

# Circuits and Systems I

LECTURE #12 Frequency Response of FIR

Prof. Dr. Volkan Cevher LIONS/Laboratory for Information and Inference Systems

# License Info for SPFirst Slides

- This work released under a <u>Creative Commons License</u> with the following terms:
- Attribution
  - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

#### Non-Commercial

- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes—unless they get the licensor's permission.
- Share Alike
  - The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License
- This (hidden) page should be kept with the presentation

# Outline - Today

| • Today                       | <> | Section 6-1<br>Section 6-2<br>Section 6-3<br>Section 6-4 |
|-------------------------------|----|----------------------------------------------------------|
| <ul> <li>Next week</li> </ul> | <> | Section 6-6                                              |

Section 6-6 Section 6-7 Section 6-8



*CSI* Progress Level:

# Lecture Objectives

#### • SINUSOIDAL INPUT SIGNAL

- DETERMINE the FIR FILTER OUTPUT

#### • FREQUENCY RESPONSE of FIR

- PLOTTING vs. Frequency
- MAGNITUDE vs. Freq
- PHASE vs. Freq



# **DOMAINS: Time & Frequency**

#### <u>Time-Domain: "n" = time</u>

- x[n] discrete-time signal
- x(t) continuous-time signal

#### Frequency Domain (sum of sinusoids)

- Spectrum vs. f (Hz)

≻ANALOG vs. DIGITAL

- Spectrum vs. omega-hat
- Move back and forth <u>QUICKLY</u>

# Digital "Filtering"



- CONCENTRATE on the <u>SPECTRUM</u>
- SINUSOIDAL INPUT
  - INPUT x[n] = SUM of SINUSOIDS
  - Then, OUTPUT y[n] = SUM of SINUSOIDS

# Filtering Example

$$y_7[n] = \sum_{k=0}^6 \left(\frac{1}{7}\right) x[n-k]$$

- 7-point AVERAGER
  - Removes cosine
    - By making its amplitude (A) smaller

3-point AVERAGER Changes A slightly

$$y_3[n] = \sum_{k=0}^{2} \left(\frac{1}{3}\right) x[n-k]$$

#### 3-pt Averager Example

Input:  $x[n] = (1.02)^n + \cos(2\pi n/8 + \pi/4)$  for  $0 \le n \le 40$ 



# 7-pt FIR Example (FIR)

Input:  $x[n] = (1.02)^n + \cos(2\pi n/8 + \pi/4)$  for  $0 \le n \le 40$ 



### Sinusoidal Response

- INPUT: x[n] = SINUSOID
- OUTPUT: y[n] will also be a SINUSOID
  - Different Amplitude and Phase

-SAME Frequency

AMPLITUDE & PHASE CHANGE

Called the FREQUENCY RESPONSE

# DCONVDEMO: MATLAB GUI



### **Complex Exponential**



# **Complex Exponential Output**

• Use the FIR "Difference Equation"

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] = \sum_{k=0}^{M} b_k A e^{j\varphi} e^{j\hat{\omega}(n-k)}$$
$$= \left(\sum_{k=0}^{M} b_k e^{j\hat{\omega}(-k)}\right) A e^{j\varphi} e^{j\hat{\omega}n}$$
$$= H(\hat{\omega}) A e^{j\varphi} e^{j\hat{\omega}n}$$

# Frequency Response

At each frequency, we can DEFINE

$$H(e^{j\hat{\omega}}) = \sum_{k=0}^{M} b_k e^{-j\hat{\omega}k}$$

- Complex-valued formula
  - Has MAGNITUDE vs. frequency
  - And PHASE vs. frequency
- Notation:

 $H(e^{j\hat{\omega}})$  in place of  $H(\hat{\omega})$ 

### EXAMPLE 6.1

$$H(e^{j\hat{\omega}}) = \sum_{k=0}^{M} b_k e^{-j\hat{\omega}k} \{b_k\} = \{1, 2, 1\}$$

$$H(e^{j\hat{\omega}}) = 1 + 2e^{-j\hat{\omega}} + e^{-j2\hat{\omega}}$$

$$= e^{-j\hat{\omega}}(e^{j\hat{\omega}} + 2 + e^{-j\hat{\omega}})$$

$$= e^{-j\hat{\omega}}(2 + 2\cos\hat{\omega})$$

Since  $(2 + 2\cos\hat{\omega}) \ge 0$ Magnitude is  $|H(e^{j\hat{\omega}})| = (2 + 2\cos\hat{\omega})$ and Phase is  $\angle H(e^{j\hat{\omega}}) = -\hat{\omega}$ 



### EXAMPLE 6.2

Find y[n] when  $H(e^{j\hat{\omega}})$  is known and  $x[n] = 2e^{j\pi/4}e^{j(\pi/3)n}$ 

$$\xrightarrow{x[n]} H(e^{j\hat{w}}) \xrightarrow{y[n]}$$

$$H(e^{j\hat{\omega}}) = (2 + 2\cos\hat{\omega})e^{-j\hat{\omega}}$$



# EXAMPLE 6.2 (answer)

Find 
$$y[n]$$
 when  $x[n] = 2e^{j\pi/4}e^{j(\pi/3)n}$   
One Step - evaluate  $H(e^{j\hat{\omega}})$  at  $\hat{\omega} = \pi/3$   
 $H(e^{j\hat{\omega}}) = (2 + 2\cos\hat{\omega})e^{-j\hat{\omega}}$   
 $H(e^{j\hat{\omega}}) = 3e^{-j\pi/3}$  @  $\hat{\omega} = \pi/3$   
 $y[n] = (3e^{-j\pi/3}) \times 2e^{j\pi/4}e^{j(\pi/3)n} = 6e^{-j\pi/12}e^{j(\pi/3)n}$ 

### Example: COSINE Input

Find 
$$y[n]$$
 when  $H(e^{j\hat{w}})$  is known  
and  $x[n] = 2\cos(\frac{\pi}{3}n + \frac{\pi}{4})$ 



 $H(e^{j\hat{\omega}}) = (2 + 2\cos\hat{\omega})e^{-j\hat{\omega}}$ 

# **EX: COSINE Input**

# Find y[n] when $x[n] = 2\cos(\frac{\pi}{3}n + \frac{\pi}{4})$ $2\cos(\frac{\pi}{3}n + \frac{\pi}{4}) = e^{j(\pi n/3 + \pi/4)} + e^{-j(\pi n/3 + \pi/4)}$ $\Rightarrow x[n] = x_1[n] + x_2[n]$ $y_1[n] = H(e^{j\pi/3})e^{j(\pi n/3 + \pi/4)}$ Use Linearity $y_2[n] = H(e^{-j\pi/3})e^{-j(\pi n/3 + \pi/4)}$ $\Rightarrow y[n] = y_1[n] + y_2[n]$



# EX: COSINE Input (ans-2)

Find 
$$y[n]$$
 when  $x[n] = 2\cos(\frac{\pi}{3}n + \frac{\pi}{4})$   
 $H(e^{j\hat{\omega}}) = (2 + 2\cos\hat{\omega})e^{-j\hat{\omega}}$   
 $y_1[n] = H(e^{j\pi/3})e^{j(\pi n/3 + \pi/4)} = 3e^{-j(\pi/3)}e^{j(\pi n/3 + \pi/4)}$   
 $y_2[n] = H(e^{-j\pi/3})e^{-j(\pi n/3 + \pi/4)} = 3e^{j(\pi/3)}e^{-j(\pi n/3 + \pi/4)}$ 

$$y[n] = 3e^{j(\pi n/3 - \pi/12)} + 3e^{-j(\pi n/3 - \pi/12)}$$
  
$$\Rightarrow y[n] = 6\cos(\frac{\pi}{3}n - \frac{\pi}{12})$$

#### MATLAB: Frequency Response

# •HH = freqz(bb, 1, ww)

– VECTOR **bb** contains Filter Coefficients

- SP-First: HH = freekz(bb,1,ww)
- FILTER COEFFICIENTS {b<sub>k</sub>}

$$H(e^{j\hat{\omega}}) = \sum_{k=0}^{M} b_k e^{-j\hat{\omega}k}$$

# LTI Systems

- LTI: Linear & Time-Invariant
- COMPLETELY CHARACTERIZED by:
  - FREQUENCY RESPONSE, or
  - IMPULSE RESPONSE h[n]
- <u>Sinusoid IN ----> Sinusoid OUT</u>
  - At the SAME Frequency

# **Time & Frequency Relation**

- Get Frequency Response from h[n]
  - Here is the FIR case:



# **Block Diagrams**

• Equivalent Representations



# Unit-Delay System



## First Difference System

Find h[n] and  $H(e^{j\hat{\omega}})$  for the Difference Equation: y[n] = x[n] - x[n-1]



# **DLTI** Demo with Sinusoids



### Cascade Systems

- Does the order of S<sub>1</sub> & S<sub>2</sub> matter?
  - NO, LTI SYSTEMS can be rearranged !!!
  - WHAT ARE THE FILTER COEFFS?  $\{b_k\}$
  - WHAT is the overall FREQUENCY RESPONSE ?



### Cascade Equivalent

• <u>MULTIPLY</u> the Frequency Responses



That's all Folks! Next week

Section 6-6 Section 6-7 Section 6-8