

Circuits and Systems I

LECTURE #10 FIR Filtering: An Introduction

Prof. Dr. Volkan Cevher LIONS/Laboratory for Information and Inference Systems

License Info for SPFirst Slides

- This work released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

• Non-Commercial

 The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes—unless they get the licensor's permission.

• Share Alike

- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License
- This (hidden) page should be kept with the presentation

Outline - Today

- Today <> Section 5-1 Section 5-2 Section 5-3
- Next week <> Section 5-4 Section 5-5 Section 5-6 Section 5-7

Lecture Objectives

- INTRODUCE FILTERING IDEA
 - Weighted Average
 - Running Average
- FINITE IMPULSE RESPONSE FILTERS

Show how to <u>compute</u> the output y[n] from the input signal, x[n]

Digital Filtering

- CONCENTRATE on the COMPUTER
 - PROCESSING ALGORITHMS
 - SOFTWARE (MATLAB)
 - HARDWARE: DSP chips, VLSI
- **DSP:** DIGITAL SIGNAL PROCESSING

The TMS32010, 1983

First PC plug-in board from Atlanta Signal Processors Inc.

Rockland Digital Filter, 1971

For the price of a small house, you could have one of these.

Digital Cell Phone (circa. 2000)

Now it plays video

DISCRETE-TIME SYSTEM

- OPERATE on x[n] to get y[n]
- WANT a **GENERAL** CLASS of SYSTEMS
 - **ANALYZE** the SYSTEM
 - TOOLS: TIME-DOMAIN & FREQUENCY-DOMAIN
 - **SYNTHESIZE** the SYSTEM

D-T System Examples

- EXAMPLES:
 - POINTWISE OPERATORS
 - SQUARING: y[n] = (x[n])²
 - RUNNING AVERAGE
 - RULE: "the output at time n is the average of three consecutive input values"

Discrete-Time Signal

x[n] is a LIST of NUMBERS
– INDEXED by "n"

3-PT Average System

• ADD 3 CONSECUTIVE NUMBERS

- Do this for each "n"

the following input-output equation

Make a TABLE

$$y[n] = \frac{1}{3}(x[n] + x[n+1] + x[n+2])$$

n	n < -2	-2	-1	0	1	2	3	4	5	<i>n</i> > 5
x[n]	0	0	0	2	4	6	4	2	0	0
<i>y</i> [<i>n</i>]	0	$\frac{2}{3}$	2	4	$\frac{14}{3}$	4	2	$\frac{2}{3}$	0	0

n=0 $y[0] = \frac{1}{3}(x[0] + x[1] + x[2])$

n=1
$$y[1] = \frac{1}{3}(x[1] + x[2] + x[3])$$

Figure 5.2 Finite-length input signal, x[n].

 $y[n] = \frac{1}{3}(x[n] + x[n+1] + x[n+2])$

Figure 5.3 Output of running average, y[n].

Past, Present, and Future

Sec. 5.2 The Running Average Filter **123**

Figure 5.4 The running-average filter calculation at time index *n* uses values within a sliding window (shaded). Dark shading indicates the future $(\ell > n)$; light shading, the past $(\ell < n)$.

Another 3-pt Averager

- Uses "PAST" VALUES of x[n]
 - IMPORTANT IF "n" represents REAL TIME
 - WHEN x[n] & y[n] ARE STREAMS

$$y[n] = \frac{1}{3}(x[n] + x[n-1] + x[n-2])$$

n	n < -2	-2	-1	0	1	2	3	4	5	6	7	<i>n</i> > 7
x[n]	0	0	0	2	4	6	4	2	0	0	0	0
<i>y</i> [<i>n</i>]	0	0	0	$\frac{2}{3}$	2	4	$\frac{14}{3}$	4	2	$\frac{2}{3}$	0	0

General FIR Filter

• FILTER COEFFICIENTS $\{b_k\}$

- DEFINE THE FILTER

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

- For example,

$$b_k = \{3, -1, 2, 1\}$$

$$y[n] = \sum_{k=0}^{3} b_k x[n-k]$$

= $3x[n] - x[n-1] + 2x[n-2] + x[n-3]$

General FIR Filter

• FILTER COEFFICIENTS {b_k}

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

- FILTER **ORDER** is M
- FILTER **LENGTH** is L = M+1
 - NUMBER of FILTER COEFFS is L

General FIR Filter

• SLIDE a WINDOW across x[n]

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

Filtered Stock Signal

Special Input Signals

- x[n] = SINUSOID
- x[n] has only one NON-ZERO VALUE

FREQUENCY RESPONSE (LATER)

UNIT IMPULSE SIGNAL $\delta[n]$

Figure 5.7 Shifted impulse sequence, $\delta[n-3]$.

MATH FORMULA for x[n]

• Use SHIFTED IMPULSES to write x[n]

Sum of Shifted Impulses

n	•••	-2	-1	0	1	2	3	4	5	6	•••
$2\delta[n]$	0	0	0	2	0	0	0	0	0	0	0
$4\delta[n-1]$	0	0	0	0	4	0	0	0	0	0	0
$6\delta[n-2]$	0	0	0	0	0	6	0	0	0	0	0
$4\delta[n-3]$	0	0	0	0	0	0	4	0	0	0	0
$2\delta[n-4]$	0	0	0	0	0	0	0	2	0	0	0
<i>x</i> [<i>n</i>]	0	0	0	2	4	6	4	2	0	0	0

$$x[n] = \sum_{k} x[k]\delta[n - k]$$

$$= \dots + x[-1]\delta[n + 1] + x[0]\delta[n] + x[1]\delta[n - 1] + \dots$$
(5.3.6)

4-pt Averager

- CAUSAL SYSTEM: USE PAST VALUES $y[n] = \frac{1}{4}(x[n] + x[n-1] + x[n-2] + x[n-3])$
- INPUT = UNIT IMPULSE SIGNAL = $\delta[n]$ $x[n] = \delta[n]$ $y[n] = \frac{1}{4}\delta[n] + \frac{1}{4}\delta[n-1] + \frac{1}{4}\delta[n-2] + \frac{1}{4}\delta[n-3]$
- OUTPUT is called "IMPULSE RESPONSE" $h[n] = \{..., 0, 0, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, 0, 0, ...\}$

4-pt Avg Impulse Response

$$y[n] = \frac{1}{4}(x[n] + x[n-1] + x[n-2] + x[n-3])$$

 $\delta[n]$ "READS OUT" the FILTER COEFFICIENTS

$$h[n] = \{\dots, 0, 0, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, 0, 0, \dots\}$$

FIR Impulse Response

- Convolution = Filter Definition
 - Filter Coeffs = Impulse Response

n	n < 0	0	1	2	3	•••	М	M + 1	n > M + 1
$x[n] = \delta[n]$	0	1	0	0	0	0	0	0	0
y[n] = h[n]	0	b_0	b_1	b_2	b_3		b_M	0	0

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

$$y[n] = \sum_{k=0}^{M} h[k]x[n-k]$$

Convolution

Filtering Example

- 7-point AVERAGER
 - Removes cosine

$$y_7[n] = \sum_{k=0}^{6} \left(\frac{1}{7}\right) x[n-k]$$

By making its amplitude (A) smaller

3-point AVERAGER
 Changes A slightly

$$y_3[n] = \sum_{k=0}^2 \left(\frac{1}{3}\right) x[n-k]$$

3-pt AVG EXAMPLE

Input: $x[n] = (1.02)^n + \cos(2\pi n/8 + \pi/4)$ for $0 \le n \le 40$

7-pt FIR EXAMPLE (AVG)

