

Circuits and Systems I

LECTURE #2
Phasor Addition

Prof. Dr. Volkan Cevher

LIONS/Laboratory for Information and Inference Systems

License Info for SPFirst Slides

 This work released under a <u>Creative Commons License</u> with the following terms:

Attribution

■ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

Non-Commercial

 The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes—unless they get the licensor's permission.

Share Alike

- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License
- This (hidden) page should be kept with the presentation

Outline - Today

TodaySection 2-6

Lab 1!

Next week <> Section 3-1

Section 3-2

Section 3-3

Section 3-7

Section 3-8

Recommended self-study next week +

Appendix A: Complex Numbers read

Appendix B: MATLAB read

Lecture Objectives

- Phasors = Complex Amplitude
 - Complex Numbers represent Sinusoids

$$z(t) = Xe^{j\omega t} = (Ae^{j\varphi})e^{j\omega t}$$

- Develop the ABSTRACTION:
 - Adding Sinusoids = Complex Addition
 - PHASOR ADDITION THEOREM

Lecture Objectives

- Phasors = Complex Amplitude
 - Complex Numbers represent Sinusoids
- Develop the ABSTRACTION:
 - Adding Sinusoids = Complex Addition
 - PHASOR ADDITION THEOREM

CSI
Progress
Level:

Do You Remember The Complex Numbers?

- To solve: $z^2 = -1$
 - -z=j
 - Math and Physics use z = i
- Complex number: z = x + jy

Cartesian coordinate system

Polar Form

- Vector Form
 - Length =1
 - Angle = θ
- Common Values
 - j has angle of 0.5π
 - -1 has angle of π
 - -**j** has angle of 1.5π
 - also, angle of $-\mathbf{j}$ could be $-0.5\pi = 1.5\pi 2\pi$
 - because the PHASE is AMBIGUOUS

Polar <> Rectangular

• Relate (x,y) to (r,θ)

$$r^{2} = x^{2} + y^{2}$$

$$\theta = \operatorname{Tan}^{-1}\left(\frac{y}{x}\right)$$

Most calculators do Polar-Rectangular

Need a notation for POLAR FORM

Euler's Formula

Complex Exponential

- Real part is cosine
- Imaginary part is sine
- Magnitude is one

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

$$re^{j\theta} = r\cos(\theta) + jr\sin(\theta)$$

Complex Exponential

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

- Interpret this as a Rotating Vector
 - $-\theta = \omega t$
 - Angle changes vs. time
 - ex: ω =20 π rad/s
 - Rotates 0.2π in 0.01 secs

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

cos = Real Part

Real Part of Euler's $\cos(\omega t) = \Re e\{e^{j\omega t}\}$

General Sinusoid $x(t) = A\cos(\omega t + \varphi)$

So,
$$A\cos(\omega t + \varphi) = \Re e\{Ae^{j(\omega t + \varphi)}\}\$$

= $\Re e\{Ae^{j\varphi}e^{j\omega t}\}$

Real Part Example

$$A\cos(\omega t + \varphi) = \Re e \left\{ Ae^{j\varphi}e^{j\omega t} \right\}$$

Evaluate:
$$x(t) = \Re e^{\int -3je^{j\omega t}}$$

Answer:

$$x(t) = \Re e \left\{ (-3j)e^{j\omega t} \right\}$$
$$= \Re e \left\{ 3e^{-j0.5\pi}e^{j\omega t} \right\} = 3\cos(\omega t - 0.5\pi)$$

Complex Amplitude

General Sinusoid

$$x(t) = A\cos(\omega t + \varphi) = \Re\{Ae^{j\varphi}e^{j\omega t}\}$$
Complex AMPLITUDE = X

$$z(t) = Xe^{j\omega t} \qquad X = Ae^{j\varphi}$$

Then, any Sinusoid = REAL PART of Xe^{jωt}

$$x(t) = \Re e \left\{ X e^{j\omega t} \right\} = \Re e \left\{ A e^{j\varphi} e^{j\omega t} \right\}$$

Z DRILL (Complex Arith)

How to AVOID Trigonometry

- Algebra, even complex, is **EASIER** !!!
- Can you recall $cos(\theta_1 + \theta_2)$?
- Use: real part of $e^{j(\theta_1+\theta_2)} = \cos(\theta_1+\theta_2)$

Recall Euler's FORMULA

- Complex Exponential
 - Real part is cosine
 - Imaginary part is sine
 - Magnitude is one

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

Real & Imaginary Part Plots

Complex Exponential

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

- Interpret this as a Rotating Vector
 - $-\theta = \omega t$
 - Angle changes vs. time
 - ex: ω =20 π rad/s
 - Rotates 0.2π in 0.01 secs

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

Rotating Phasor

See Demo on CD-ROM Chapter 2

Cos = REAL PART

Real Part of Euler's

$$\cos(\omega t) = \Re e^{j\omega t}$$

General Sinusoid

$$x(t) = A\cos(\omega t + \varphi)$$

So,
$$A\cos(\omega t + \varphi) = \Re e \left\{ A e^{j(\omega t + \varphi)} \right\}$$
$$= \Re e \left\{ A e^{j\varphi} e^{j\omega t} \right\}$$

Complex Amplitude

General Sinusoid

$$x(t) = A\cos(\omega t + \varphi) = \Re\{Ae^{j\varphi}e^{j\omega t}\}\$$

Sinusoid = REAL PART of $(Ae^{j\phi})e^{j\omega t}$

$$x(t) = \Re e\left\{Xe^{j\omega t}\right\} = \Re e\left\{z(t)\right\}$$

Complex AMPLITUDE = X

$$z(t) = Xe^{j\omega t} \qquad X = Ae^{j\varphi}$$

POP QUIZ: Complex Amp

Find the COMPLEX AMPLITUDE for:

$$\left| x(t) = \sqrt{3}\cos(77\pi t + 0.5\pi) \right|$$

Use EULER's FORMULA:

$$x(t) = \Re e \left\{ \sqrt{3} e^{j(77\pi t + 0.5\pi)} \right\}$$
$$= \Re e \left\{ \sqrt{3} e^{j0.5\pi} e^{j77\pi t} \right\}$$

$$X = \sqrt{3}e^{j0.5\pi}$$

Want to Add Sinusoids

- ALL SINUSOIDS have SAME FREQUENCY
- HOW to GET {Amp,Phase} of RESULT ?

$$x_1(t) = 1.7\cos(2\pi(10)t + 70\pi/180)$$

$$x_2(t) = 1.9\cos(2\pi(10)t + 200\pi/180)$$

$$x_3(t) = x_1(t) + x_2(t)$$

$$= 1.532\cos(2\pi(10)t + 141.79\pi/180)$$

Add Sinusoids

• Sum Sinusoid has **SAME** Frequency

Phasor Addition Rule

$$x(t) = \sum_{k=1}^{N} A_k \cos(\omega_0 t + \phi_k)$$

$$= A\cos(\omega_0 t + \phi)$$

Get the new complex amplitude by complex addition

$$\sum_{k=1}^{N} A_k e^{j\phi_k} = A e^{j\phi}$$

Phasor Addition Proof

$$\sum_{k=1}^{N} A_k \cos(\omega_0 t + \phi_k) = \sum_{k=1}^{N} \Re e \left\{ A_k e^{j(\omega_0 t + \phi_k)} \right\}$$

$$= \Re e \left\{ \sum_{k=1}^{N} A_k e^{j\phi_k} e^{j\omega_0 t} \right\}$$

$$= \Re e \left\{ \left(\sum_{k=1}^{N} A_k e^{j\phi_k} \right) e^{j\omega_0 t} \right\}$$

$$= \Re e \left\{ \left(A e^{j\phi} \right) e^{j\omega_0 t} \right\} = A \cos(\omega_0 t + \phi)$$

POP QUIZ: Add Sinusoids

• ADD THESE 2 SINUSOIDS:

$$x_1(t) = \cos(77\pi t)$$

$$x_2(t) = \sqrt{3}\cos(77\pi t + 0.5\pi)$$

• COMPLEX ADDITION:

$$1e^{j0} + \sqrt{3}e^{j0.5\pi}$$

POP QUIZ (answer)

CONVERT back to cosine form:

$$x_3(t) = 2\cos(77\pi t + \frac{\pi}{3})$$

Add Sinusoids Example

Convert Time-Shift to Phase

- Measure peak times:
 - $-t_{m1}$ =-0.0194, t_{m2} =-0.0556, t_{m3} =-0.0394
- Convert to phase (T=0.1)
 - $-\phi_1 = -\omega t_{m1} = -2\pi (t_{m1}/T) = 70\pi/180,$
 - $-\phi_2 = 200\pi/180$
- Amplitudes
 - $-A_1=1.7, A_2=1.9, A_3=1.532$

Phasor Add: Numerical

Convert Polar to Cartesian

$$-X_1 = 0.5814 + j1.597$$

$$-X_2 = -1.785 - j0.6498$$

- sum =
- $-X_3 = -1.204 + j0.9476$
- Convert back to Polar
 - $-X_3 = 1.532$ at angle $141.79\pi/180$
 - This is the sum

Add Sinusoids

$$x_1(t) = 1.7\cos(2\pi(10)t + 70\pi/180)$$

$$x_2(t) = 1.9\cos(2\pi(10)t + 200\pi/180)$$

$$x_3(t) = x_1(t) + x_2(t)$$

 $= 1.532\cos(2\pi(10)t + 141.79\pi/180)$

