

Circuits and Systems I

LECTURE #7 Bandlimited Reconstruction

Prof. Dr. Volkan Cevher LIONS/Laboratory for Information and Inference Systems

License Info for SPFirst Slides

- This work released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

• Non-Commercial

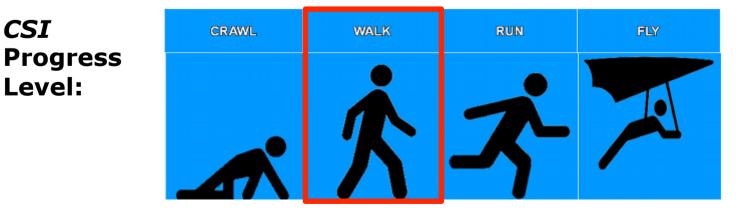
 The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes—unless they get the licensor's permission.

• Share Alike

- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License
- This (hidden) page should be kept with the presentation

Outline - Today

- Today <> Section 4-4 Section 4-5
- Next week <> BONUS EXAM REVIEW!
- Next lecture <> Section 5-1 Section 5-2
 - Section 5-3



Lecture Objectives

- FOLDING: a type of ALIASING
- DIGITAL-to-ANALOG CONVERSION is
 - Reconstruction from samples
 - SAMPLING THEOREM applies
 - Smooth <u>Interpolation</u>
- Mathematical Model of D-to-A
 - SUM of SHIFTED PULSES
 - Linear Interpolation example

Signal Types

- Convert x(t) to numbers stored in memory
- D-to-A
 - Convert y[n] back to a "continuous-time" signal, y(t)
 - y[n] is called a "discrete-time" signal

Sampling x(t)

UNIFORM SAMPLING at t = nT_s
 IDEAL: x[n] = x(nT_s)



Shannon Sampling Theorem

A continuous-time signal x(t) with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x(nT_s)$, if the samples are taken at a rate $f_s = 1/T_s$ that is greater than $2f_{\text{max}}$.

Nyquist Rate

- "Nyquist Rate" Sampling
 - $f_s > \underline{TWICE}$ the HIGHEST Frequency in x(t)
 - "Sampling above the Nyquist rate"

• BANDLIMITED SIGNALS

- DEF: x(t) has a HIGHEST FREQUENCY COMPONENT in its SPECTRUM
- NON-BANDLIMITED EXAMPLE
 - TRIANGLE WAVE is NOT BANDLIMITED

SPECTRUM for x[n]

- INCLUDE ALL SPECTRUM LINES
 - ALIASES
 - ADD INTEGER MULTIPLES of 2π and -2π
 - FOLDED ALIASES
 - ALIASES of NEGATIVE FREQS
- PLOT versus NORMALIZED FREQUENCY
 - i.e., DIVIDE f_o by f_s

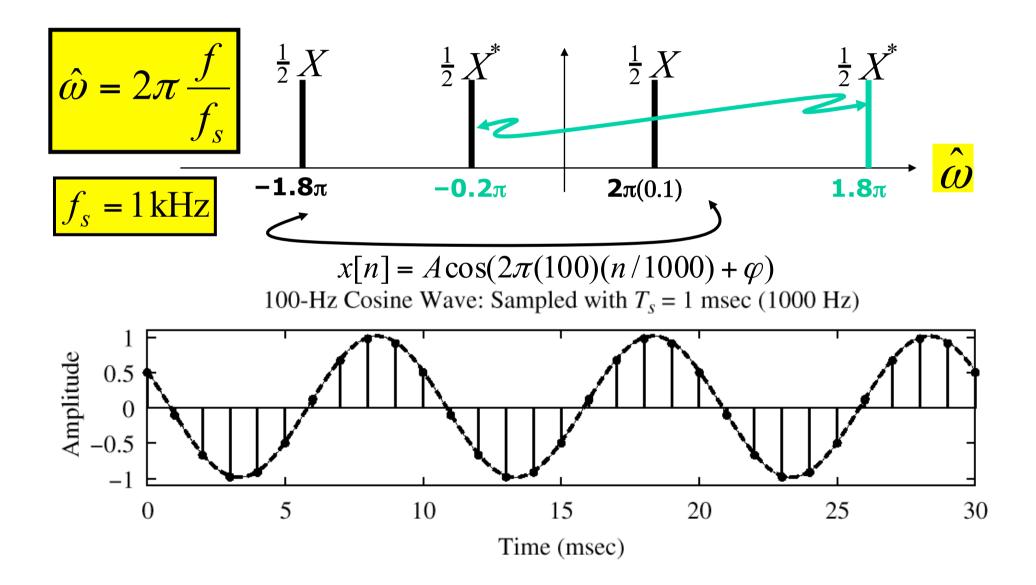
$$\hat{\omega} = 2\pi \frac{f}{f_s} + 2\pi \ell$$

Example: Spectrum

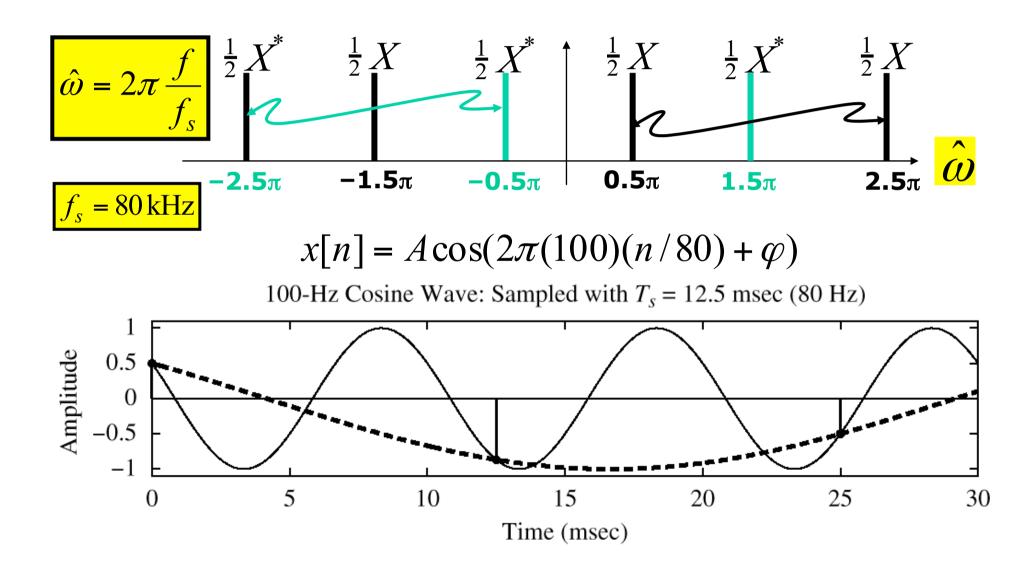
- $x[n] = Acos(0.2\pi n + \phi)$
- FREQS @ 0.2π and -0.2π
- ALIASES:
 - $\{2.2\pi, 4.2\pi, 6.2\pi, ...\}$ & $\{-1.8\pi, -3.8\pi, ...\}$
 - EX: $x[n] = Acos(4.2\pi n + \phi)$
- ALIASES of **NEGATIVE** FREQ:

- $\{1.8\pi, 3.8\pi, 5.8\pi, ...\}$ & $\{-2.2\pi, -4.2\pi ...\}$

Spectrum (More Lines)



Spectrum (Aliasing Case)



Folding (a type of ALIASING)

EXAMPLE: 3 different x(t); same x[n]

$$f_{s} = 1000$$

$$\cos(2\pi(100)t) \rightarrow \cos[2\pi(0.1)n]$$

$$\hat{\omega} = 2\pi \frac{100}{1000} = 2\pi(0.1)$$

$$\cos(2\pi(1100)t) \rightarrow \cos[2\pi(0.1)n] = \cos[2\pi(0.1)n]$$

$$\cos(2\pi(900)t) \rightarrow \cos[2\pi(0.9)n]$$

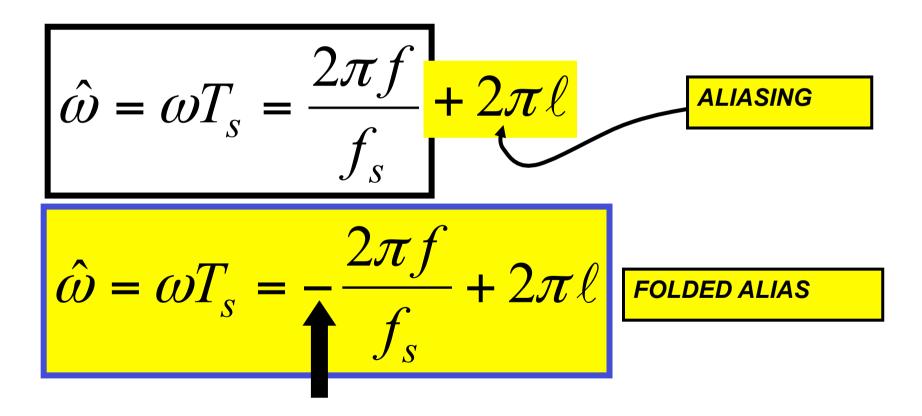
$$= \cos[2\pi(0.9)n - 2\pi n] = \cos[2\pi(-0.1)n] = \cos[2\pi(0.1)n]$$

100

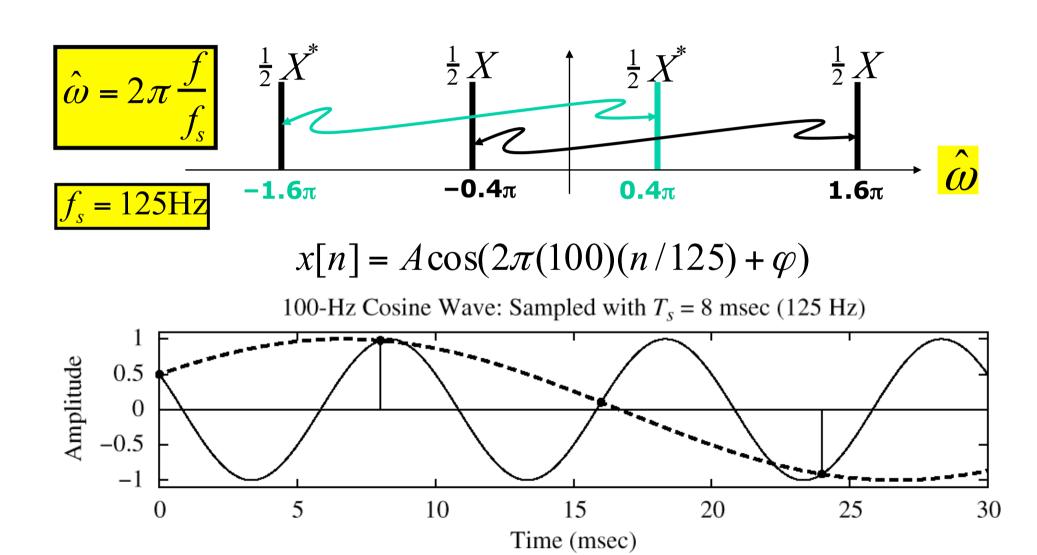
900 Hz "folds" to 100 Hz when f_s=1kHz

Digital Frequency $\hat{\omega}$ Again

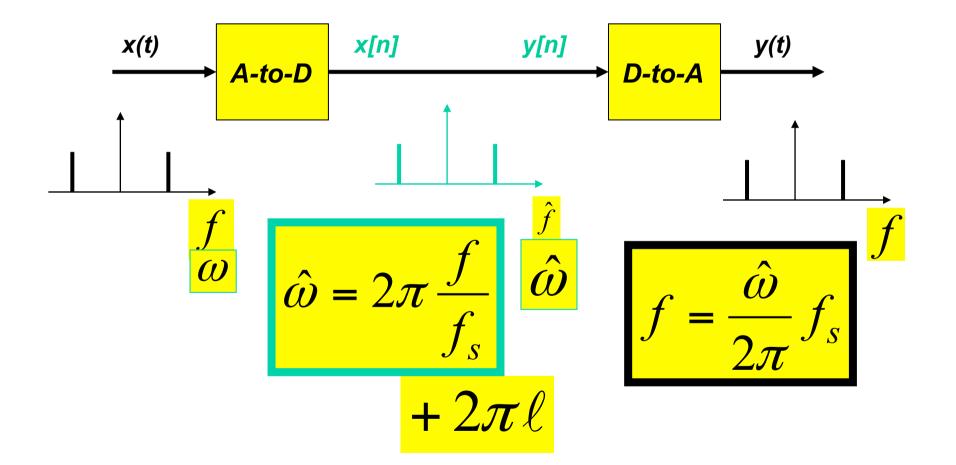
Normalized Radian Frequency



Spectrum (Folding Case)



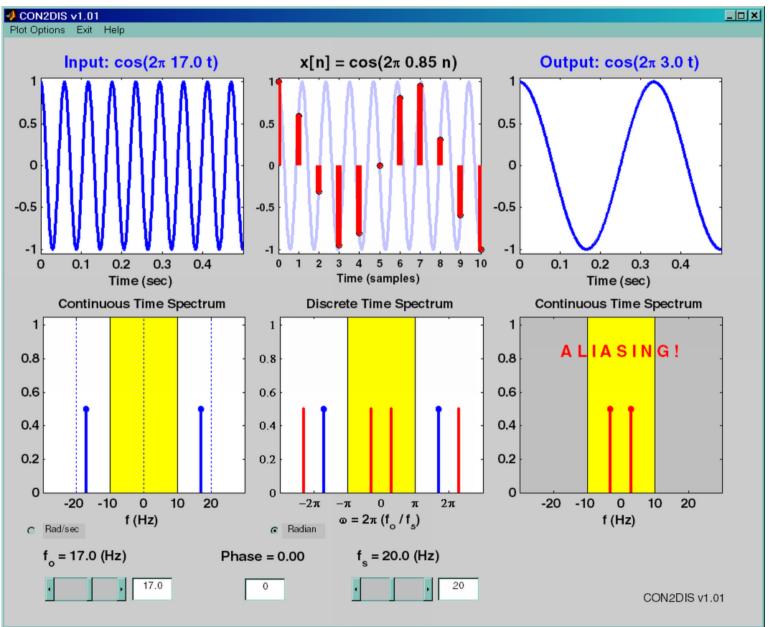
Frequency Domains



Demos from Chapter 4

- CD-ROM DEMOS
- SAMPLING DEMO (con2dis GUI)
 - Different Sampling Rates
 - Aliasing of a Sinusoid
- STROBE DEMO
 - Synthetic vs. Real
 - Television SAMPLES at 30 fps in the US / 25 fps in EU
- Sampling & Reconstruction

SAMPLING GUI (con2dis)



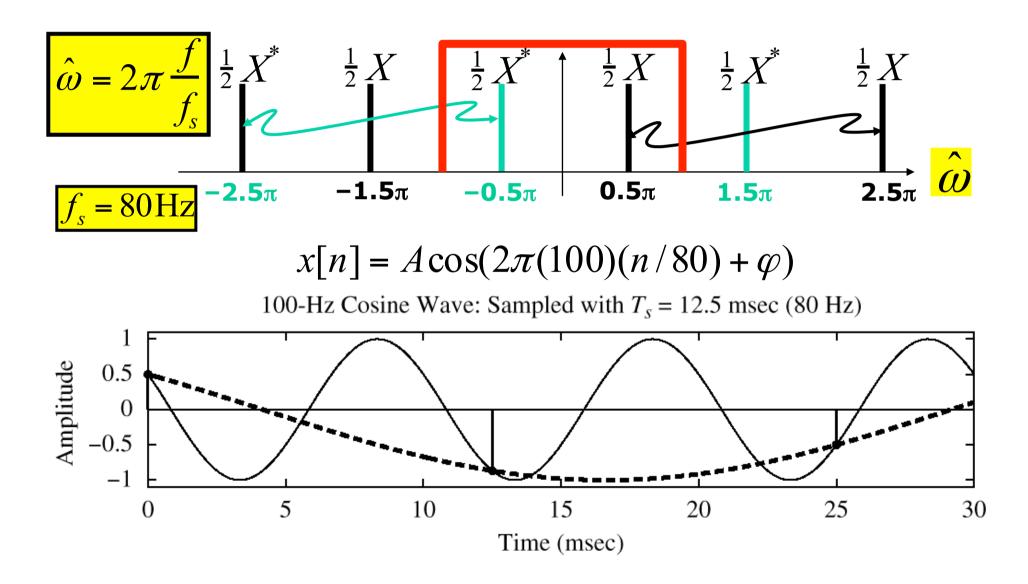
D-to-A Reconstruction

- Create continuous y(t) from y[n]
 - <u>IDEAL</u>
 - If you have formula for y[n]
 - Replace n in y[n] with f_st
 - $y[n] = Acos(0.2\pi n + \phi)$ with $f_s = 8000$ Hz
 - $y(t) = A\cos(2\pi(800)t + \phi)$

D-to-A is AMBIGUOUS !

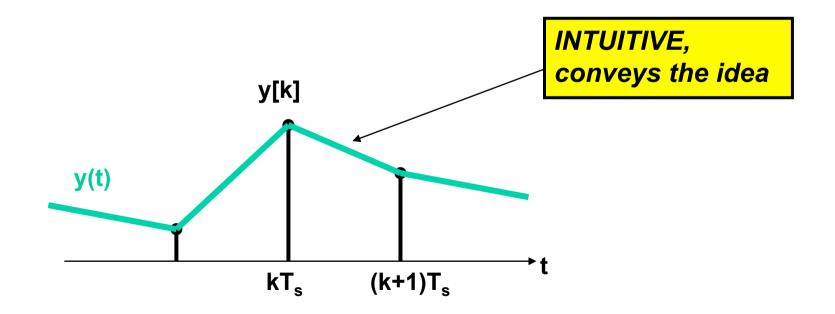
- ALIASING
 - Given y[n], which y(t) do we pick ? ? ?
 - INFINITE NUMBER of y(t)
 - PASSING THRU THE SAMPLES, y[n]
 - D-to-A RECONSTRUCTION MUST CHOOSE ONE OUTPUT
- RECONSTRUCT THE <u>SMOOTHEST</u> ONE
 - THE LOWEST FREQ, if y[n] = sinusoid

Spectrum (Aliasing Case)



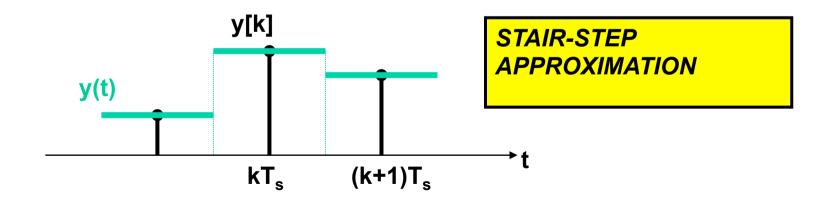
Reconstruction (D-to-A)

- CONVERT STREAM of NUMBERS to x(t)
- "CONNECT THE DOTS"
- INTERPOLATION

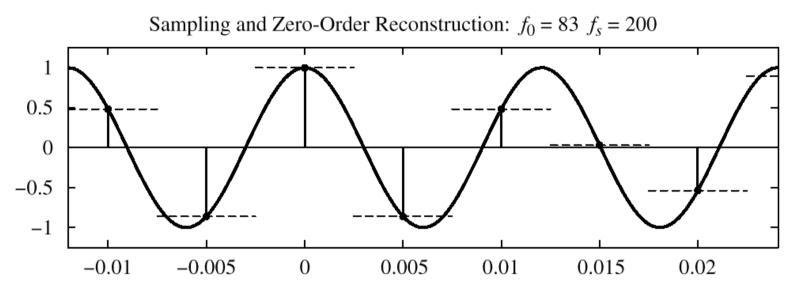


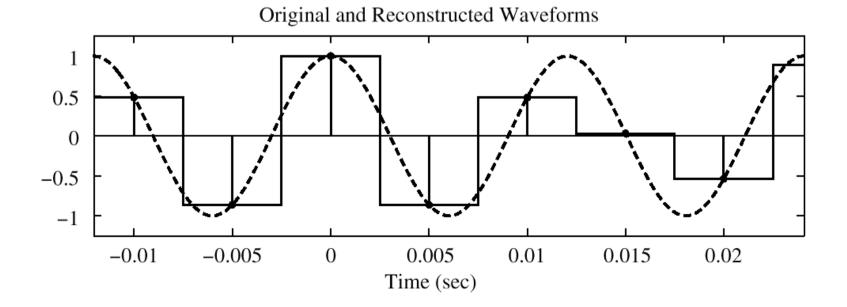
Sample and Hold Device

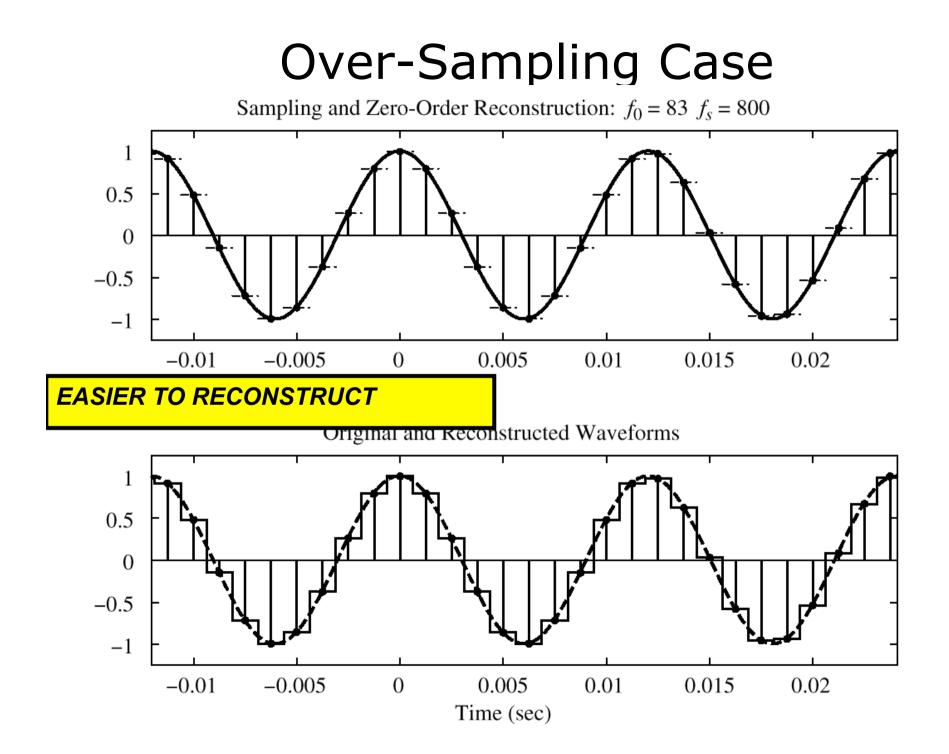
- CONVERT y[n] to y(t)
 - y[k] should be the value of y(t) at $t = kT_s$
 - Make y(t) equal to y[k] for
 - kT_s -0.5T_s < t < kT_s +0.5T_s



Square Pulse Case







Mathematical Model for D-to-A

$$y(t) = \sum_{n=-\infty}^{\infty} y[n]p(t - nT_s)$$

SQUARE PULSE:

$$p(t) = \begin{cases} 1 & -\frac{1}{2}T_s < t \le \frac{1}{2}T_s \\ 0 & \text{otherwise} \end{cases}$$

Expand the Summation

$$\sum_{n=-\infty}^{\infty} y[n]p(t-nT_s) =$$

$$\mathbf{K} + y[0]p(t) + y[1]p(t - T_s) + y[2]p(t - 2T_s) + \mathbf{K}$$

- SUM of SHIFTED PULSES p(t-nT_s)
 - "WEIGHTED" by y[n]
 - CENTERED at $t=nT_s$
 - SPACED by T_{s}
 - RESTORES "REAL TIME"

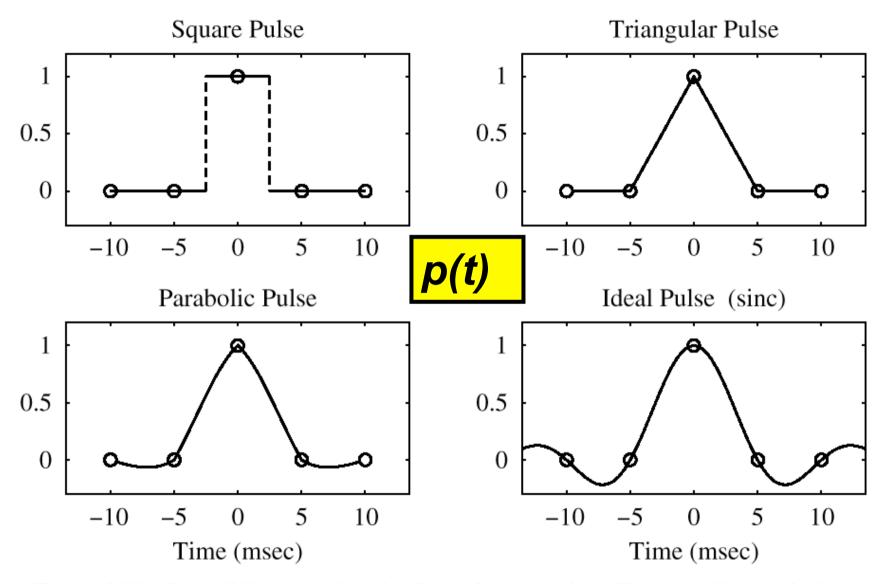
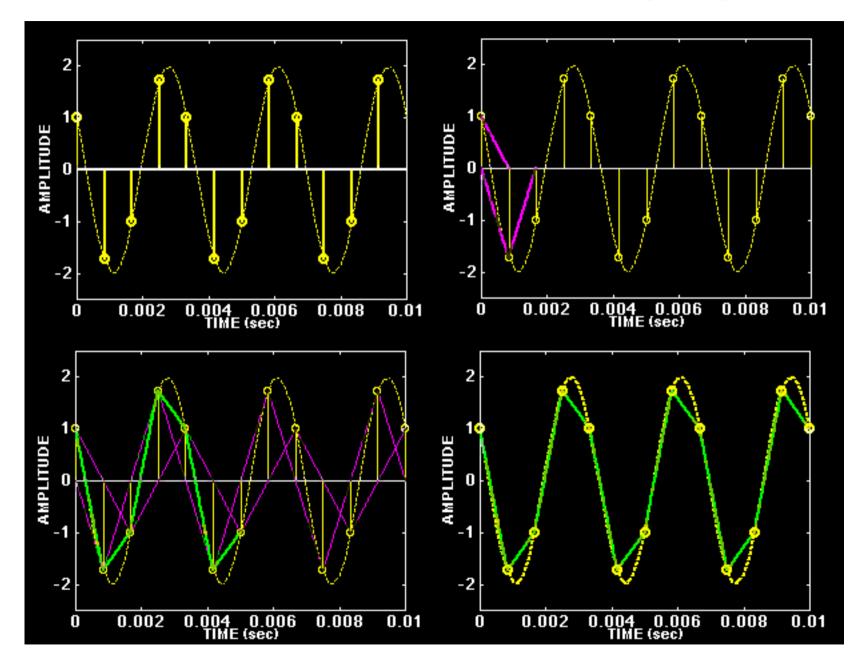


Figure 4.17 Four different pulses for D-to-C conversion. The sampling period is $T_s = 0.005$, i.e., $f_s = 200$ Hz. Note that the duration of each pulse is approximately one or two times T_s .

TRIANGULAR PULSE (2X)



Optimal Pulse?

