

Circuits and Systems I

LECTURE #13

Frequency Response of FIR Filters and Digital Filtering of Analog Signals

Prof. Dr. Volkan Cevher

LIONS/Laboratory for Information and Inference Systems

License Info for SPFirst Slides

 This work released under a <u>Creative Commons License</u> with the following terms:

Attribution

■ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

Non-Commercial

 The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes—unless they get the licensor's permission.

Share Alike

- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License
- This (hidden) page should be kept with the presentation

Outline - Today

Today

<>

Section 6-6

Section 6-7

Section 6-8

Next week

<>

Final Exam Review

CSI
Progress
Level:

LECTURE OBJECTIVES

- Two Domains: Time & Frequency
- Track the spectrum of x[n] thru an FIR Filter:
 Sinusoid-IN gives Sinusoid-OUT
- UNIFICATION: How does frequency response affect x(t) to produce y(t)?

TIME & FREQUENCY

FIR DIFFERENCE EQUATION is the TIME-DOMAIN

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] = \sum_{k=0}^{M} h[k]x[n-k]$$

$$H(e^{j\hat{\omega}}) = \sum_{k=0}^{M} h[k]e^{-j\hat{\omega}k}$$

$$H(e^{j\hat{\omega}}) = h[0] + h[1]e^{-j\hat{\omega}} + h[2]e^{-j2\hat{\omega}} + h[3]e^{-j3\hat{\omega}} + \cdots$$

Ex: DELAY by 2 SYSTEM

Find
$$h[n]$$
 and $H(e^{j\hat{\omega}})$ for $y[n] = x[n-2]$

$$h[n] \qquad b_k = \{0, 0, 1\}$$

$$h[n] = \delta[n-2]$$

DELAY by 2 SYSTEM

Find h[n] and $H(e^{j\hat{\omega}})$ for y[n] = x[n-2]

GENERAL DELAY PROPERTY

Find
$$h[n]$$
 and $H(e^{j\hat{\omega}})$ for $y[n] = x[n - n_d]$

$$h[n] = \delta[n - n_d]$$

$$H(e^{j\hat{\omega}}) = \sum_{k=0}^{M} \delta[k - n_d] e^{-j\hat{\omega}k} = e^{-j\hat{\omega}n_d}$$

ONLY ONE non-ZERO TERM for k at $k = n_d$

FREQ DOMAIN --> TIME ??

• START with $H(e^{j\hat{\omega}})$ and find h[n] or b_k $h[n] \xrightarrow{y[n]} h[n] = ?$ $\left| H(e^{j\hat{\omega}}) = 7e^{-j2\hat{\omega}}\cos(\hat{\omega}) \right|$

FREQ DOMAIN --> TIME

$$H(e^{j\hat{\omega}}) = 7e^{-j2\hat{\omega}}\cos(\hat{\omega})$$

$$= 7e^{-j2\hat{\omega}}(0.5e^{j\hat{\omega}} + 0.5e^{-j\hat{\omega}})$$

$$= (3.5e^{-j\hat{\omega}} + 3.5e^{-j3\hat{\omega}})$$

$$h[n] = 3.5\delta[n-1] + 3.5\delta[n-3]$$

$$b_k = \{0, 3.5, 0, 3.5\}$$

PREVIOUS LECTURE REVIEW

- SINUSOIDAL INPUT SIGNAL
 - OUTPUT has SAME FREQUENCY
 - DIFFERENT Amplitude and Phase
- FREQUENCY RESPONSE of FIR
 - MAGNITUDE vs. Frequency
 - PHASE vs. Freq
 - PLOTTING

$$H(e^{j\hat{\omega}}) = H(e^{j\hat{\omega}}) e^{j\angle H(e^{j\hat{\omega}})}$$

PLOT of FREQ RESPONSE

Magnitude of Frequency Response of FIR Filter with Coefficients $\{b_k\} = \{1,2,1\}$ $\begin{pmatrix} b_k \\ b_k \end{pmatrix} = \{1,2,1\}$

FILTER TYPES

- LOW-PASS FILTER (LPF)
 - BLURRING
 - ATTENUATES HIGH FREQUENCIES
- HIGH-PASS FILTER (HPF)
 - SHARPENING for IMAGES
 - BOOSTS THE HIGHS
 - REMOVES DC
- BAND-PASS FILTER (BPF)

LOW-PASS FILTER EXAMPLE

HIGH-PASS FILTER EXAMPLE

BAND-PASS FILTER EXAMPLE

DIGITAL FILTERING OF ANALOG SIGNALS

- Use discrete-time filters to filter continuous-time signals that have been sampled
- What is the effect of the filter on the continuoustime input x(t)?
- What is the equivalent analog frequency response?

FREQUENCY SCALING

D-A FREQUENCY SCALING

TIME SAMPLING:

$$t = nT_s \Rightarrow n \leftarrow tf_s$$

RECONSTRUCT up to 0.5f_s
 FREQUENCY SCALING

$$\omega = \hat{\omega} f_s$$

• If input is $x(t) = Ae^{j\phi}e^{j\omega t}$,

output is
$$y(t) = H(e^{j(\omega T_S)})Ae^{j\phi}e^{j\omega t}$$

ANALOG FREQUENCY RESPONSE

for frequencies ω such that $-\pi/T_{s} < \omega < \pi/T_{s}$

11-pt AVERAGER Example

$$y[n] = \sum_{k=0}^{10} \frac{1}{11} x[n-k]$$

$$H(e^{j\hat{\omega}}) = \frac{\sin(\frac{11}{2}\hat{\omega})}{11\sin(\frac{1}{2}\hat{\omega})}e^{-j5\hat{\omega}}$$

11-pt AVERAGER

Phase Angle of Frequency Response for 11-Point Running Averager

11-pt AVERAGER Example

Input frequencies: 25 Hz and 250 Hz

Sampling frequency: $f_s = 1000 \text{ Hz}$

Note: $f_s > 2 f_{max}$ so no aliasing and x(t) can be reconstructed from x[n]

TRACK the FREQUENCIES

■ 250 Hz ■
$$0.5\pi$$

$$0.5\pi$$

$$H(e^{j0.5\pi})$$

• 25 Hz •
$$0.05\pi$$
 $H(e^{j0.05\pi})$

$f_{s} = 1000 \text{ Hz}$

$$x_1(t) = \cos(2\pi(25)t)$$
 , $T_s = \frac{1}{1000}$

$$\begin{vmatrix} x_1(t) = \cos(2\pi(25)t) & , & T_s = \frac{1}{1000} \\ x_1(nT_s) = \cos\left(\frac{2\pi(25)n}{1000}\right) = \cos\left(\frac{\pi}{20}n\right) \end{vmatrix}$$

NO new freqs

WARNING:

When there is aliasing, y(t) will have different frequency components than x(t)

FREQUENCY RESPONSE OF 11-pt AVERAGER

EVALUATE OUTPUT

Input:
$$x(t) = \cos(2\pi(25)t) + \cos(2\pi(250)t - \frac{1}{2}\pi)$$

$$H(e^{j0.05\pi}) = 0.881)e^{-j0.25\pi}$$
 $H(e^{j0.5\pi}) = 0.0909e^{-j0.5\pi}$ MAG. SCALE PHASE CHANGE Output: $y(t) = .8811\cos\left(2\pi(25)t - \frac{\pi}{4}\right) + .0909\cos(2\pi(250)t - \pi)$

Equivalent Continuous-Time Frequency Response for $f_s = 1000$

