

Circuits and Systems I

LECTURE #1
Sinusoids
Phase & Time-Shift
Complex Exponentials

Prof. Dr. Volkan Cevher
LIONS/Laboratory for Information and Inference Systems

License Info for SPFirst Slides

 This work released under a <u>Creative Commons License</u> with the following terms:

Attribution

■ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

Non-Commercial

 The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes—unless they get the licensor's permission.

Share Alike

- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License
- This (hidden) page should be kept with the presentation

Outline - Today

Todaybasics

- Motivation + logistics
- Chapter 2, pp. 9-17
- Chapter 2, Sects. 2-3 to 2-5

Next week
 Section 2-6

Section 3-1

Recommended self-study next week +

- Chapter 1 read

Appendix A: Complex Numbers read

Appendix B: MATLABskim

Main Goal

Students will be able to:

Understand mathematical descriptions of signal processing algorithms and express those algorithms as computer implementations (e.g., via MATLAB)

Main Goal

Students will be able to:

Understand mathematical descriptions of signal processing algorithms and express those algorithms as computer implementations (e.g., via MATLAB)

What are your goals?

Main Goal

Students will be able to:

Understand mathematical descriptions of signal processing algorithms and express those algorithms as computer implementations (e.g., via MATLAB)

What are your goals?

Sensing

Digital Revolution

25fps/1080p

4KHz

Multi touch

Digital Revolution

1977 - 5hours

12MP

25fps/1080p

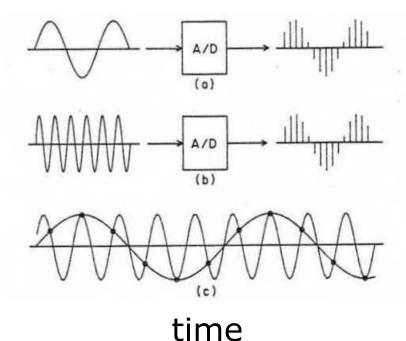
4KHz

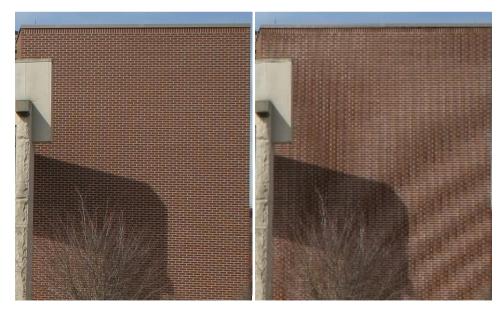
<30mins

Digital Data Acquisition

Foundation: Shannon/Nyquist sampling theorem

"if you sample densely enough (at the Nyquist rate), you can perfectly reconstruct the original analog data"





space

higher resolution / denser sampling

12MP

25fps/1080p

4KHz

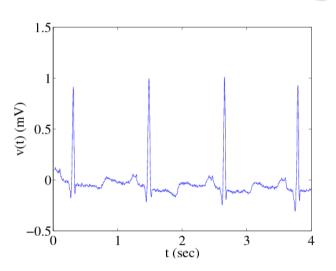
160MP

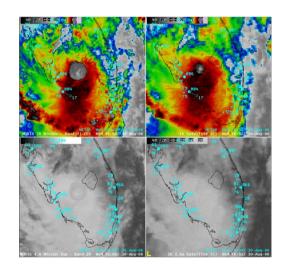
200,000fps

192,000Hz

large numbers of sensors

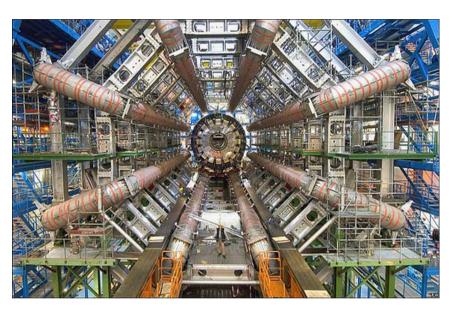
higher resolution / denser sampling large numbers of sensors

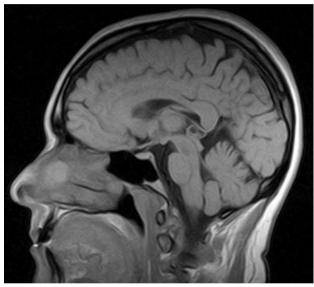




increasing # of modalities / mobility

acoustic, RF, visual, IR, UV, x-ray, gamma ray, ...





Motivation: solve bigger / more important problems decrease acquisition times / costs entertainment / new consumer products...

ALL%FMP3

LÎVE NATION M

ırstage"

midomi

loudcity

Real Amplify

In General...

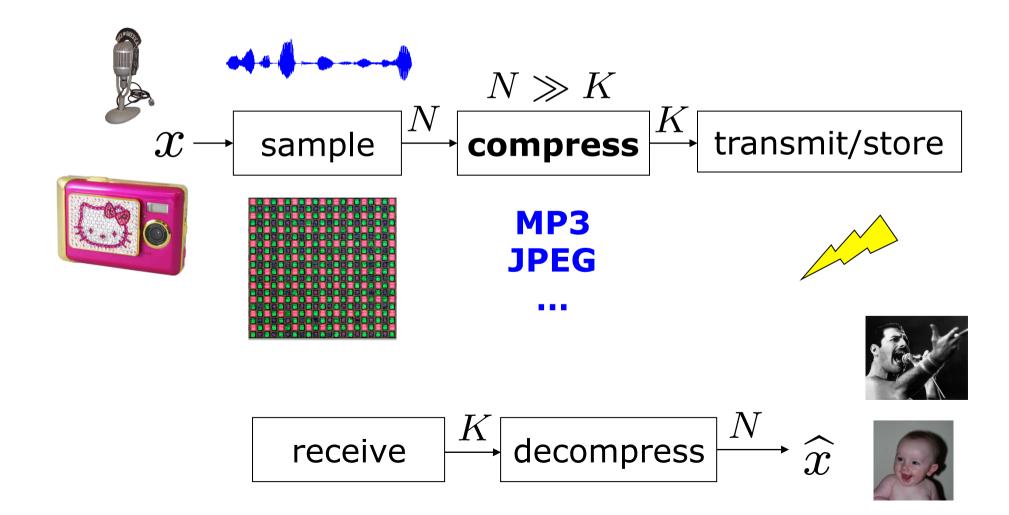
- Ignore
 - generalizes well
 - robust

Understanding the Basics

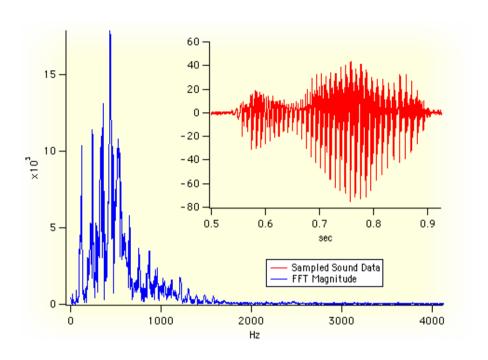
Circuits and Systems I

Sensing by Sampling

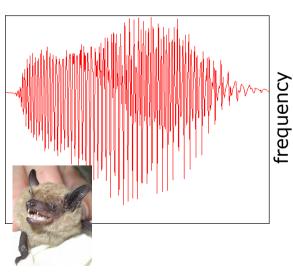
- Long-established paradigm for digital data acquisition
 - uniformly *sample* data at Nyquist rate (2x Fourier bandwidth)

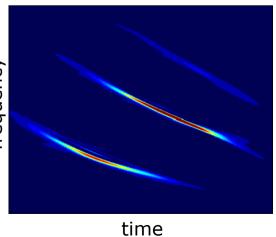


Transform Domain Representations



N wideband signal samples





 $K \ll N$ large time-frequency coefficients

Processing by Systems

Signals > > Systems

Practical inverter (NOT) circuit

Input

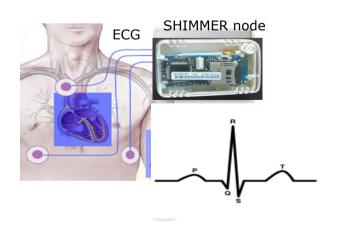
Input

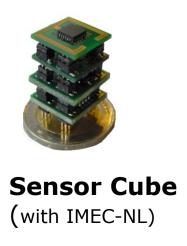
Q1

Q2

Q4

Output





Logistics

cf. Syllabus

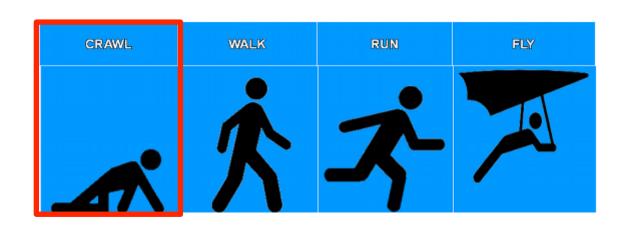
Lecture Objectives

- Write general formula for a "sinusoidal" waveform, or signal
- From the formula, plot the sinusoid versus time
- What's a signal?
 - It's a function of time, x(t)
 - in the mathematical sense

Lecture Objectives

- Write general formula for a "sinusoidal" waveform, or signal
- From the formula, plot the sinusoid versus time
- What's a signal?
 - It's a function of time, x(t)
 - in the mathematical sense

CSI Progress Level:



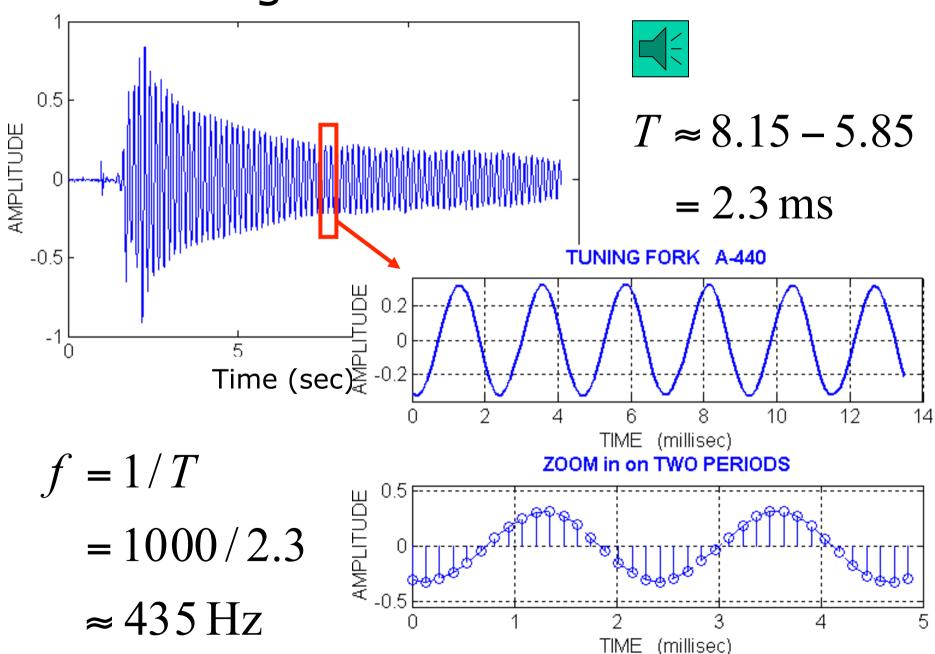
Tuning Fork Example

- CD-ROM demo
- "A" is at 440 Hertz (Hz)

- Waveform is a SINUSOIDAL SIGNAL
- Computer plot looks like a sine wave
- This should be the mathematical formula:

$$A\cos(2\pi(440)t+\varphi)$$

Tuning Fork A-440 Waveform



Speech Example

- More complicated signal (BAT.WAV)
- Waveform x(t) is NOT a Sinusoid

- Theory will tell us
 - **x(t)** is approximately a sum of sinusoids
 - FOURIER ANALYSIS
 - Break x(t) into its sinusoidal components
 - Called the FREQUENCY SPECTRUM

Speech Signal: BAT

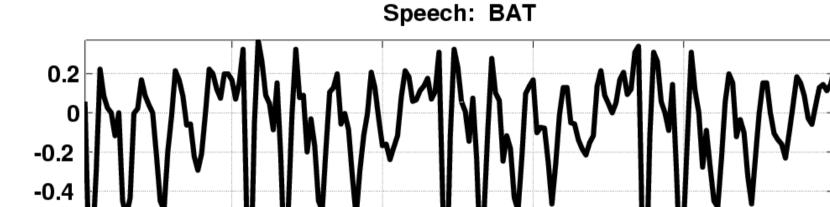
• Nearly **Periodic** in Vowel Region

0.28

-0.6

-0.8

- Period is (Approximately) T = 0.0065 sec



0.285

0.29

time (sec)

0.295

Digitize the Waveform

- x[n] is a SAMPLED SINUSOID
 - A list of numbers stored in memory
- Sample at 11,025 samples per second
 - Called the SAMPLING RATE of the A/D
 - Time between samples is
 - -1/11025 = 90.7 microsec
- Output via D/A hardware (at F_{samp})

Storing Digital Sounds

- x[n] is a SAMPLED SINUSOID
 - A list of numbers stored in memory
- CD rate is 44,100 samples per second
- 16-bit samples
- Stereo uses 2 channels
- Number of bytes for 1 minute is
 - $-2 \times (16/8) \times 60 \times 44100 = ?$

Storing Digital Sounds

- x[n] is a SAMPLED SINUSOID
 - A list of numbers stored in memory
- CD rate is 44,100 samples per second
- 16-bit samples
- Stereo uses 2 channels
- Number of bytes for 1 minute is
 - -2 X (16/8) X 60 X 44100 = 10.584 Mbytes

Sines and Cosines

Always use the cosine canonical form

$$A\cos(2\pi(440)t+\varphi)$$

• Sine is a special case:

$$\sin(\omega t) = \cos(\omega t - \frac{\pi}{2})$$

Sinusoidal Signal

$$A\cos(\omega t + \varphi)$$

• FREQUENCY (1)

• AMPLITUDE

- Magnitude

- Radians/sec
- Hertz (cycles/sec)

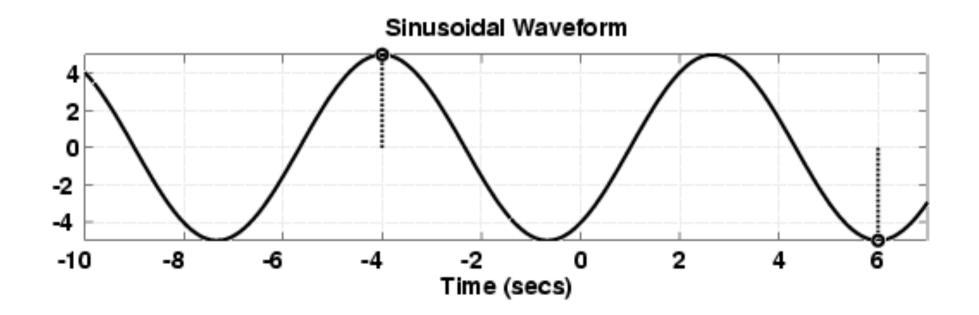
$$\omega = (2\pi)f$$

PERIOD (in sec)PHASE

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

Example Sinusoid

- Given the Formula $5\cos(0.3\pi t + 1.2\pi)$
- Make a plot



Plotting of a Cosine Signal

$$5\cos(0.3\pi t + 1.2\pi)$$

• Formula defines A, ω , and ϕ

$$A = 5$$

$$\omega = 0.3\pi$$

$$\varphi = 1.2\pi$$

Plotting of a Cosine Signal via the Mathematical Formula

$$\left| 5\cos(0.3\pi t + 1.2\pi) \right|$$

• Determine **period**:

$$T = 2\pi / \omega = 2\pi / 0.3\pi = 20/3$$

Determine a <u>peak</u> location by solving

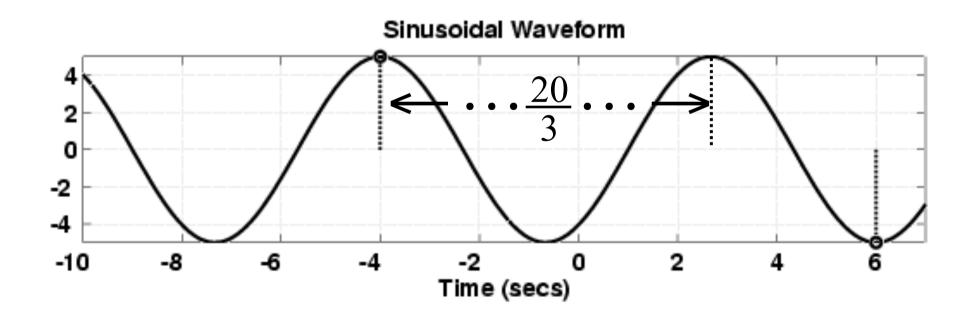
$$(\omega t + \varphi) = 0 \implies (0.3\pi t + 1.2\pi) = 0$$

- Zero crossing is T/4 before or after
- Positive & Negative peaks spaced by T/2

Plotting

$$5\cos(0.3\pi t + 1.2\pi)$$

• Use T=20/3 and the peak location at t=-4



Lecture Objectives

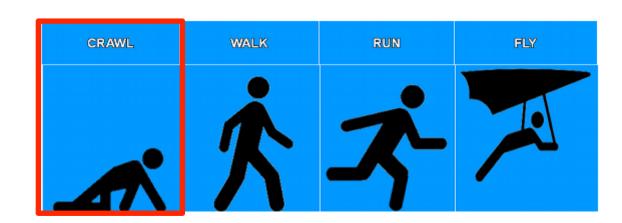
- Define Sinusoid Formula from a plot
- Relate TIME-SHIFT to PHASE

Introduce an ABSTRACTION:

Complex Numbers represent Sinusoids
Complex Exponential Signal

$$z(t) = Xe^{j\omega t}$$

CSI
Progress
Level:



Time-Shift

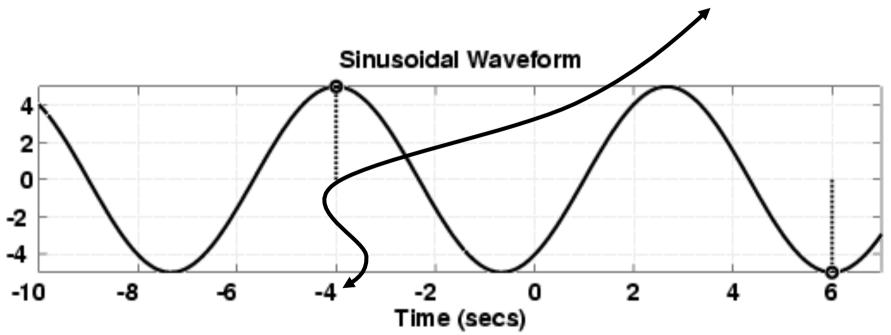
In a mathematical formula we can replace t with t-t_m

$$x(t - t_m) = A\cos(\omega(t - t_m))$$

- Then the t=0 point moves to t=t_m
- Peak value of cos(ω(t-t_m)) is now at t=t_m

TIME-SHIFTED SINUSOID

$$x(t+4) = 5\cos(0.3\pi(t+4)) = 5\cos(0.3\pi(t-(-4)))$$



• Equate the formulas:

$$A\cos(\omega(t-t_m)) = A\cos(\omega t + \varphi)$$

• and we obtain:

$$-\omega t_m = \varphi$$

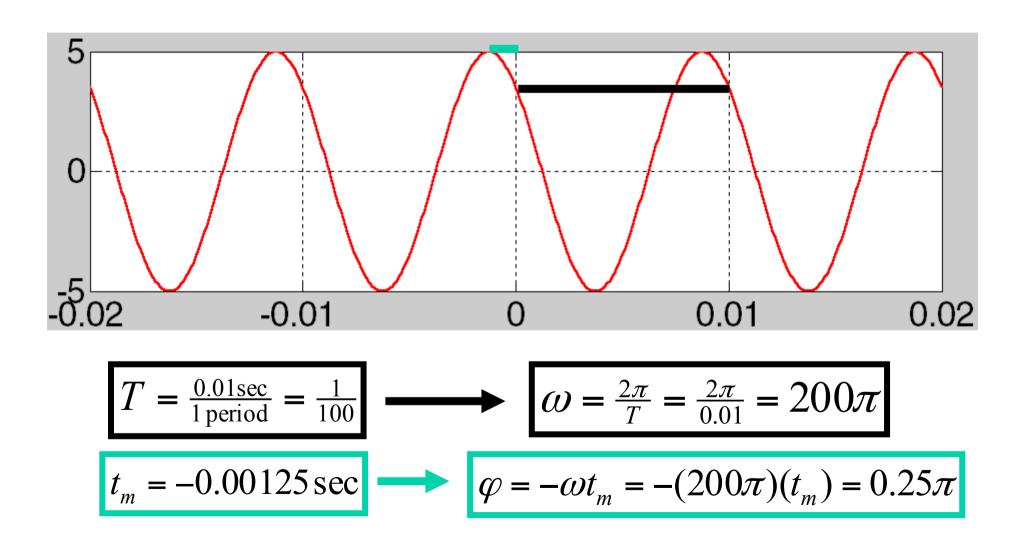
or,

$$t_m = -\frac{\varphi}{\omega}$$

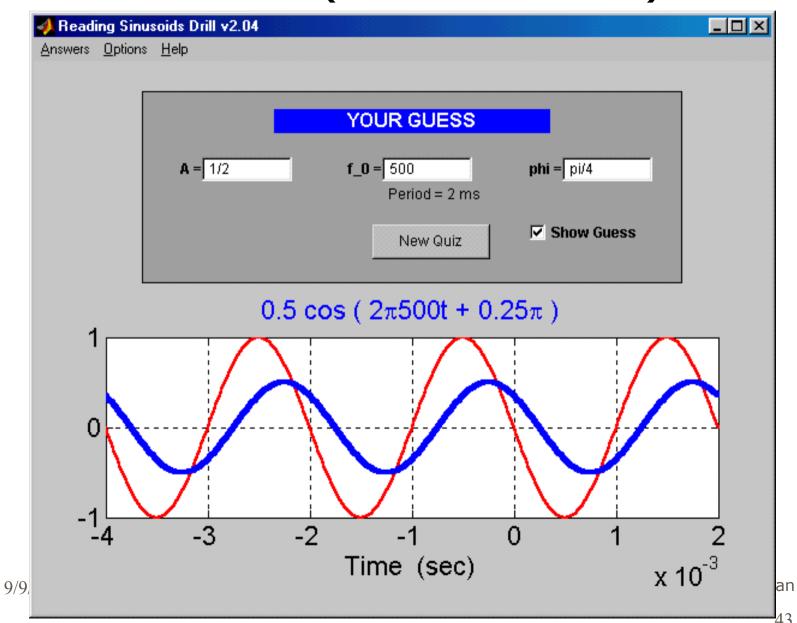
Sinusoid from a Plot

- Measure the period, T
 - Between peaks or zero crossings
 - Compute frequency: $\omega = 2\pi/T$
- Measure time of a peak: t_m
 - Compute phase: $\phi = -\omega t_m$
- Measure height of positive peak: A

(A, ω, ϕ) from a PLOT



Sine Drill (MATLAB GUI)



Phase is Ambiguous

- The cosine signal is periodic
 - Period is 2π

$$A\cos(\omega t + \varphi + 2\pi) = A\cos(\omega t + \varphi)$$

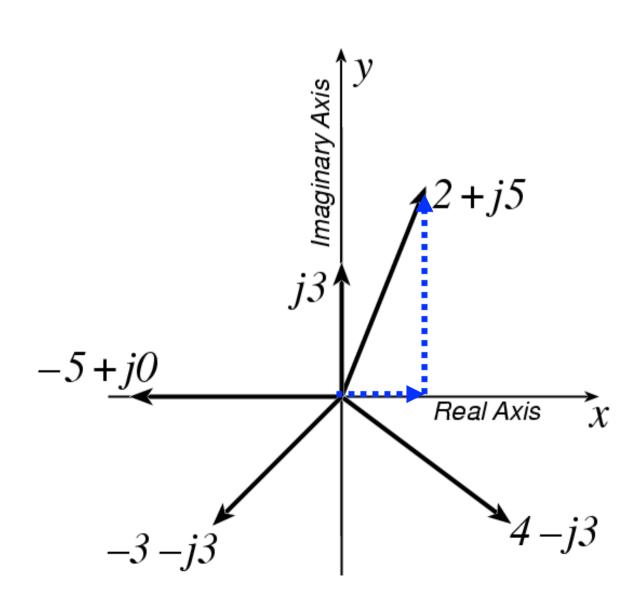
– Thus adding any multiple of 2π leaves x(t) unchanged

if
$$t_m = \frac{-\varphi}{\omega}$$
, then
$$t_{m_2} = \frac{-(\varphi + 2\pi)}{\omega} = \frac{-\varphi}{\omega} - \frac{2\pi}{\omega} = t_m - T$$

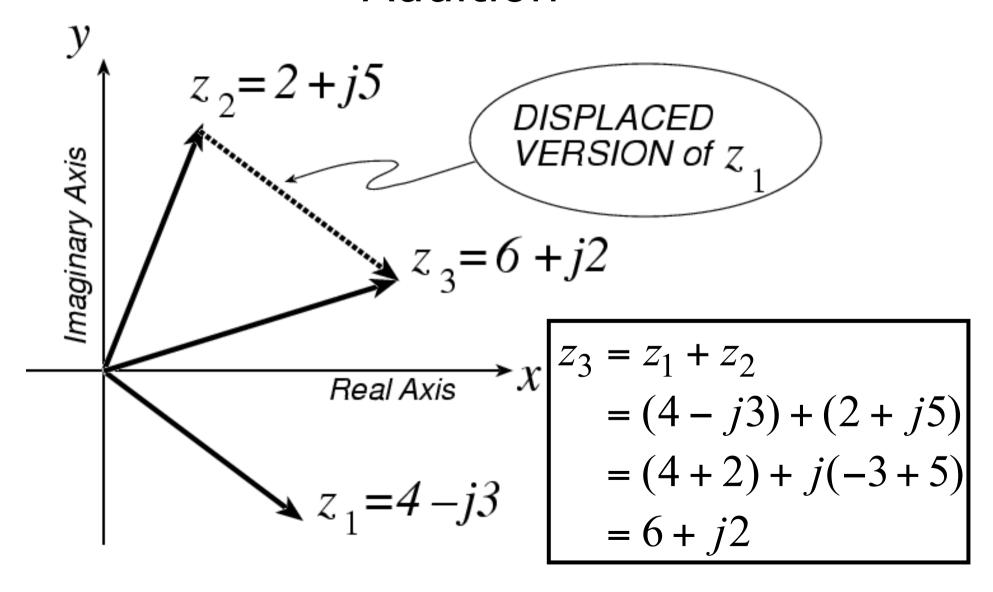
Complex Numbers

- To solve: $z^2 = -1$
 - -z=j
 - Math and Physics use z = i
- Complex number: z = x + j y

Plot Complex Numbers

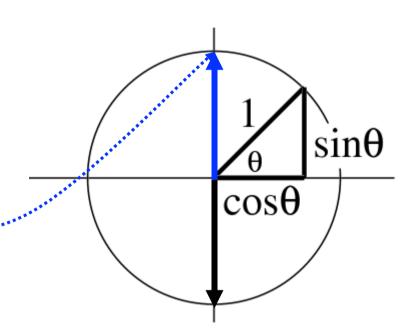


Complex Addition = VECTOR Addition



Polar Form

- Vector Form
 - Length =1
 - Angle = θ
- Common Values
 - has angle of 0.5π
 - -1 has angle of π
 - -**j** has angle of 1.5π
 - also, angle of $-\mathbf{j}$ could be $-0.5\pi = 1.5\pi 2\pi$
 - because the PHASE is AMBIGUOUS



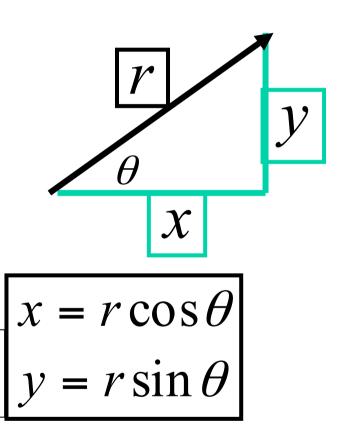
Polar <> Rectangular

• Relate (x,y) to (r,θ)

$$r^{2} = x^{2} + y^{2}$$

$$\theta = \operatorname{Tan}^{-1}\left(\frac{y}{x}\right)$$

Most calculators do Polar-Rectangular

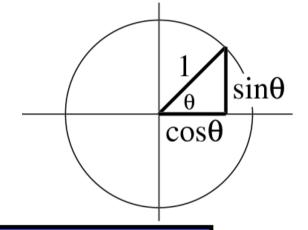


Need a notation for POLAR FORM

Euler's Formula

Complex Exponential

- Real part is cosine
- Imaginary part is sine
- Magnitude is one



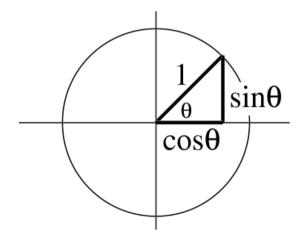
$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

$$re^{j\theta} = r\cos(\theta) + jr\sin(\theta)$$

Complex Exponential

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

- Interpret this as a Rotating Vector
 - $-\theta = \omega t$
 - Angle changes vs. time
 - ex: ω =20 π rad/s
 - Rotates 0.2π in 0.01 secs



$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

cos = Real Part

Real Part of Euler's $\cos(\omega t) = \Re e\{e^{j\omega t}\}$

General Sinusoid $x(t) = A\cos(\omega t + \varphi)$

So,
$$A\cos(\omega t + \varphi) = \Re e\{Ae^{j(\omega t + \varphi)}\}\$$

= $\Re e\{Ae^{j\varphi}e^{j\omega t}\}$

Real Part Example

$$A\cos(\omega t + \varphi) = \Re e \left\{ Ae^{j\varphi}e^{j\omega t} \right\}$$

Evaluate:
$$x(t) = \Re e^{\int -3je^{j\omega t}}$$

Answer:

$$x(t) = \Re e \left\{ (-3j)e^{j\omega t} \right\}$$
$$= \Re e \left\{ 3e^{-j0.5\pi}e^{j\omega t} \right\} = 3\cos(\omega t - 0.5\pi)$$

Complex Amplitude

General Sinusoid

$$x(t) = A\cos(\omega t + \varphi) = \Re\{Ae^{j\varphi}e^{j\omega t}\}$$
Complex AMPLITUDE = X

$$z(t) = Xe^{j\omega t} \qquad X = Ae^{j\varphi}$$

Then, any Sinusoid = REAL PART of Xe^{jωt}

$$x(t) = \Re e \left\{ X e^{j\omega t} \right\} = \Re e \left\{ A e^{j\varphi} e^{j\omega t} \right\}$$

