fédérale de lausanne

Circuits and Systems I

LECTURE \#6
Sampling and Aliasing

lions@epfl

Prof. Dr. Volkan Cevher
LIONS/Laboratory for Information and Inference Systems

License Info for SPFirst Slides

- This work released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes-unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License
- This (hidden) page should be kept with the presentation

Outline - Today

- Today
<> Section 4-1
Section 4-2
- Next week
<>
Section 4-4
Section 4-5-READ
Lab 4

CSI
 Progress
 Level:

Lecture Objectives

- SAMPLING can cause ALIASING
- Sampling Theorem
- Sampling Rate > 2(Highest Frequency)

- Spectrum for digital signals, $x[n]$
- Normalized Frequency

$$
\hat{\omega}=\omega T_{s}=\frac{2 \pi f}{f_{s}}+2 \pi \ell
$$

SYSTEMS Process Signals

- PROCESSING GOALS:
- Change $x(t)$ into $y(t)$
- For example, more BASS
- Improve $x(t)$, e.g., image deblurring
- Extract Information from $x(t)$

System Implementation

- ANALOG/ELECTRONIC:
- Circuits: resistors, capacitors, op-amps

- DIGITAL/MICROPROCESSOR
- Convert $x(t)$ to numbers stored in memory

Sampling $x(t)$

- SAMPLING PROCESS
- Convert $x(t)$ to numbers $x[n]$
- " n " is an integer; $x[n]$ is a sequence of values
- Think of " n " as the storage address in memory
- UNIFORM SAMPLING at $\mathrm{t}=\mathrm{nT}$ s
- IDEAL: $\mathrm{x}[\mathrm{n}]=\mathrm{x}\left(\mathrm{nT} \mathrm{s}_{\mathrm{s}}\right)$

Sampling Rate, f_{s}

- SAMPLING RATE (f_{s})
$-\mathrm{f}_{\mathrm{s}}=1 / \mathrm{T}_{\mathrm{s}}$
- NUMBER of SAMPLES PER SECOND
- $\mathrm{T}_{\mathrm{s}}=125$ microsec $\rightarrow \mathrm{f}_{\mathrm{s}}=8000$ samples $/ \mathrm{sec}$ > UNITS ARE HERTZ: 8000 Hz
- UNIFORM SAMPLING at $\mathrm{t}=\mathrm{nT} \mathrm{s}_{\mathrm{s}}=\mathrm{n} / \mathrm{f}_{\mathrm{s}}$
- IDEAL: $x[n]=x\left(n T_{s}\right)=x\left(n / f_{s}\right)$

Sampling Theorem

- HOW OFTEN ?
- DEPENDS on FREQUENCY of SINUSOID
- ANSWERED by SHANNON/NYQUIST Theorem
- ALSO DEPENDS on "RECONSTRUCTION"

Shannon Sampling Theorem
A continuous-time signal $x(t)$ with frequencies no higher than $f_{\text {max }}$ can be reconstructed exactly from its samples $x[n]=x\left(n T_{s}\right)$, if the samples are taken at a rate $f_{s}=1 / T_{s}$ that is greater tha, $2 f_{\text {max. }}$.

Reconstruction? Which One?

Given the samples, draw a sinusoid through the values

$$
x[n]=\cos (0.4 \pi n) \quad \begin{aligned}
& \text { When } n \text { is an integer } \\
& \cos (0.4 \pi n)=\cos (2.4 \pi n)
\end{aligned}
$$

Storing Digital Sound

- $\boldsymbol{x}[\boldsymbol{n}]$ is a SAMPLED SINUSOID
- A list of numbers stored in memory
- EXAMPLE: audio CD
- CD rate is 44,100 samples per second
- 16-bit samples
- Stereo uses 2 channels
- Number of bytes for 1 minute is
- $2 \times(16 / 8) \times 60 \times 44100=10.584$ Mbytes

Discrete-Time Sinusoid

- Change $x(t)$ into $x[n]$ DERIVATION

$$
\begin{aligned}
& x(t)=A \cos (\omega t+\varphi) \\
& x[n]=x\left(n T_{s}\right)=A \cos \left(\omega n T_{s}+\varphi\right) \\
& x[n]=A \cos \left(\left(\omega T_{s}\right) n+\varphi\right) \\
& x[n]=A \cos (\hat{\omega} n+\varphi) \\
& \hat{\omega}=\omega T_{s}=\frac{\omega}{f_{s}} \text { DEFINE DIGITAL FREQUENCY }
\end{aligned}
$$

Digital Frequency $\hat{\omega}$

- $\hat{\omega}$ VARIES from 0 to 2π, as f varies from 0 to the sampling frequency
- UNITS are radians, not rad/sec
- DIGITAL FREQUENCY is NORMALIZED

$$
\hat{\omega}=\omega T_{s}=\frac{2 \pi f}{f_{s}}
$$

Spectrum (Digital)

Spectrum (Digital) ???

The Rest of the Story

- Spectrum of $x[n]$ has more than one line for each complex exponential
- Called ALIASING
- MANY SPECTRAL LINES
- SPECTRUM is PERIODIC with period $=\mathbf{2} \pi$
- Because
$A \cos (\hat{\omega} n+\varphi)=A \cos ((\hat{\omega}+2 \pi) n+\varphi)$

Aliasing Derivation

- Other Frequencies give the same

$$
\begin{aligned}
& x_{1}(t)=\cos (400 \pi t) \quad \text { sampled at } f_{s}=1000 \mathrm{~Hz} \\
& x_{1}[n]=\cos \left(400 \pi \frac{n}{1000}\right)=\cos (0.4 \pi n) \\
& x_{2}(t)=\cos (2400 \pi t) \quad \text { sampled at } f_{s}=1000 \mathrm{~Hz} \\
& x_{2}[n]=\cos \left(2400 \pi \frac{n}{1000}\right)=\cos (2.4 \pi n) \\
& x_{2}[n]=\cos (2.4 \pi n)=\cos (0.4 \pi n+2 \pi n)=\cos (0.4 \pi n) \\
& \Rightarrow x_{2}[n]=x_{1}[n] \quad 2400 \pi-400 \pi=2 \pi(1000)
\end{aligned}
$$

Aliasing Derivation-2

- Other Frequencies give the same

$$
\text { If } \left.x(t)=A \cos \left(2 \pi \underline{\left(f+1 f_{s}\right.}\right) t+\varphi\right)
$$

and we want: $x[n]=A \cos (\hat{\omega} n+\varphi)$
then : $\hat{\omega}=\frac{2 \pi\left(f+\ell f_{s}\right)}{f_{s}}=\frac{2 \pi f}{f_{s}}+\frac{2 \pi \ell f_{s}}{f_{s}}$

$$
\hat{\omega}=\omega T_{s}=\frac{2 \pi f}{f_{s}}+2 \pi \ell
$$

ALIASing SEASON FINALE

- ADDING f_{s} or $2 f_{s}$ or $-f_{s}$ to the FREQ of $x(t)$ gives exactly the same $\times[\mathrm{n}]$
- The samples, $x[n]=x\left(n / f_{s}\right)$ are EXACTLY THE SAME VALUES
- GIVEN $x[n]$, WE CAN'T DISTINGUISH f_{o} FROM $\left(f_{o}+f_{s}\right)$ or $\left(f_{o}+2 f_{s}\right)$

Normalized Frequency

- DIGITAL FREQUENCY

Normalized Radian Frequency

$$
\hat{\omega}=\omega T_{s}=\frac{2 \pi f}{f_{s}}+2 \pi \ell
$$

Normalized Cyclic Frequency

$$
\hat{f}=\hat{\omega} /(2 \pi)=f T_{s}=f / f_{s}
$$

Spectrum for $\mathrm{x}[\mathrm{n}]$

- PLOT versus NORMALIZED FREQUENCY
- INCLUDE ALL SPECTRUM LINES
- ALIASES
- ADD MULTIPLES of 2π
- SUBTRACT MULTIPLES of 2π
- FOLDED ALIASES
- (to be discussed later)
- ALIASES of NEGATIVE FREQS

Spectrum (more lines)

$100-\mathrm{Hz}$ Cosine Wave: Sampled with $T_{s}=1 \mathrm{msec}(1000 \mathrm{~Hz})$

Spectrum (Aliasing Case)

$100-\mathrm{Hz}$ Cosine Wave: Sampled with $T_{s}=12.5 \mathrm{msec}(80 \mathrm{~Hz})$

SAMPLING GUI (con2dis)

Spectrum (Folding Case)

