

Circuits and Systems I

LECTURE #3 The Spectrum, Periodic Signals, and the Time-Varying Spectrum

Prof. Dr. Volkan Cevher LIONS/Laboratory for Information and Inference Systems

License Info for SPFirst Slides

- This work released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

• Non-Commercial

 The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes—unless they get the licensor's permission.

• Share Alike

- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License
- This (hidden) page should be kept with the presentation

Outline - Today

 Today <> Section 3-1 – 3-3 Section 3-7 Section 3-8

Next week <> Section 3-4 Section 3-5 Section 3-6 Lab 2

CRAWLWALKRUNFLYImage: A state of the state of th

CSI

Progress

Level:

Lecture Objectives

- Sinusoids with **DIFFERENT** frequencies
 - SYNTHESIZE by Adding Sinusoids

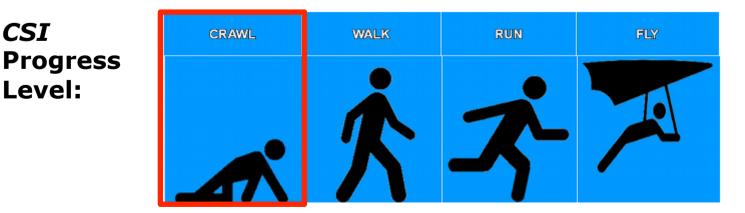
$$x(t) = A_0 + \sum_{k=1}^N A_k \cos(2\pi f_k t + \varphi_k)$$

• **SPECTRUM** Representation

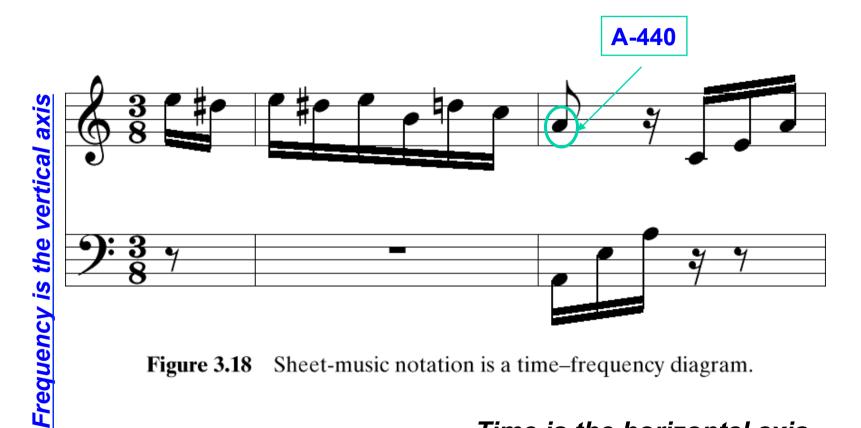
CSI

Level:

- Graphical Form shows **DIFFERENT** Freqs



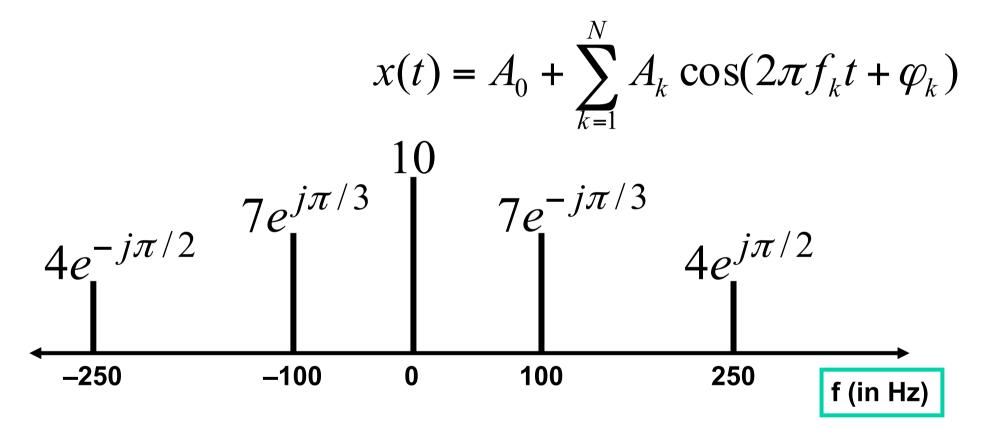
FREQUENCY DIAGRAM



Time is the horizontal axis

Another FREQ. Diagram

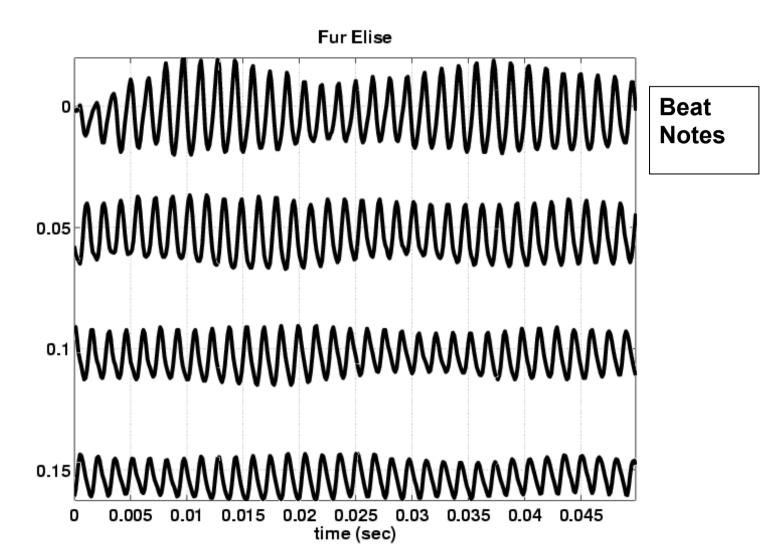
Plot Complex Amplitude vs. Freq



Motivation

- Synthesize Complicated Signals
 - Musical Notes
 - Piano uses 3 strings for many notes
 - Chords: play several notes simultaneously
 - Human Speech
 - Vowels have dominant frequencies
 - Application: computer generated speech
 - Can all signals be generated this way?
 - Sum of sinusoids?

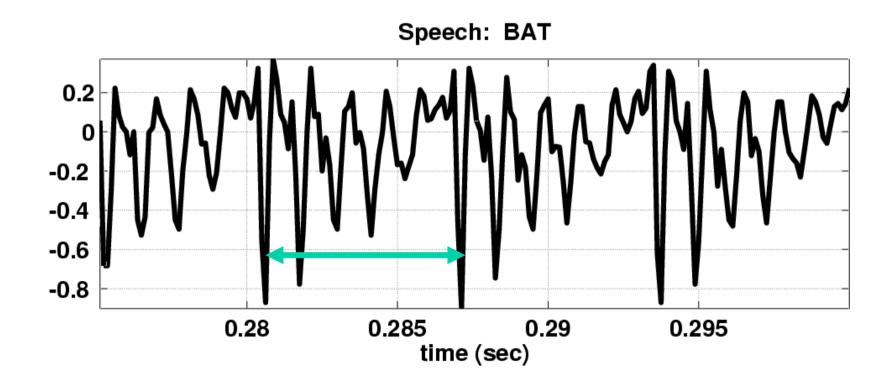
Fur Elise WAVEFORM



Speech Signal: BAT

Nearly <u>Periodic</u> in Vowel Region

- Period is (Approximately) T = 0.0065 sec



Euler's Formula Reversed

• Solve for cosine (or sine)

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

$$e^{-j\omega t} = \cos(-\omega t) + j\sin(-\omega t)$$

$$e^{-j\omega t} = \cos(\omega t) - j\sin(\omega t)$$

$$e^{j\omega t} + e^{-j\omega t} = 2\cos(\omega t)$$

$$\cos(\omega t) = \frac{1}{2}(e^{j\omega t} + e^{-j\omega t})$$

INVERSE Euler's Formula

• Solve for cosine (or sine)

$$\cos(\omega t) = \frac{1}{2}(e^{j\omega t} + e^{-j\omega t})$$

$$\sin(\omega t) = \frac{1}{2j} (e^{j\omega t} - e^{-j\omega t})$$

SPECTRUM Interpretation

• Cosine = sum of 2 complex exponentials:

 $A\cos(7t) = \frac{A}{2}e^{j7t} + \frac{A}{2}e^{-j7t}$

One has a positive frequency The other has negative freq. Amplitude of each is half as big

SPECTRUM of SINE

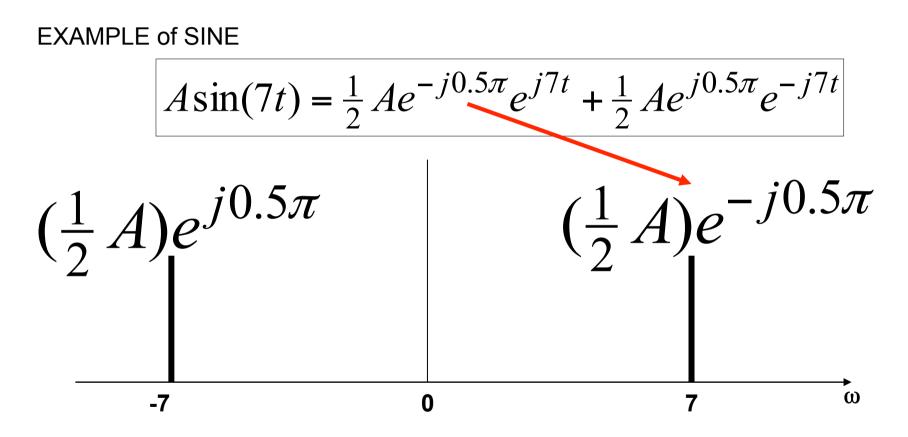
• Sine = sum of 2 complex exponentials:

$$A\sin(7t) = \frac{A}{2j}e^{j7t} - \frac{A}{2j}e^{-j7t}$$
$$= \frac{1}{2}Ae^{-j0.5\pi}e^{j7t} + \frac{1}{2}Ae^{j0.5\pi}e^{-j7t}$$
$$\stackrel{-}{\text{Positive freq. has phase} = -0.5\pi$$
$$\stackrel{-}{\text{Negative freq. has phase} = +0.5\pi$$
$$\frac{-1}{j} = j = e^{j0.5\pi}$$

Negative Frequency

- Is negative frequency real?
- Doppler Radar provides an example
 - Police radar measures speed by using the Doppler shift principle
 - Let's assume 400Hz \leftarrow →60 mph
 - +400Hz means towards the radar
 - -400Hz means away (opposite direction)
 - Think of a train whistle

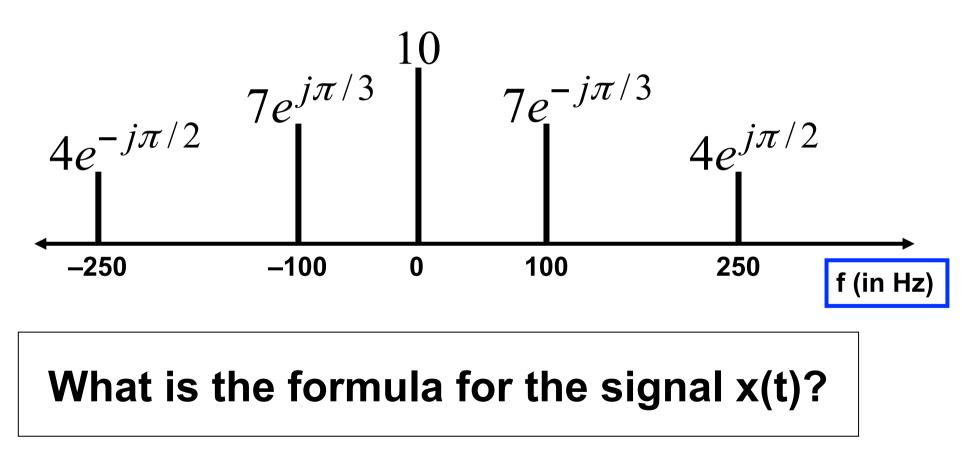
Graphical Spectrum



AMPLITUDE, PHASE & FREQUENCY are shown

SPECTRUM2SINUSOID

• Add the spectrum components:



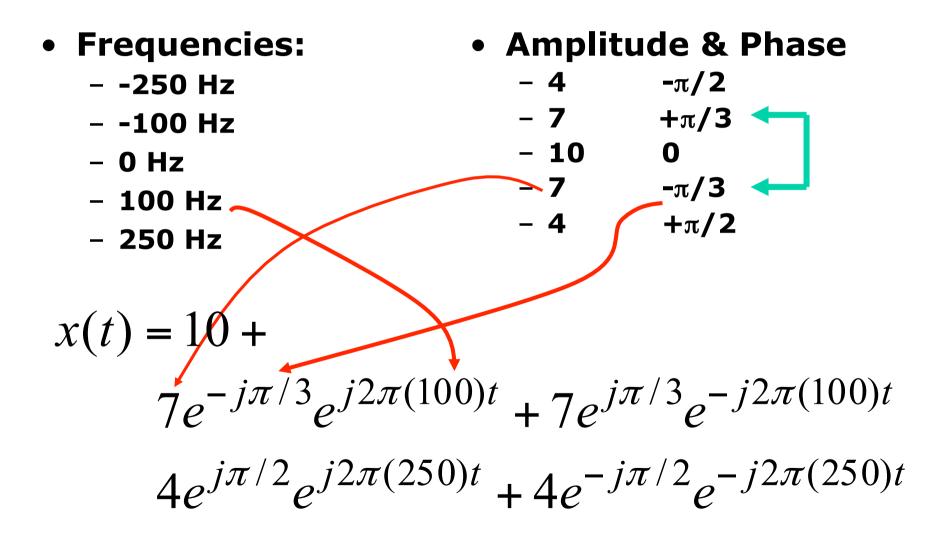
Gather (A, ω, ϕ) information

- Frequencies: Amplitude & Phase
 - -250 Hz-4 $-\pi/2$ -100 Hz-7 $+\pi/3$ -0 Hz-100-100 Hz-7 $-\pi/3$ -250 Hz-4 $+\pi/2$

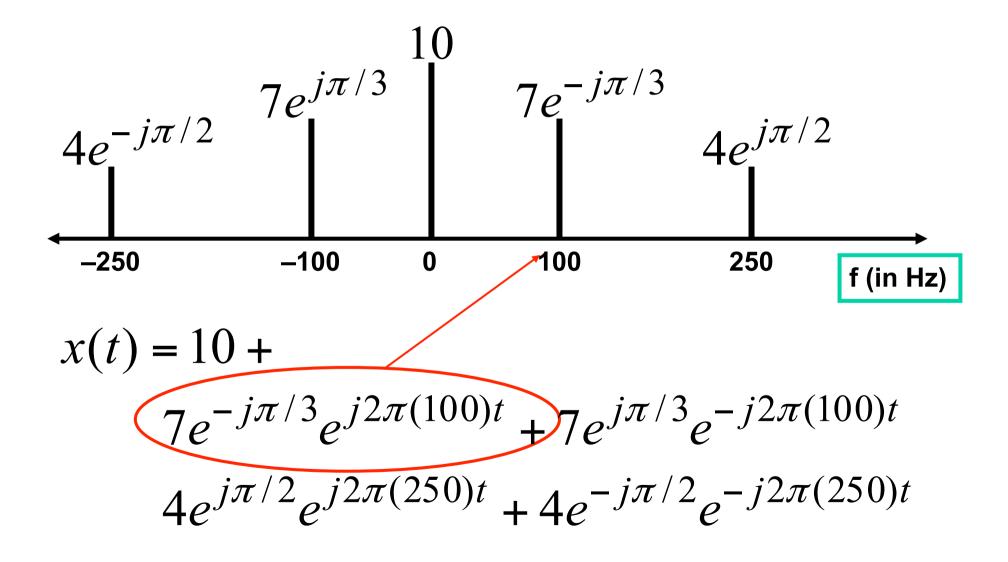
Note the **conjugate phase**

DC is another name for zero-freq component **DC** component always has $\phi=0$ or π (for real **X(t)**)

Add Spectrum Components-1



Add Spectrum Components-2



Simplify Components

$$\begin{aligned} x(t) &= 10 + \\ & 7e^{-j\pi/3}e^{j2\pi(100)t} + 7e^{j\pi/3}e^{-j2\pi(100)t} \\ & 4e^{j\pi/2}e^{j2\pi(250)t} + 4e^{-j\pi/2}e^{-j2\pi(250)t} \end{aligned}$$

Use Euler's Formula to get REAL sinusoids:

$$A\cos(\omega t + \varphi) = \frac{1}{2}Ae^{+j\varphi}e^{j\omega t} + \frac{1}{2}Ae^{-j\varphi}e^{-j\omega t}$$

Final Answer

$$\begin{aligned} x(t) &= 10 + 14\cos(2\pi(100)t - \pi/3) \\ &+ 8\cos(2\pi(250)t + \pi/2) \end{aligned}$$

So, we get the general form:

$$x(t) = A_0 + \sum_{k=1}^N A_k \cos(2\pi f_k t + \varphi_k)$$

Summary: General Form

Example: Synthetic Vowel

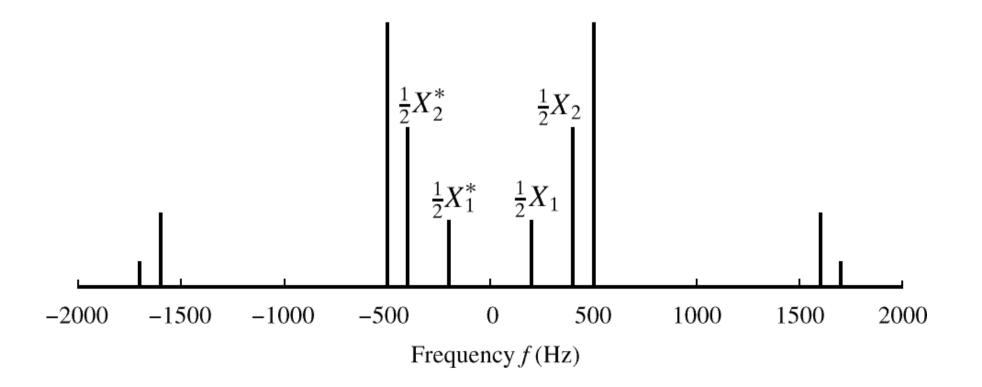
• Sum of 5 Frequency Components

f_k (Hz)	X_k	Mag	Phase (rad)
200	(771 + j12202)	12,226	1.508
400	(-8865 + j28048)	29,416	1.876
500	(48001 - j8995)	48,836	-0.185
1600	(1657 - j13520)	13,621	-1.449
1700	4723 + j0	4723	0

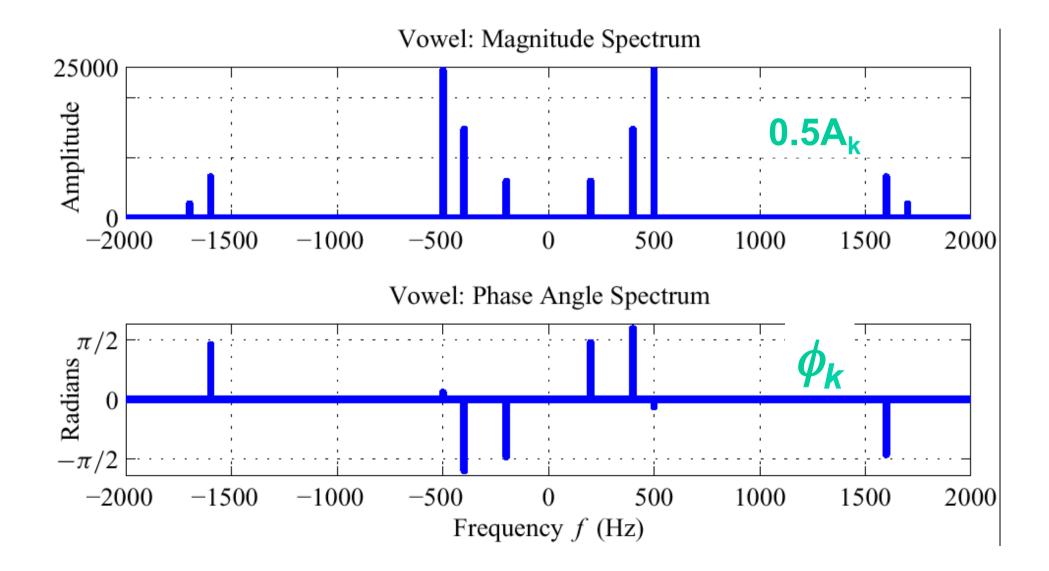
Table 3.1: Complex amplitudes for harmonic signal that approximates the vowel sound "ah".

SPECTRUM of VOWEL

- Note: Spectrum has 0.5X_k (except X_{DC})
- Conjugates in negative frequency



SPECTRUM of VOWEL (Polar Format)



Vowel Waveform (sum of all 5 components)

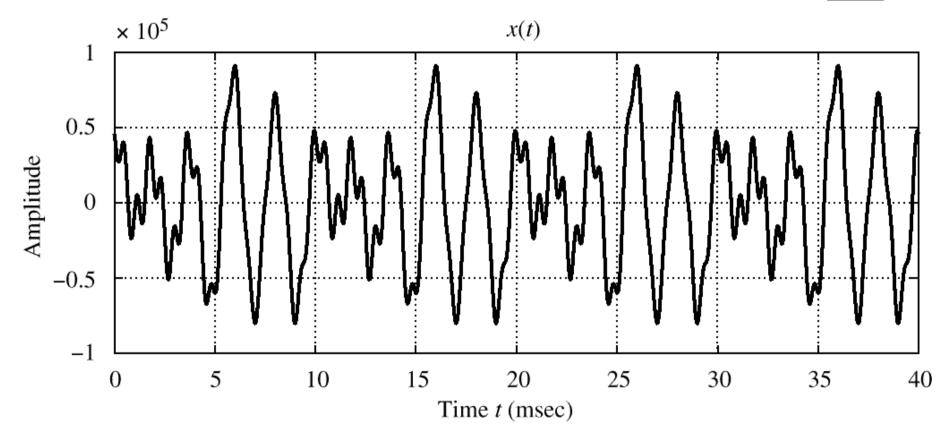


Figure 3.11 Sum of all of the terms in (3.3.4). Note that the period is 10 msec, which equals $1/f_0$.

Problem Solving Skills

- Math Formula

 Sum of Cosines
 Amp, Freq, Phase

 Recorded Signals

 Speech
 MATLAB
 Numerical
 - Music
 - No simple formula

- Computation
- Plotting list of numbers

Lecture Objectives

• Signals with <u>HARMONIC</u> Frequencies

- Add Sinusoids with $f_k = kf_0$

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k f_0 t + \varphi_k)$$

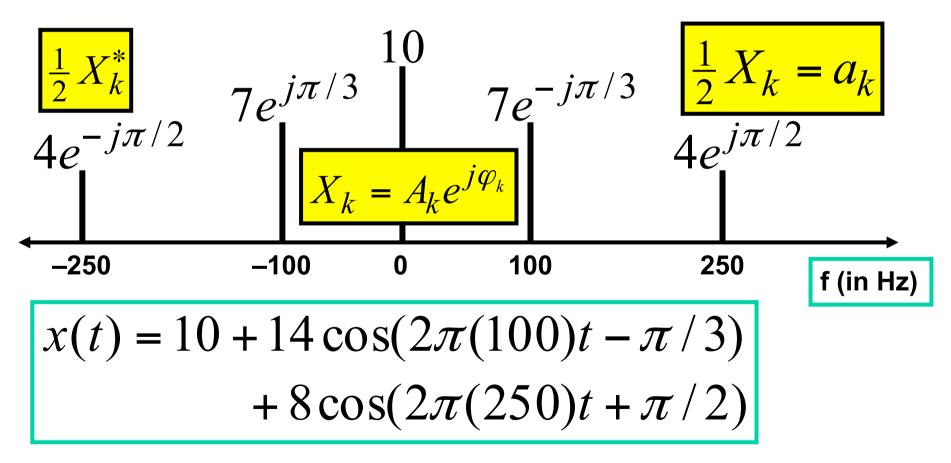
FREQUENCY can change vs. TIME Chirps:

$$x(t) = \cos(\alpha t^2)$$

Introduce Spectrogram Visualization (specgram.m)
(plotspec.m)

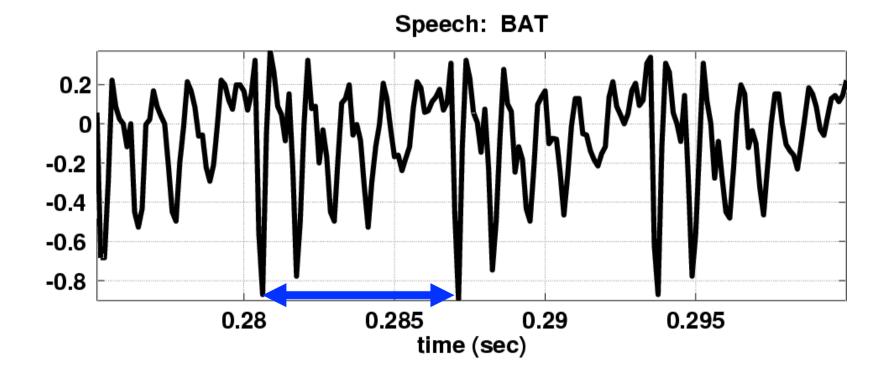
Spectrum Diagram

Recall Complex Amplitude vs. Freq



Spectrum for Periodic Signals?

- Nearly Periodic in the Vowel Region
 - Period is (Approximately) T = 0.0065 sec



Periodic Signals

- Repeat every T secs
 - Definition

$$x(t) = x(t+T)$$

- Example:

$$x(t) = \cos^2(3t)$$

$$T = ?$$

$$T = \frac{2\pi}{3}$$

$$T = \frac{\pi}{3}$$

J

- Speech can be "quasi-periodic"

Period of Complex Exponentials

$$\begin{aligned} x(t) &= e^{j\omega t} \\ x(t+T) &= x(t)? \\ e^{j\omega(t+T)} &= e^{j\omega t} \\ &\Rightarrow e^{j\omega T} &= 1 \\ \Rightarrow e^{j\omega T} &= 1 \\ \Rightarrow \omega T &= 2\pi k \end{aligned}$$
$$e^{j2\pi k} = \left(\frac{2\pi}{T}\right)k = \omega_0 k \qquad \text{K=integer} \end{aligned}$$

Harmonic Signal Spectrum

Periodic signal can only have : $f_k = kf_0$

$$\begin{aligned} x(t) &= A_0 + \sum_{k=1}^N A_k \cos(2\pi k f_0 t + \varphi_k) \\ & f_0 = \frac{1}{T} \\ X_k &= A_k e^{j\varphi_k} \\ x(t) &= X_0 + \sum_{k=1}^N \left\{ \frac{1}{2} X_k e^{j2\pi k f_0 t} + \frac{1}{2} X_k^* e^{-j2\pi k f_0 t} \right\} \end{aligned}$$

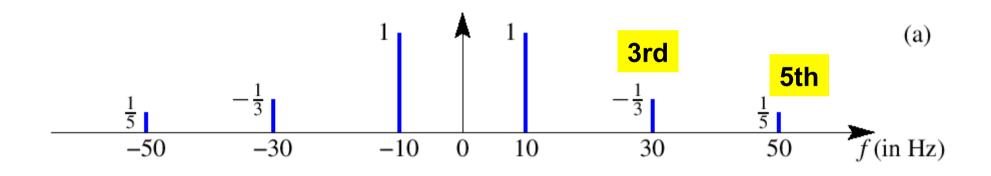
Define Fundamental Frequency

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k f_0 t + \varphi_k)$$

$$f_k = k f_0$$
 $(\omega_0 = 2\pi f_0)$ $f_0 = \frac{1}{T_0}$

 f_0 = fundamental Frequency (largest) T_0 = fundamental Period (shortest)

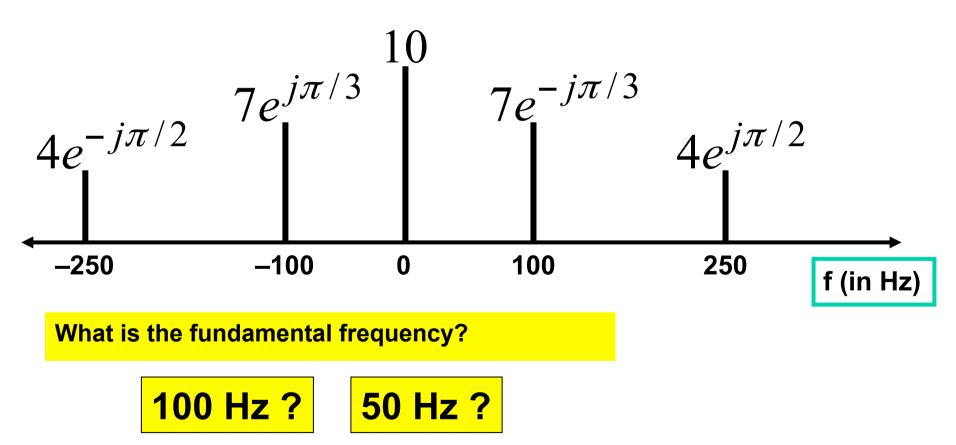
Harmonic Signal (3 Freqs)



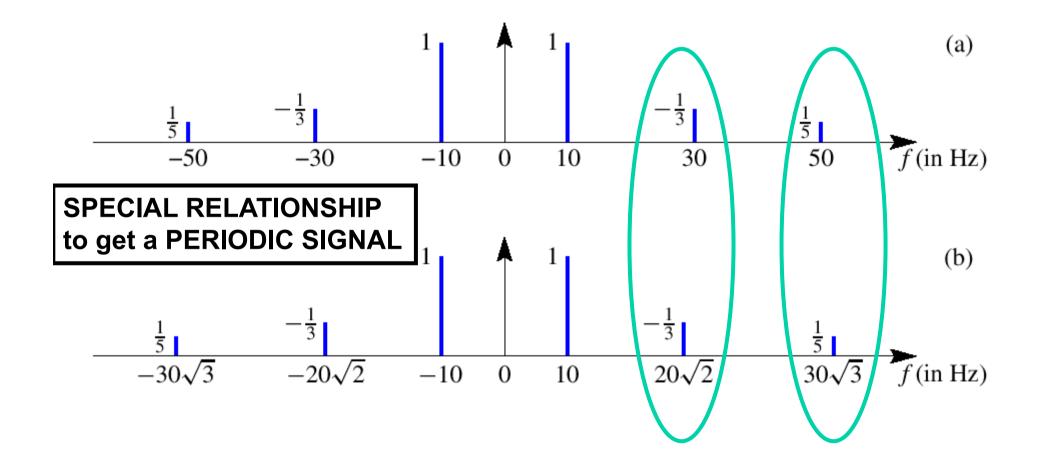
What is the fundamental frequency?

POP QUIZ: Fundamental Freq.

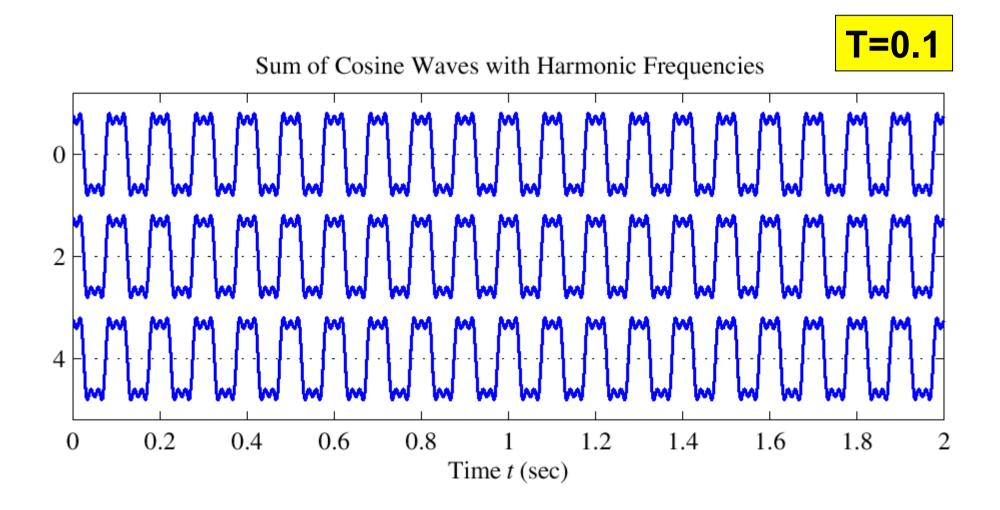
• Here's another spectrum:



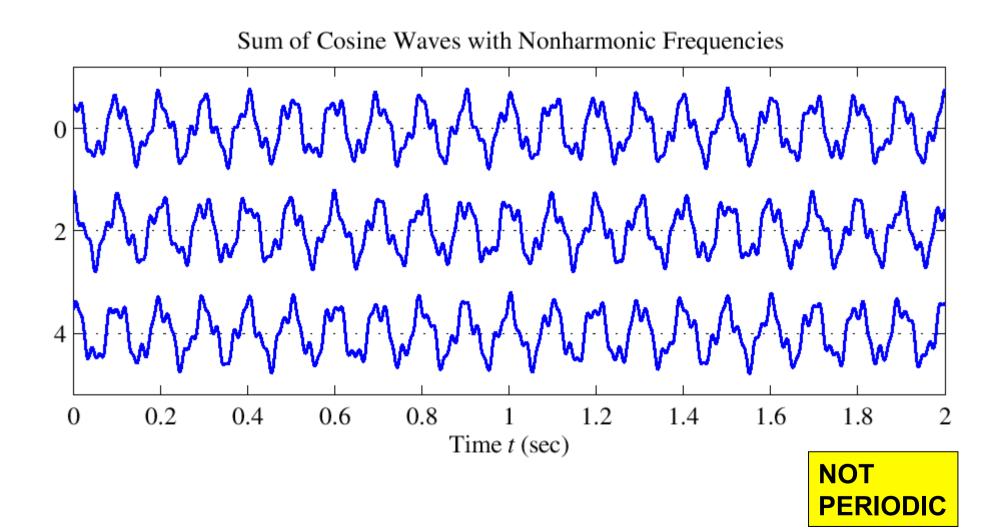
IRRATIONAL SPECTRUM



Harmonic Signal (3 Freqs)



NON-Harmonic Signal



Frequency Analysis

Now, a much HARDER problem

• Given a recording of a song, have the computer write the music

- Can a machine extract frequencies?
 - Yes, if we COMPUTE the spectrum for x(t)
 - During short intervals

Time-Varying FREQUENCIES Diagram

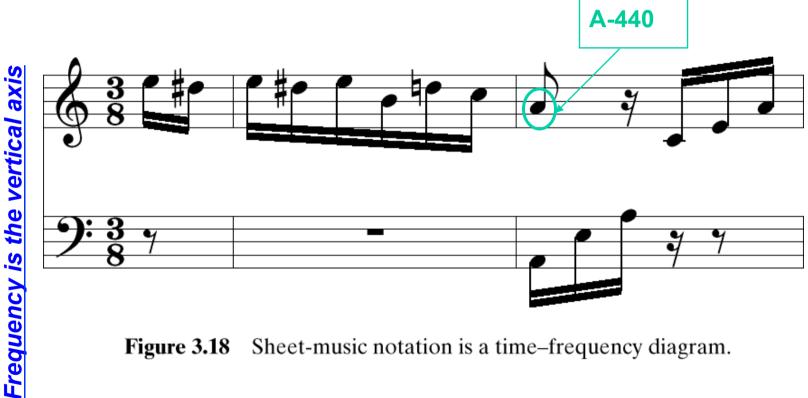
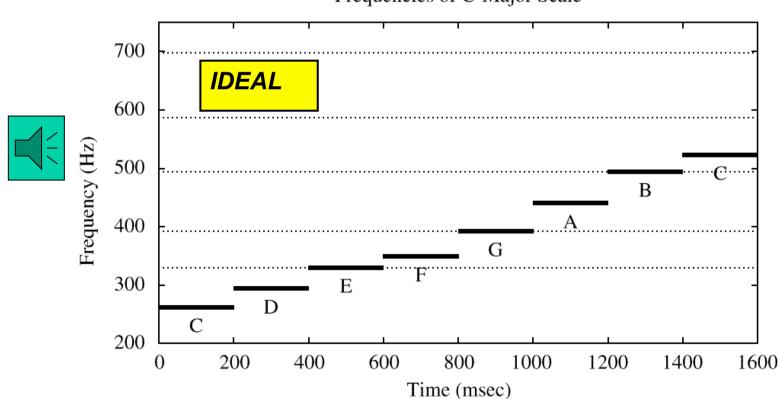


Figure 3.18 Sheet-music notation is a time-frequency diagram.

Time is the horizontal axis

A Simple Test Signal

- C-major SCALE: stepped frequencies
 - Frequency is constant for each note



Frequencies of C-Major Scale

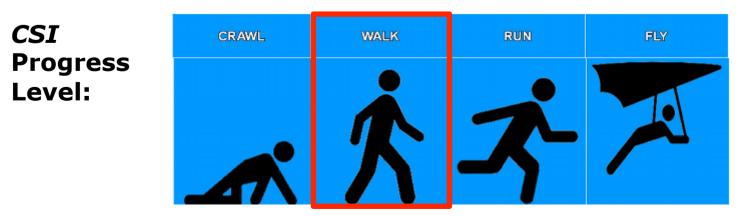
R-rated: ADULTS ONLY

- SPECTROGRAM Tool
 - MATLAB function is specgram.m
 - SP-First has plotspec.m & spectgr.m
- ANALYSIS program
 - Takes x(t) as input &
 - Produces spectrum values X_k
 - Breaks x(t) into SHORT TIME SEGMENTS
 - Then uses the FFT (<u>Fast Fourier Transform</u>)

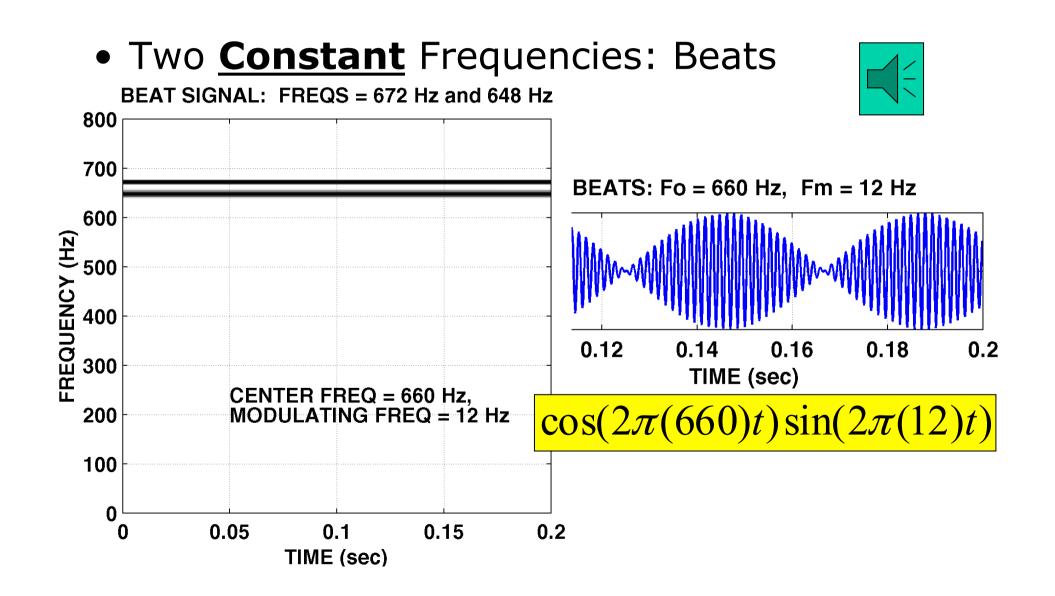
R-rated: ADULTS ONLY

• SPECTROGRAM Tool

- MATLAB function is specgram.m
- SP-First has plotspec.m & spectgr.m
- ANALYSIS program
 - Takes x(t) as input &
 - Produces spectrum values X_k
 - Breaks x(t) into SHORT TIME SEGMENTS
 - Then uses the FFT (<u>Fast Fourier Transform</u>)



Spectrogram Example



AM Radio Signal

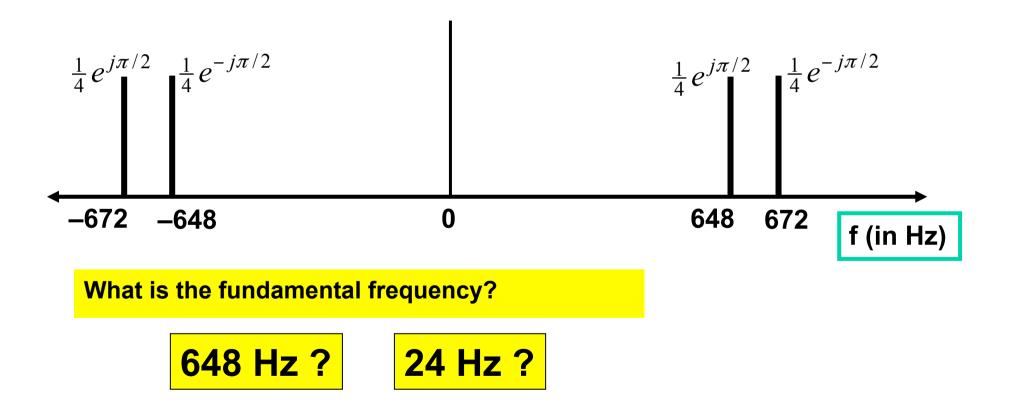
• Same as BEAT Notes

$$\frac{\cos(2\pi(660)t)\sin(2\pi(12)t)}{\int \frac{1}{2}\left(e^{j2\pi(660)t} + e^{-j2\pi(660)t}\right)\frac{1}{2j}\left(e^{j2\pi(12)t} - e^{-j2\pi(12)t}\right)}{\int \frac{1}{4j}\left(e^{j2\pi(672)t} - e^{-j2\pi(672)t} - e^{j2\pi(648)t} + e^{-j2\pi(648)t}\right)}$$

$$\frac{1}{2}\cos(2\pi(672)t - \frac{\pi}{2}) + \frac{1}{2}\cos(2\pi(648)t + \frac{\pi}{2})$$

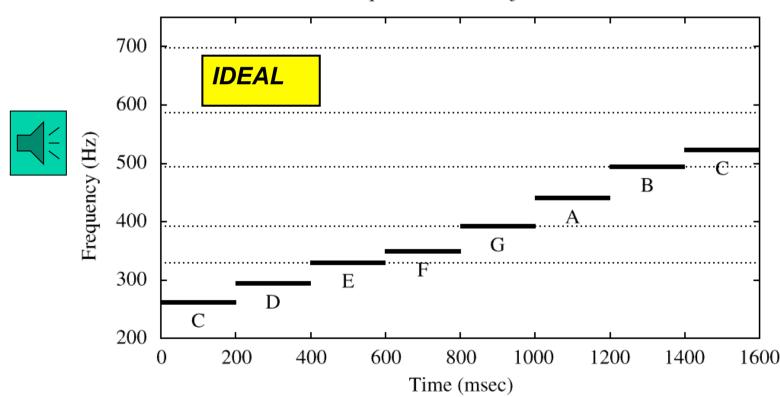
Spectrum of AM (Beat)

• 4 complex exponentials in AM:



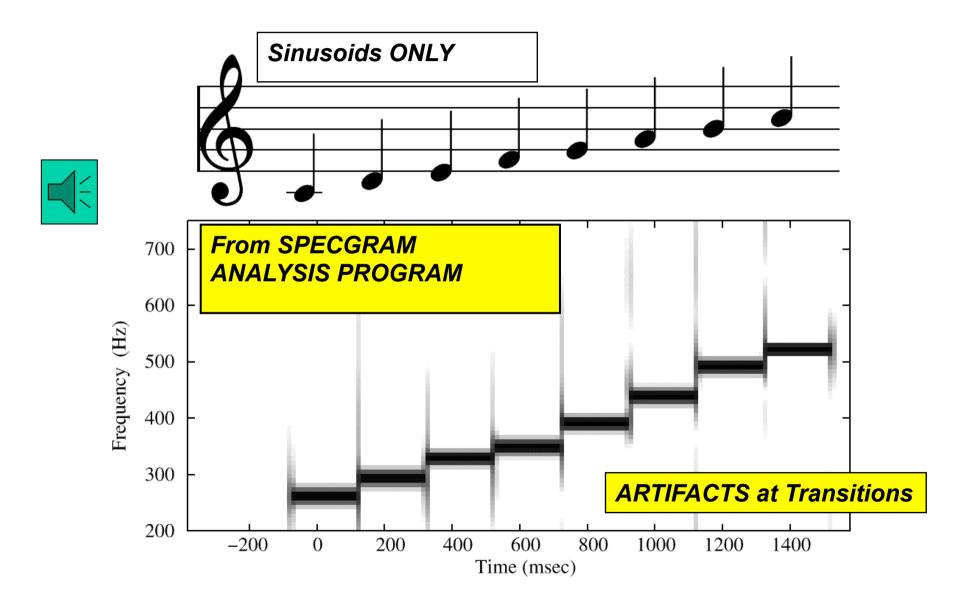
Stepped Frequencies

- C-major SCALE: successive sinusoids
 - Frequency is constant for each note

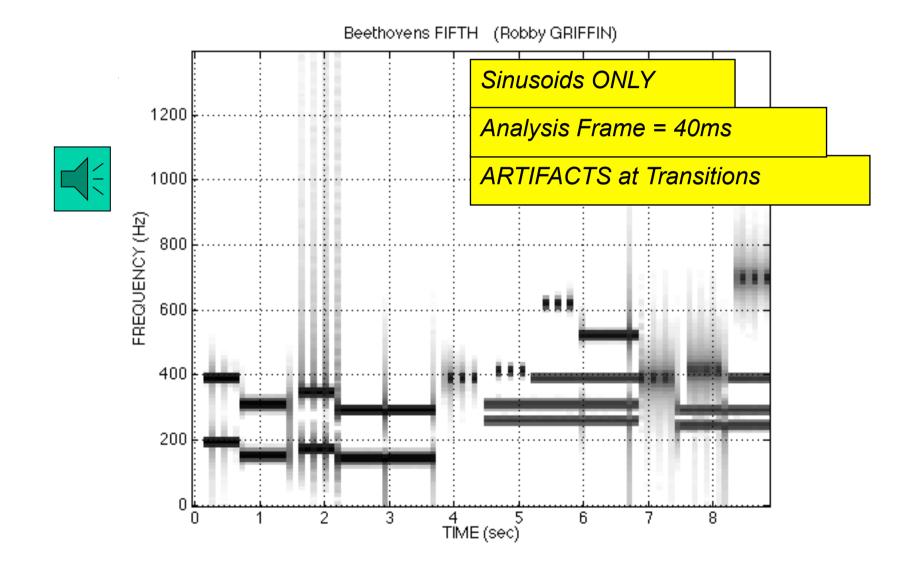


Frequencies of C-Major Scale

Spectrogram of C-Scale



Spectrogram of LAB SONG



Time-Varying Frequency

- Frequency can change vs. time
 - Continuously, not stepped

FREQUENCY MODULATION (FM)

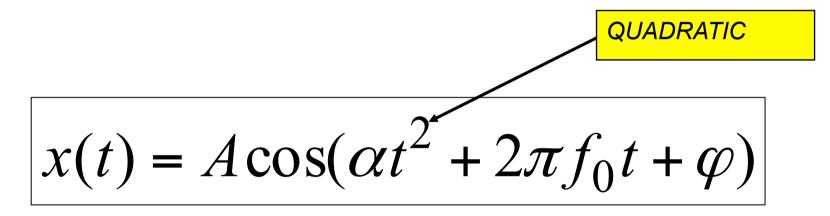
$$x(t) = \cos(2\pi f_c t + v(t))$$

VOICE

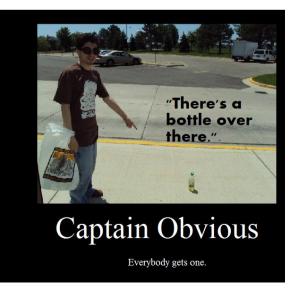
- CHIRP SIGNALS
 - Linear Frequency Modulation (LFM)

New Signal: Linear FM

- Called Chirp Signals (LFM)
 - Quadratic phase



- Freq will change LINEARLY vs. time
 - Example of Frequency Modulation (FM)
 - Define "instantaneous frequency"



Instantaneous Frequency

• Definition

$$\begin{aligned} x(t) &= A\cos(\psi(t)) \\ \Rightarrow \omega_i(t) &= \frac{d}{dt}\psi(t) \end{aligned}$$

Derivative of the "Angle"

ONSENSE

• For Sinusoid:

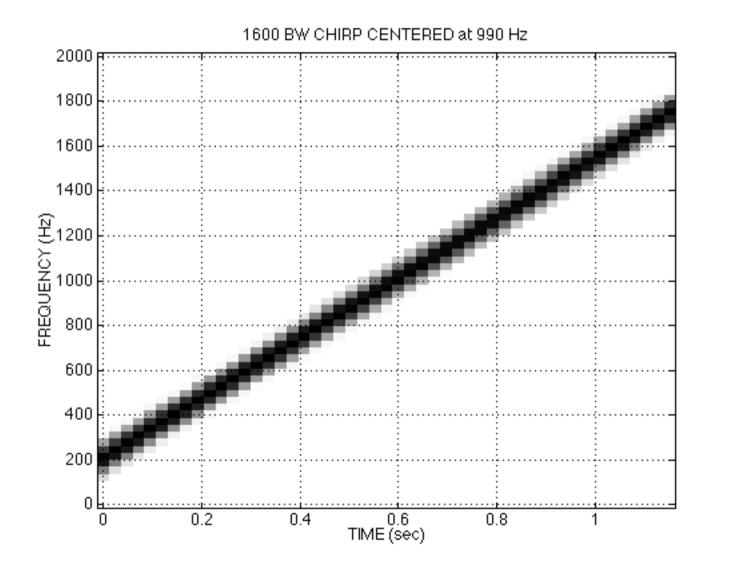
$$\begin{aligned} x(t) &= A\cos(2\pi f_0 t + \varphi) \\ \psi(t) &= 2\pi f_0 t + \varphi \end{aligned} \qquad \text{Makes sense} \\ &\Rightarrow \omega_i(t) &= \frac{d}{dt}\psi(t) = 2\pi f_0 \end{aligned}$$

Instantaneous Frequency of the Chirp

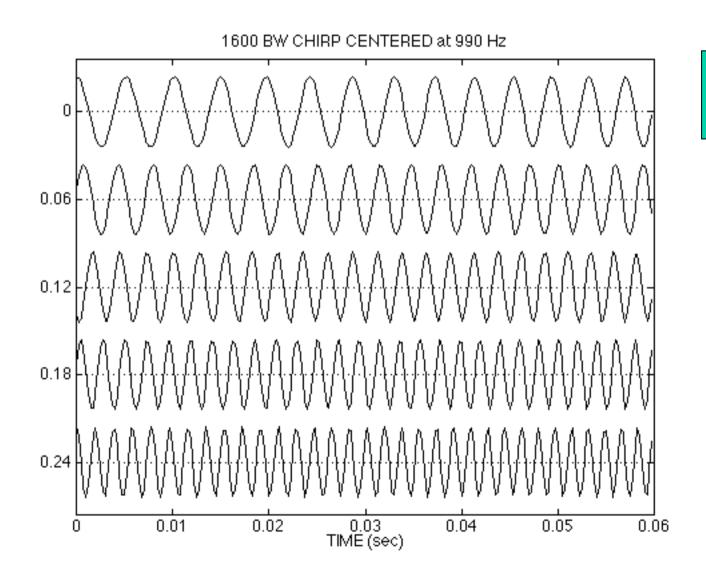
- Chirp Signals have Quadratic phase
- Freq will change LINEARLY vs. time

$$\begin{aligned} x(t) &= A\cos(\alpha t^2 + \beta t + \varphi) \\ \Rightarrow \psi(t) &= \alpha t^2 + \beta t + \varphi \\ \Rightarrow \omega_i(t) &= \frac{d}{dt}\psi(t) = 2\alpha t + \beta \end{aligned}$$

Chirp Spectrogram



Chirp Waveform



OTHER CHIRPS

• $\psi(t)$ can be anything:

$$x(t) = A\cos(\alpha\cos(\beta t) + \varphi)$$

- $\psi(t)$ could be speech or music:
 - FM radio broadcast

$$\Rightarrow \omega_i(t) = \frac{d}{dt}\psi(t) = -\alpha\beta\sin(\beta t)$$

Sine-Wave Frequency Modulation (FM)

