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Lecture Objectives 

•  SAMPLING can cause ALIASING 
–  Sampling Theorem 
–  Sampling Rate > 2(Highest Frequency) 

•  Spectrum for digital signals, x[n] 
–  Normalized Frequency 
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SYSTEMS Process Signals 

•  PROCESSING GOALS: 
–  Change x(t) into y(t) 

§  For example, more BASS 
–  Improve x(t), e.g., image deblurring 
–  Extract Information from x(t) 
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System Implementation 

•  DIGITAL/MICROPROCESSOR 
§  Convert x(t) to numbers stored in memory 
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•  ANALOG/ELECTRONIC: 
§  Circuits: resistors, capacitors, op-amps 



Sampling x(t) 

•  SAMPLING PROCESS 
§  Convert x(t) to numbers x[n] 
§  “n” is an integer; x[n] is a sequence of values 
§  Think of “n” as the storage address in memory 

•  UNIFORM SAMPLING at t = nTs 
§  IDEAL:  x[n] = x(nTs) 
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Sampling Rate, fs 

•  SAMPLING RATE (fs) 
–  fs =1/Ts  

§  NUMBER of SAMPLES PER SECOND 
–  Ts = 125 microsec à fs = 8000 samples/sec 

Ø UNITS ARE HERTZ:  8000 Hz  
•  UNIFORM SAMPLING at   t = nTs = n/fs 

–  IDEAL:  x[n] = x(nTs)=x(n/fs) 
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fs = 2kHz

fs = 500Hz

Hz100=f



Sampling Theorem 

•  HOW OFTEN ? 
–  DEPENDS on FREQUENCY of SINUSOID 
–  ANSWERED by SHANNON/NYQUIST Theorem 
–  ALSO DEPENDS on “RECONSTRUCTION” 



Reconstruction?  Which One? 
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Storing Digital Sound 

•  x[n] is a SAMPLED SINUSOID 
–  A list of numbers stored in memory 

•  EXAMPLE: audio CD 
•  CD rate is 44,100 samples per second 

–  16-bit samples 
–  Stereo uses 2 channels 

•  Number of bytes for 1 minute is 
–  2 X (16/8) X 60 X 44100 = 10.584 Mbytes 
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Discrete-Time Sinusoid 

•  Change x(t) into x[n]      DERIVATION 
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Digital Frequency 

•        VARIES from 0 to 2π, as f varies from 0 to the 
sampling frequency 

•  UNITS are radians, not  rad/sec 
–  DIGITAL FREQUENCY is NORMALIZED 
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Spectrum (Digital) 
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Spectrum (Digital) ??? 
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The Rest of the Story 

•  Spectrum of x[n] has more than one line for each 
complex exponential 
–  Called ALIASING 
–  MANY SPECTRAL LINES 

•  SPECTRUM is PERIODIC with period = 2π	

–  Because  

Acos( ˆ ω n+ϕ) = Acos(( ˆ ω + 2π)n +ϕ )



Aliasing Derivation 

•  Other Frequencies give the same ˆ ω 
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Aliasing Derivation–2 

•  Other Frequencies give the same 
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ALIASing SEASON FINALE 

•  ADDING fs or 2fs or –fs to the FREQ of x(t) gives 
exactly the same x[n] 
–  The samples, x[n] = x(n/ fs ) are EXACTLY THE SAME 

VALUES 

•  GIVEN x[n], WE CAN’T DISTINGUISH fo FROM        
(fo + fs ) or (fo + 2fs ) 

ING 



Normalized Frequency 

•  DIGITAL FREQUENCY 
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Spectrum for x[n] 

•  PLOT versus NORMALIZED FREQUENCY 
•  INCLUDE ALL SPECTRUM LINES 

–  ALIASES 
§  ADD MULTIPLES of 2π	

§  SUBTRACT MULTIPLES of 2π 

–  FOLDED ALIASES 
§  (to be discussed later) 
§  ALIASES of NEGATIVE FREQS 



Spectrum (more lines) 
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Spectrum (Aliasing Case) 
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SAMPLING GUI (con2dis) 



Spectrum (Folding Case) 
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     Section 4-5 

 
   <>   Lab 4 


