

Circuits and Systems I

LECTURE #11 Linearity, Time Invariance, and Convolution

Prof. Dr. Volkan Cevher LIONS/Laboratory for Information and Inference Systems

License Info for SPFirst Slides

- This work released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

• Non-Commercial

 The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes—unless they get the licensor's permission.

• Share Alike

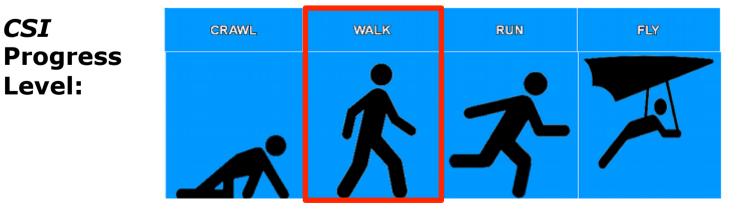
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License
- This (hidden) page should be kept with the presentation

Outline - Today

- Today Section 5-4 <> Section 5-5 Section 5-6 Section 5-7
- Next week Section 6-1 <> Section 6-2 Section 6-3 Section 6-4

CSI

Level:



Lecture Objectives

GENERAL PROPERTIES of FILTERS

LINEARITY

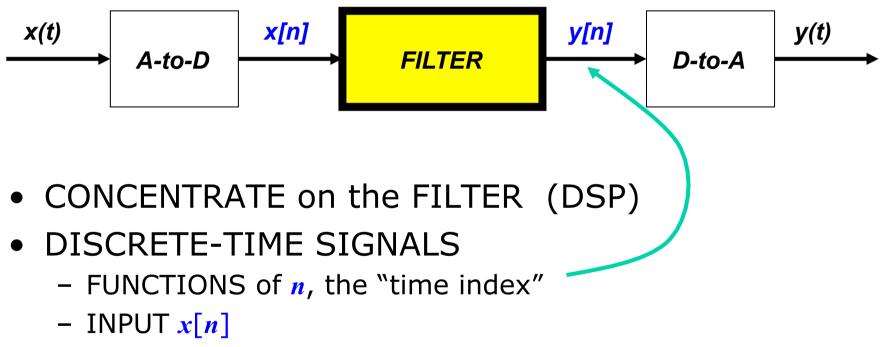
LTI SYSTEMS

- TIME-INVARIANCE
- ==> <u>CONVOLUTION</u>
- BLOCK DIAGRAM REPRESENTATION
 - Components for Hardware
 - Connect Simple Filters Together to Build More Complicated Systems

Overview

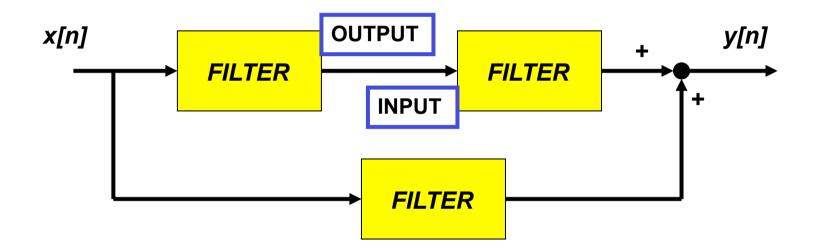
- IMPULSE RESPONSE, h[n]
 - FIR case: same as $\{b_k\}$
- CONVOLUTION
 - GENERAL: y[n] = h[n] * x[n]
 - GENERAL CLASS of SYSTEMS
 - LINEAR and TIME-INVARIANT
- ALL **LTI** systems have *h*[*n*] & use convolution

Digital Filtering



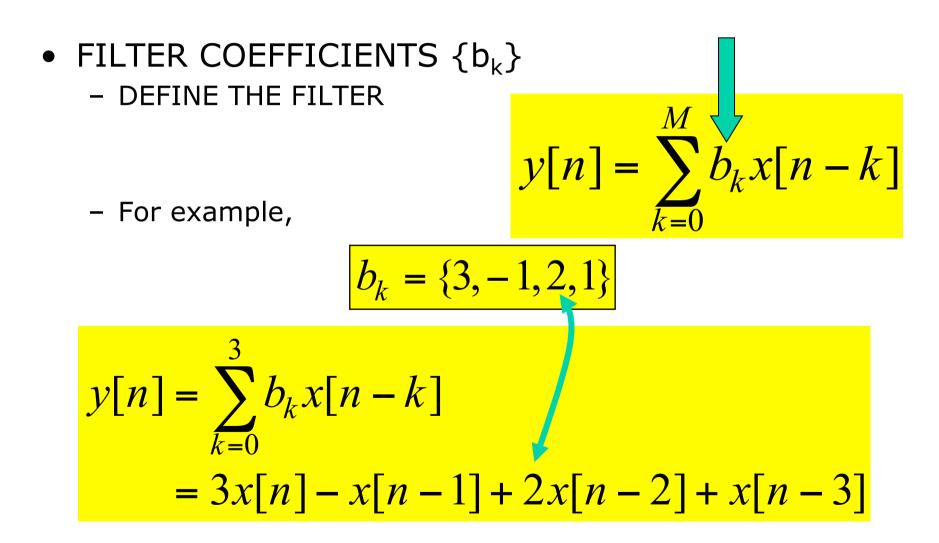
- OUTPUT y[n]

Building Blocks



- BUILD UP COMPLICATED FILTERS
 - FROM SIMPLE MODULES
 - Ex: FILTER MODULE MIGHT BE 3-pt FIR

General FIR Filter



MATLAB for FIR Filter

\cdot yy = conv(bb, xx)

– VECTOR **bb** contains Filter Coefficients

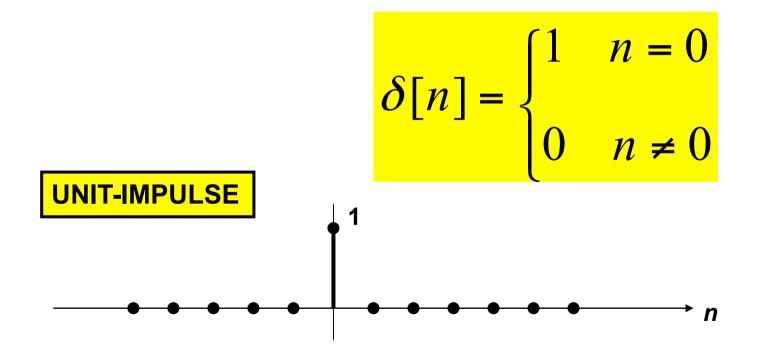
- DSP-First: **yy** = **firfilt(bb, xx)**
- FILTER COEFFICIENTS { b_k}

conv2 () for images

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

Special Input Signals

- x[n] = SINUSOID
- x[n] has only one NON-ZERO VALUE



FIR Impulse Response

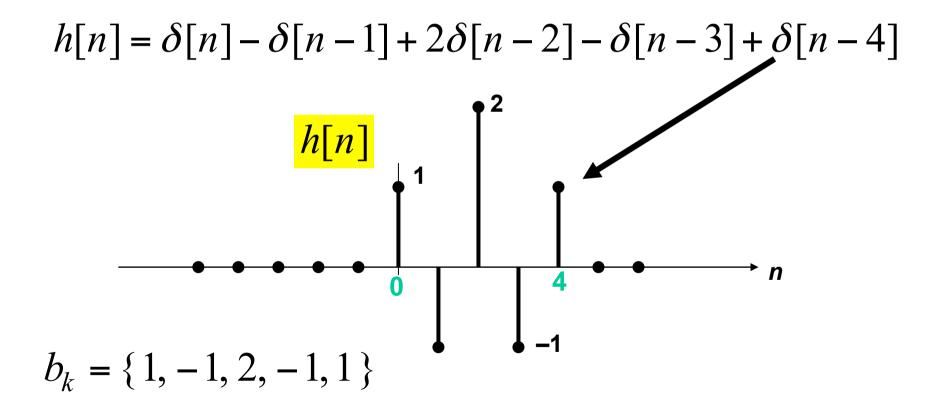
- Convolution = Filter Definition
 - Filter Coeffs = Impulse Response

n	n < 0	0	1	2	3		Μ	M+1	n > M + 1
$x[n] = \delta[n]$	0	1	0	0	0	0	0	0	0
y[n] = h[n]	0	b_0	b_1	b_2	b_3		b_M	0	0

$$h[n] = \sum_{k=0}^{M} b_k \delta[n-k]$$

Mathematical Formula for h[n]

• Use SHIFTED IMPULSES to write *h*[*n*]

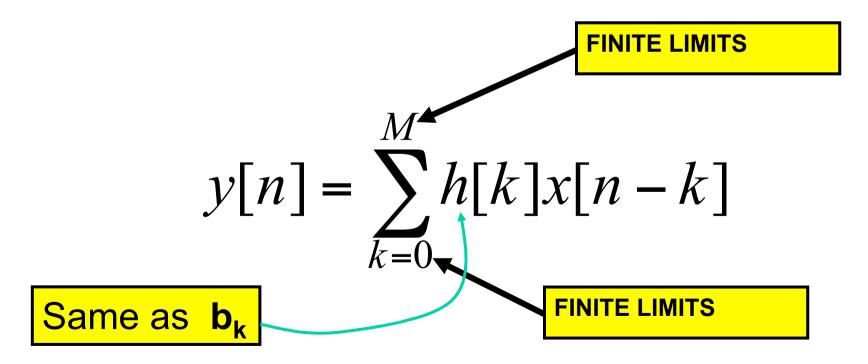


LTI: Convolution Sum

Output = Convolution of x[n] & h[n]

- NOTATION:
- Here is the FIR case:

$$y[n] = h[n] * x[n]$$



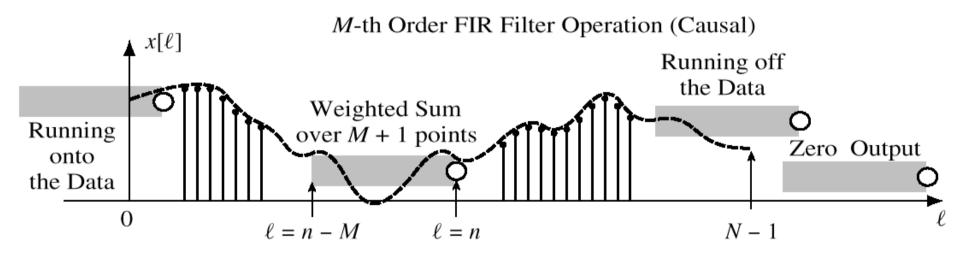
CONVOLUTION Example

$h[n] = \delta[n]$]–ð	[<i>n</i> ·	- 1] -	+ 2 <i>ð</i>	[<i>n</i> –	-2]-	-δ [n – 3	3]+	$\delta[n-4]$
x[n] = u[n]										
	; -1									
x[n]	0	1	1	1	1	1	1	1		
h[n]	0	1	-1	2	-1	1	0	0	0	
h[0]x[n]										
h[1]x[n-1]	0	0	-1	-1	-1	-1	-1	-1	-1	
h[2]x[n-2]	0	0	0	2	2	2	2	2	2	
h[3]x[n-3]	0	0	0	0	-1	-1	-1	-1	-1	
h[4]x[n-4]	0	0	0	0	0	1	1	1	1	
<i>y</i> [<i>n</i>]	0	1	0	2	1	2	2	2	• • • •	

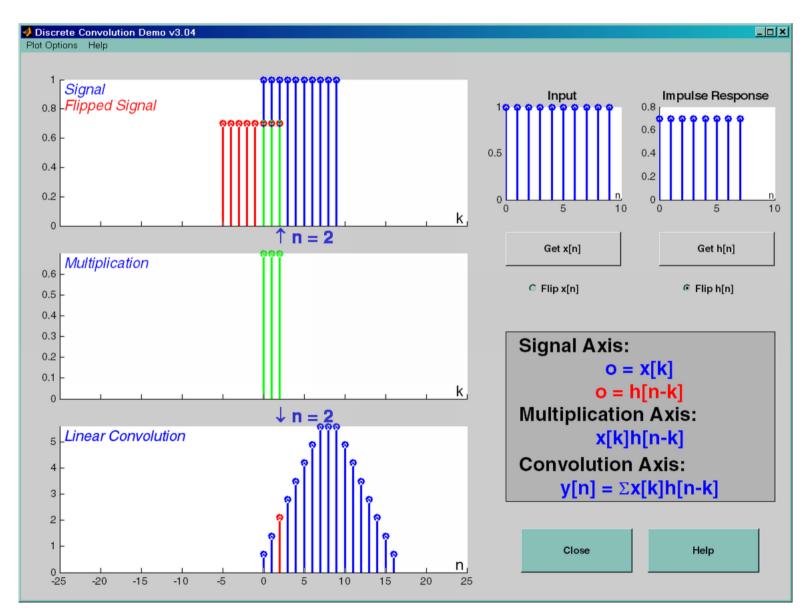
GENERAL FIR FILTER

• SLIDE a Length-L WINDOW over x[n]

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$



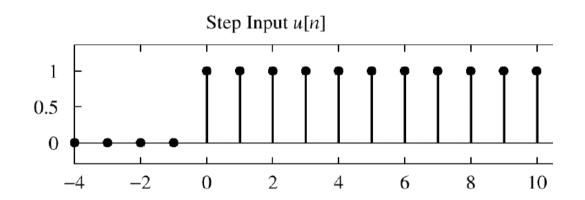
DCONVDEMO: MATLAB GUI



Pop Quiz

- FIR Filter is "FIRST DIFFERENCE"
 y[n] = x[n] x[n-1]
- INPUT is "UNIT STEP"

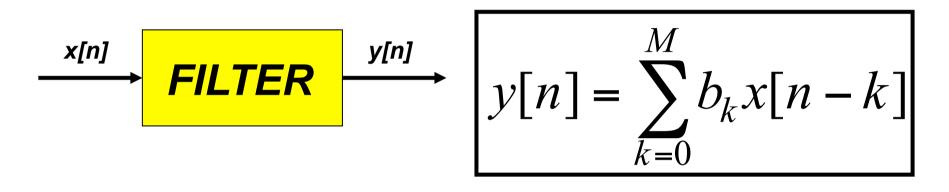
$$u[n] = \begin{cases} 1 & n \ge 0\\ 0 & n < 0 \end{cases}$$



Find y[n]

$$y[n] = u[n] - u[n-1] = \delta[n]$$

Hardware Structures

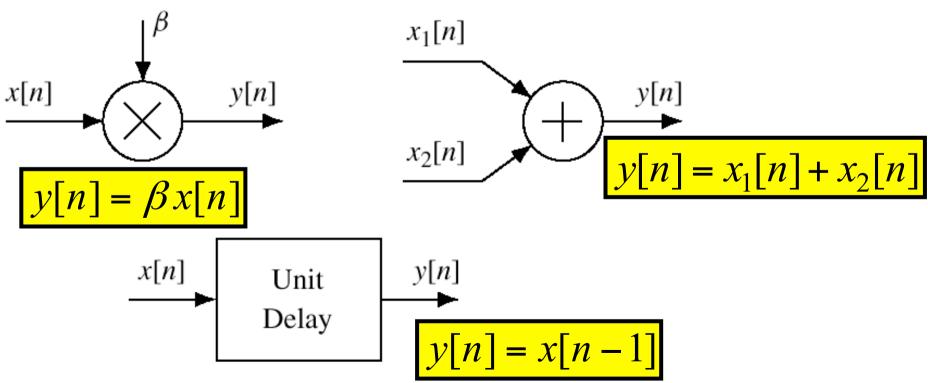


- INTERNAL STRUCTURE of "FILTER"
 - WHAT COMPONENTS ARE NEEDED?
 - HOW DO WE "HOOK" THEM TOGETHER?
- SIGNAL FLOW GRAPH NOTATION

Hardware Atoms

• Add, Multiply & Store

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$



FIR Structure

• Direct Form

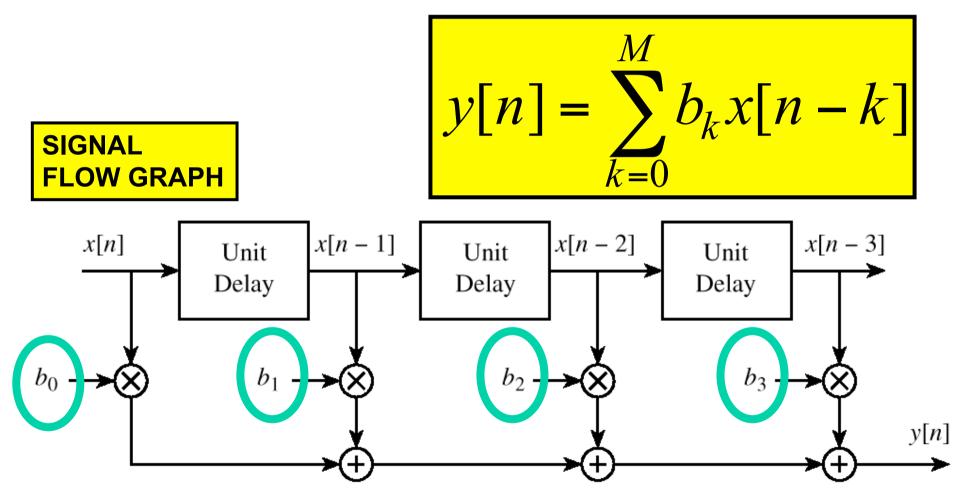
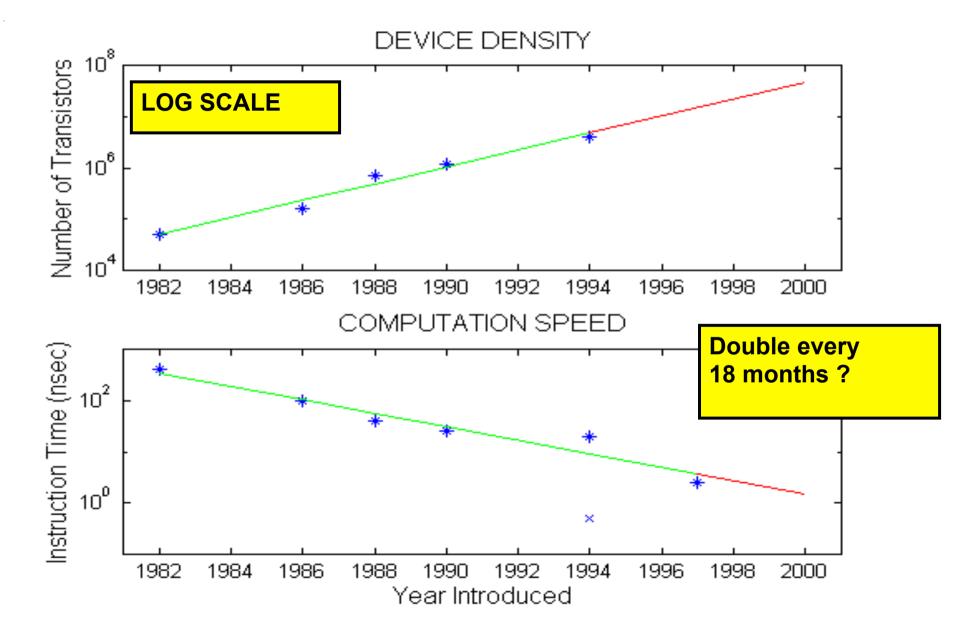


Figure 5.13 Block-diagram structure for the *M*th order FIR filter.

Moore's Law for TI DSPs



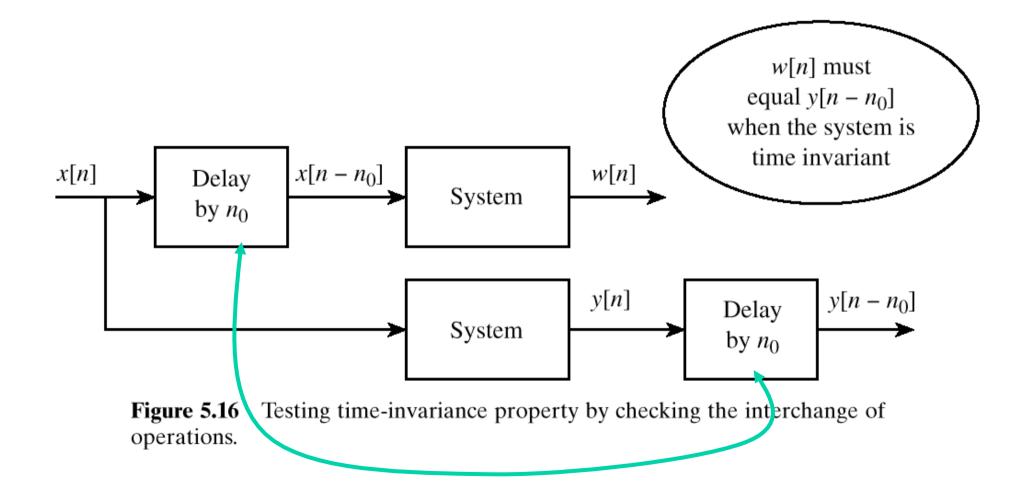
System Properties

- <u>MATHEMATICAL DESCRIPTION</u>
- <u>TIME-INVARIANCE</u>
- LINEARITY
- CAUSALITY
 - "No output prior to input"

Time-Invariance

- IDEA:
 - "Time-Shifting the input will cause the same time-shift in the output"
- EQUIVALENTLY,
 - We can prove that
 - The time origin (n=0) is picked arbitrary

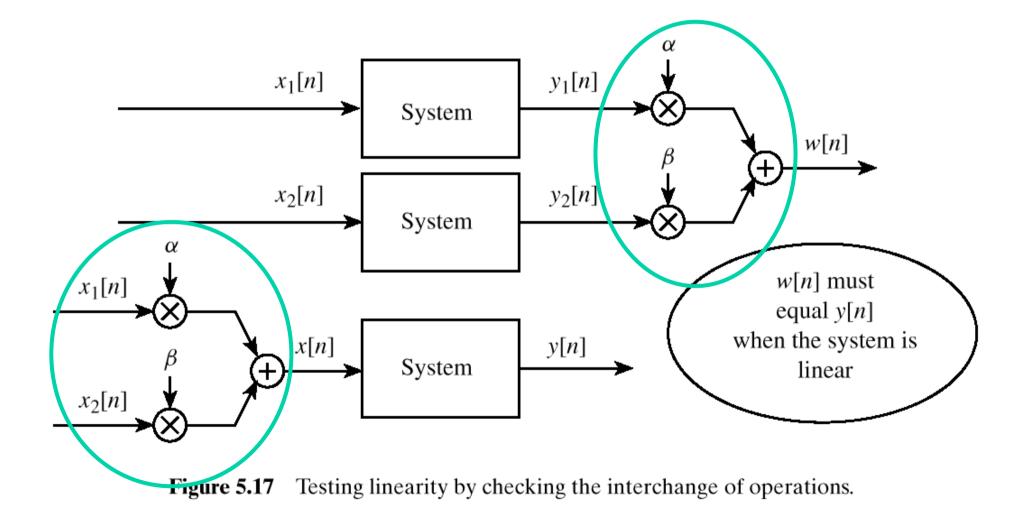
TESTING Time-Invariance



Linear System

- LINEARITY = Two Properties
- SCALING
 - "Doubling x[n] will double y[n]"
- SUPERPOSITION:
 - "Adding two inputs gives an output that is the sum of the individual outputs"

TESTING Linearity



LTI SYSTEMS

- LTI: Linear & Time-Invariant
- COMPLETELY CHARACTERIZED by:
 - IMPULSE RESPONSE h[n]
 - **<u>CONVOLUTION</u>**: y[n] = x[n]*h[n]
 - The "rule" defining the system can ALWAYS be re-written as convolution
- FIR Example: h[n] is same as b_k

Pop Quiz

- FIR Filter is "FIRST DIFFERENCE"
 y[n] = x[n] x[n 1]
- Write output as a convolution
 - Need impulse response

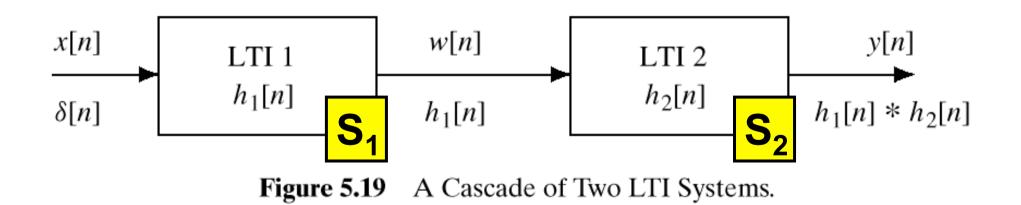
$$h[n] = \delta[n] - \delta[n-1]$$

- Then, another way to compute the output:

$$y[n] = (\delta[n] - \delta[n-1]) * x[n]$$

Cascade Systems

- Does the order of S₁ & S₂ matter?
 - NO, LTI SYSTEMS can be rearranged !!!
 - WHAT ARE THE FILTER COEFFS? $\{b_k\}$



Cascade Equivalent

- Find "overall" h[n] for a cascade ?

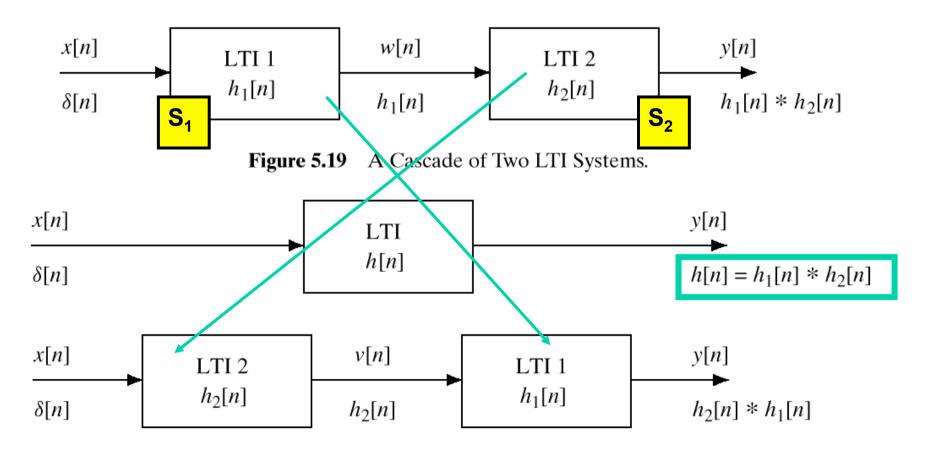


Figure 5.20 Switching the order of cascaded LTI systems.

