥ 0, and = 0 iff Q(x ) = P(x ) F16

Variational mean field: Minimize slack (relative entropy)

minQ∈QD[Q(x ) ‖P(x )]

Does that fit relative entropy semantics?
It’s the wrong way around! We should minimize D[P ‖Q].
Alas, even that is hard. For naive mean field, unique solution is

Q(x1, . . . , xN) = P(x1) . . .P(xN)

Variational mean field: a tractable compromise
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Variational Mean Field Approximations

Wrap-Up

Information theory: Fundamental characteristics and limits to
compression and faultless information transmission
Statistical learning, information theory: Different sides of the same
coin
Variational mean field: Tractable approximate inference by
factorization assumptions
Naive mean field: Drop all edges, update node by node
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