

Circuits and Systems I

LECTURE #6 Sampling and Aliasing

Prof. Dr. Volkan Cevher LIONS/Laboratory for Information and Inference Systems

License Info for SPFirst Slides

- This work released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

• Non-Commercial

 The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes—unless they get the licensor's permission.

• Share Alike

- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License
- This (hidden) page should be kept with the presentation

Outline - Today

- Today <> Section 4-1 Section 4-2
- Next week <> Section 4-4
 Section 4-5 READ
 Lab 4

Lecture Objectives

- SAMPLING can cause ALIASING
 - Sampling Theorem
 - Sampling Rate > 2(Highest Frequency)
- Spectrum for digital signals, x[n]
 - Normalized Frequency

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$

SYSTEMS Process Signals

- PROCESSING GOALS:
 - Change x(t) into y(t)
 - For example, more BASS
 - Improve x(t), e.g., image deblurring
 - Extract Information from x(t)

System Implementation

• ANALOG/ELECTRONIC:

Circuits: resistors, capacitors, op-amps

• DIGITAL/MICROPROCESSOR

Convert x(t) to numbers stored in memory

Sampling x(t)

- SAMPLING PROCESS
 - Convert x(t) to numbers x[n]
 - "n" is an integer; x[n] is a sequence of values
 - Think of "n" as the storage address in memory
- UNIFORM SAMPLING at $t = nT_s$
 - IDEAL: $x[n] = x(nT_s)$

Sampling Rate, f_s

- SAMPLING RATE (f_s)
 - $f_s = 1/T_s$
 - NUMBER of SAMPLES PER SECOND
 - $T_s = 125$ microsec → $f_s = 8000$ samples/sec >UNITS ARE HERTZ: 8000 Hz
- UNIFORM SAMPLING at $t = nT_s = n/f_s$

- IDEAL:
$$x[n] = x(nT_s) = x(n/f_s)$$

$$\xrightarrow{x(t)} C-to-D \xrightarrow{x[n]=x(nT_s)}$$

Sampling Theorem

• HOW OFTEN ?

- DEPENDS on FREQUENCY of SINUSOID
- ANSWERED by SHANNON/NYQUIST Theorem
- ALSO DEPENDS on "RECONSTRUCTION"

Shannon Sampling Theorem

A continuous-time signal x(t) with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x(nT_s)$, if the samples are taken at a rate $f_s = 1/T_s$ that is greater than $2f_{\text{max}}$.

Reconstruction? Which One?

Given the samples, draw a sinusoid through the values

Storing Digital Sound

- *x*[*n*] is a SAMPLED SINUSOID
 - A list of numbers stored in memory
- EXAMPLE: audio CD
- CD rate is 44,100 samples per second
 - 16-bit samples
 - Stereo uses 2 channels
- Number of bytes for 1 minute is
 - 2 X (16/8) X 60 X 44100 = 10.584 Mbytes

Discrete-Time Sinusoid

Change x(t) into x[n] DERIVATION

 $x(t) = A\cos(\omega t + \varphi)$ $x[n] = x(nT_s) = A\cos(\omega nT_s + \varphi)$ $x[n] = A\cos((\omega T_s)n + \varphi)$ $x[n] = A\cos(\hat{\omega}n + \varphi)$ $\hat{\omega} = \omega T_s = \frac{\omega}{f}$ define digital frequency

Digital Frequency $\hat{\omega}$

- \mathcal{O} VARIES from 0 to 2π , as f varies from 0 to the sampling frequency
- UNITS are radians, **<u>not</u>** rad/sec

- DIGITAL FREQUENCY is <u>NORMALIZED</u>

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s}$$

Spectrum (Digital)

Time (msec)

The Rest of the Story

- Spectrum of x[n] has more than one line for each complex exponential
 - Called <u>ALIASING</u>
 - MANY SPECTRAL LINES
- SPECTRUM is PERIODIC with period = 2π - Because

$$A\cos(\hat{\omega}n + \varphi) = A\cos((\hat{\omega} + 2\pi)n + \varphi)$$

Aliasing Derivation

 Other Frequencies give the same <u>()</u> $x_1(t) = \cos(400\pi t)$ sampled at $f_s = 1000 \,\mathrm{Hz}$ $x_1[n] = \cos(400\pi \frac{n}{1000}) = \cos(0.4\pi n)$ $x_2(t) = \cos(2400\pi t)$ sampled at $f_s = 1000 \,\text{Hz}$ $x_{2}[n] = \cos(2400\pi \frac{n}{1000}) = \cos(2.4\pi n)$ $x_{2}[n] = \cos(2.4\pi n) = \cos(0.4\pi n + 2\pi n) = \cos(0.4\pi n)$ $\Rightarrow x_2[n] = x_1[n]$ $2400\pi - 400\pi = 2\pi(1000)$

Aliasing Derivation-2

ALIASing SEASON FINALE

- ADDING f_s or 2f_s or -f_s to the FREQ of x(t) gives exactly the same x[n]
 - The samples, x[n] = x(n/ $f_{\rm s}$) are EXACTLY THE \underline{SAME} \underline{VALUES}
- GIVEN x[n], WE CAN'T DISTINGUISH f_o FROM $(f_o + f_s)$ or $(f_o + 2f_s)$

Normalized Frequency

• DIGITAL FREQUENCY

Normalized Radian Frequency

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$

Normalized Cyclic Frequency $\hat{f} = \hat{\omega}/(2\pi) = fT_s = f/f_s$

Spectrum for x[n]

- PLOT versus NORMALIZED FREQUENCY
- INCLUDE <u>ALL</u> SPECTRUM LINES
 - ALIASES
 - ADD MULTIPLES of 2π
 - SUBTRACT MULTIPLES of 2π
 - FOLDED ALIASES
 - (to be discussed later)
 - ALIASES of NEGATIVE FREQS

Spectrum (more lines)

Spectrum (Aliasing Case)

SAMPLING GUI (con2dis)

Spectrum (Folding Case)

Time (msec)

