(gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Circuits and Systems I

LECTURE #7
Bandlimited Reconstruction

lions@enfl Prof. Dr. Volkan Cevher
i LIONS/Laboratory for Information and Inference Systems




License Info for SPFirst Slides

This work released under a
with the following
terms:

Attribution

= The licensor permits others to copy, distribute, display, and perform
the work. In return, licensees must give the original authors credit.

Non-Commercial

= The licensor permits others to copy, distribute, display, and perform
the work. In return, licensees may not use the work for commercial
purposes—unless they get the licensor's permission.

Share Alike

= The licensor permits others to distribute derivative works only under
a license identical to the one that governs the licensor's work.



Outline - Today

e Today <> Section 4-4
Section 4-5

e Next week <> BONUS EXAM REVIEW!

e Next lecture <> Section 5-1
Section 5-2
Section 5-3
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Lecture Objectives

e FOLDING: a type of ALIASING
e DIGITAL-to-ANALOG CONVERSION is

— Reconstruction from samples
= SAMPLING THEOREM applies
- Smooth Interpolation

e Mathematical Model of D-to-A
— SUM of SHIFTED PULSES
= Linear Interpolation example




x(t)

- A-to-D

e A-to-D

Signal Types

x[n]

COMPUTER

y[n]

D-to-A

= Convert x(t) to numbers stored in memory

e D-to-A

= Convert y[n] back to a “continuous-time”
signal, y(t)
= y[n] is called a “discrete-time” signal

y(t)



Sampling x(t)

e UNIFORM SAMPLING at t = nT,
= IDEAL: x[n] = x(nTy)

x(t) - x[n]

Shannon Sampling Theorem
A continuous-time signal x(7) with frequencies no higher than f,.x can be

reconstructed exactly from its samples 2 (nTy),1f the samples are taken
at arate fy = 1/ 7§ that is greater tha @




Nyquist Rate

e "Nyquist Rate” Sampling
- f. > TWICE the HIGHEST Frequency in x(t)
- “Sampling above the Nyquist rate”

e BANDLIMITED SIGNALS

- DEF: x(t) has a HIGHEST FREQUENCY COMPONENT in its
SPECTRUM

— NON-BANDLIMITED EXAMPLE
= TRIANGLE WAVE is NOT BANDLIMITED




SPECTRUM for x[n]

e INCLUDE ALL SPECTRUM LINES
— ALIASES

« ADD INTEGER MULTIPLES of 27T and -27t
— FOLDED ALIASES
« ALIASES of NEGATIVE FREQS
e PLOT versus NORMALIZED FREQUENCY
- i.e., DIVIDE f, by f.

/

W =270+ 27/
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Example: Spectrum

X[n] = Acos(0.2rnn+¢)

FREQS @ 0.2n and -0.2xn
ALIASES:

- {2.2n, 4.2n, 6.2x, ...} & {-1.8x,-3.8mx,...}
- EX: X[n] = Acos(4.2nn+¢)
ALIASES of NEGATIVE FREQ:

- {1.87n,3.87,5.8x,...} & {-2.2xn, -4.2n ...}



Spectrum (More Lines)
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100-Hz Cosine Wave: Sampled with 7 = 1 msec (1000 Hz)
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Spectrum (Aliasing Case)
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Folding (a type of ALIASING)

e EXAMPLE: 3 different x(t); same x[n]

£. =1000 c?)=27rﬂ =27(0.1)

cos(272(100)t) — cos[22(0.1)n] 1000
cos(2z(1100)¢) — cos[2xz(1.1)n] = cos[2(0.1)n]
cos(277(900)¢) — cos[27(0.9)n]

= c0s[27(0.9)n - 27an]| = cos[2x(-0.1)n] = cos[27x(0.1)n]

= 900 Hz *folds” to 100 Hz when f,;=1kHz
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Digital Frequency w Again

Normalized Radian Frequency

. 2w f
0 =T = + 20/ ALIASING
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FOLDED ALIAS




Spectrum (Folding Case)
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x(t)

Frequency Domains

A-to-D

D-to-A




Demos from Chapter 4

CD-ROM DEMOS

SAMPLING DEMO (con2dis GUI)

— Different Sampling Rates
= Aliasing of a Sinusoid

STROBE DEMO

— Synthetic vs. Real
— Television at 30 fps in the US / 25 fps in EU

Sampling & Reconstruction



SAMPLING GUI (con2dis)

<) CON2DIS v1.01
Plot Options Exit Help

Input: cos(2x 17.0 t)

x[n] = cos(2r 0.85 n)
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D-to-A Reconstruction

x(t) x[n] y[n] y(t)

- A-to-D —m» COMPUTER — D-to-A —m

e Create continuous y(t) from y[n]

- IDEAL
= If you have formula for y[n]

- Replace n in y[n] with ft
- y[n] = Acos(0.2rnn+¢) with f, = 8000 Hz
- y(t) = Acos(2x(800)t+¢)




D-to-A is AMBIGUOUS |

e ALIASING
— Given y[n], which y(t) do we pick ? ? ?
— INFINITE NUMBER of y(t)
= PASSING THRU THE SAMPLES, y[n]
— D-to-A RECONSTRUCTION MUST CHOOSE ONE OUTPUT

e RECONSTRUCT THE SMOOTHEST ONE
- THE LOWEST FREQ, if y[n] = sinusoid




Spectrum (Aliasing Case)
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Reconstruction (D-to-A)

e CONVERT STREAM of NUMBERS to x(t)
e "CONNECT THE DOTS”

e INTERPOLATION

INTUITIVE,

conveys the idea
y[k] / y




Sample and Hold Device

e CONVERT y[n] to y(t)
- y[k] should be the value of y(t) at t = kT,

- Make y(t) equal to y[k] for

= KT, -0.5T, < t < kT, +0.5T,

—( )

yik]

STAIR-STEP
APPROXIMATION
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Sqguare Pulse Case

Sampling and Zero-Order Reconstruction: f,= 83 f, =200
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Over-Sampling Case

Sampling and Zero-Order Reconstruction: f, =83 f, = 800
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Mathematical Model for D-to-A

y(t) = ) ynlp(t — nTy)

n=—0o0

SQUARE PULSE:

1 =37 <t < 57T,

0O otherwise

p(t) = {



Expand the Summation

S yinlp(t - nT) =

n=—OO

K +0]p(®) + M1p(t - T)+y[2]p(t - 2T) + K

e SUM of SHIFTED PULSES p(t-nT.)
- “WEIGHTED” by y[n]
— CENTERED at t=nT,
~ SPACED by T,
= RESTORES “"REAL TIME”



Square Pulse Triangular Pulse
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Figure 4.17 Four different pulses for D-to-C conversion. The sampling period
is T, = 0.005, 1.e., fy = 200 Hz. Note that the duration of each pulse is
approximately one or two times 7.
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Optimal Pulse?

[deal Pulse (sinc)

CALLED
“BANDLIMITED
INTERPOLATION” . . - - -
-10 -5 0 5 10
Time (msec)
- Tt
S11 T
p(t)=—7— for-o<t<x
I
p(t)=0 for l‘=i]-;912];,,...




o Next Week....= <> Bonus Exam Review

e LAB TIME NOW




