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o Convex Variational Relaxations
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Convex Variational Relaxations

Convex Variational Relaxations

@ Inference: Convex variational problem, intractable

(EPFL) Graphical Models 18/11/2011 3/12



Convex Variational Relaxations
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@ Inference: Convex variational problem, intractable

@ Relaxations lead to approximate solutions.
Tractable, but may be non-convex

@ Structured mean field: Myr non-convex
o Loopy belief propagation: Hgethe[pt] NON-convex
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Convex Variational Relaxations

Convex Variational Relaxations

@ Inference: Convex variational problem, intractable
@ Relaxations lead to approximate solutions.
Tractable, but may be non-convex
@ Structured mean field: Myr non-convex
o Loopy belief propagation: Hgethe[pt] NON-convex
@ Why convex relaxation?

e Unique solution. Know when you’re done
e Robust under small data changes (f.ex.: experimental design)
o Statistical advantages Wainwright, JMLR 7 (2006)
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Convex Variational Relaxations

Convex Variational Relaxations

@ Inference: Convex variational problem, intractable
@ Relaxations lead to approximate solutions.
Tractable, but may be non-convex
@ Structured mean field: Myr non-convex
o Loopy belief propagation: Hgethe[pt] NON-convex
@ Why convex relaxation?
e Unique solution. Know when you’re done
e Robust under small data changes (f.ex.: experimental design)
o Statistical advantages Wainwright, JMLR 7 (2006)
@ Exact inference convex. Are convex relaxations also tighter?
= Unfortunately not ((G)LBP hard to beat)
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Convex Variational Relaxations

Convex Relaxations: The Recipe

logZ = maxHeM{GTu + H[u]}
M = {(u,-) \ w; = Eqlfj(xc,)] for some Q(x)}
M can be hard to fence in

6 <~ p can be hard to compute
H[pn] can be hard to compute F2
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Convex Variational Relaxations

Convex Relaxations: The Recipe

log Z < max,eM{0T7+ﬁ[r]}, = TK, O\ =0,
M= { () ] j = Eqlfj(Xg)] for some Q(x) }

@ Recipe for convex relaxation

@ Concave upper bound H[7] to entropy H[u], tractable function of
pseudomarginals = (small enough, but & = 7%) F2b
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Convex Variational Relaxations

Convex Relaxations: The Recipe

log Z < maXTGM{BTTJr ﬁ[T]},
M= { () j j = Eqlfj(x)] forsome Q(x) } < A

@ Recipe for convex relaxation

@ Concave upper bound H[7] to entropy H[u], tractable function of
pseudomarginals T (small enough, but 1 = 7x)
@ Convex outer bound M = {7} > M (f.ex.: Miocal) Fac
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Convex Variational Relaxations

Convex Relaxations: The Recipe

log Z < maXTGM{BTTJr ﬁ[T]},
M= { () j j = Eqlfj(x)] forsome Q(x) } < A

@ Recipe for convex relaxation
@ Concave upper bound H[7] to entropy H[u], tractable function of
pseudomarginals = (small enough, but . = 7%)
@ Convex outer bound M = {7} > M (f.ex.: Miocal)

@ Notes

e Convex optimization. Upper bound to log Z (not lower, like MF)

e T can have more components than p (clique marginals).
Embedding: u = 7«, H[r] = H[u], M = {7| 7k = p € M}

e Must have H[r] < H[r] forall T €¢ M (& 7« € M)
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Convex Variational Relaxations

Examples for Convex Relaxations

log Z < maxTeM{HTTJr ﬁ[r]}

@ Tree-reweighted belief propagation [Wainwright et.al, UAI 02]
= Exercise sheet
@ Conditional entropy decomposition [Globerson et.al,, AISTATS 07] F3

H[P(x)] = Z,H[P(Xilx<i)] < ZIH[P(XI|XS,-)]7
Sic{1,...,i—1}, S;: Siu{i}

And: P(xg) — H[P(x|xs)] = H[P(xs/)] — H[P(xs,)] concave!
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Convex Variational Relaxations

Conditional Entropy Decomposition

TN
O —Gr—0) w.
J J H[7] =H; + Hgjy + Hy|13 + Hg|y37 + Haj1379+

\C \C
< gv gy Hyj13792 + Hg|137924+
Hg|1379246 + Hs|13792468
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Convex Variational Relaxations

Conditional Entropy Decomposition

/_\m/\
@ \2/ @ H[7] < Hy + Hj + Hy + Ho + Hpj13+

< Hyj17 + Hg39+
Hg 79 + Hs|2468
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Convex Variational Relaxations

Conditional Entropy Decomposition

/\

@/\

(EPFL)

H[T] <H; +Hs + H7 + Hg + H213 — Hyz+
H417 — H17 + He39 — Hag+
Hg79 — H7g + Hs2468 — Ho46s
Here, Hs := H[rg]. Relaxation:
Hz > Hgj1, H7 > H7j13, Hg > Hgj137, ..
Index set for T
@ Nodes, edges (u)
o {13,17,39,79}
o {213,417,639,879}, {52468, 2468)

Graphical Models 18/11/2011 6/12



Convex Variational Relaxations

Conditional Entropy Decomposition

O——0O
1

i

T

@/\f

H[T] <H; +Hs + H7 + Hg + H213 — Hyz+
H417 — H17 + He39 — Hag+
Hg79 — H7g + Hs2468 — Ho46s
Here, Hs := H[rg]. Relaxation:
Hs > Hgyj1, H7 > H713, Hg > Hg|137, ...
Index set for T
@ Nodes, edges (u)
o {13,17,39,79}
o {213,417,639,879}, {52468, 2468)

Note: In general (# tree), relaxation cannot be avoided
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Convex Variational Relaxations

Semidefinite Relaxations

M = {(u,-) ‘ w; = Eqlf;(Xc,)] for some o(x)} . xe{0,1}m

Binary MRF. Pairwise and single node potentials (|G| < 2)
@ So far: Fencing in M by linear inequalities (larger polytope).

{A| A= 0 (pos.semidef)} < {A|trAxx" >0 vx}

1 SD constraint: co many linear constraints! Still tractable
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Convex Variational Relaxations

Semidefinite Relaxations

M = {(u,-) ‘ w; = Eqlf;(Xc,)] for some o(x)} . xe{0,1}m

Binary MRF. Pairwise and single node potentials (|G| < 2)
@ So far: Fencing in M by linear inequalities (larger polytope).

{A| A= 0 (pos.semidef)} < {A|trAxx" >0 vx}

1 SD constraint: co many linear constraints! Still tractable
@ SD outer bound: If 4 € M, then

Bo[( % )N =M =0 = ues =M= 0}

First-order SD outer bound (convex cone) F10

@ Can use intersection with Mgca
o Higher-order possible (g(x) instead of x)
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Convex Variational Relaxations

Semidefinite Relaxations (Il)

MC St ={p=0]|M(p):=0}

How about the entropy H[u| (need concave upper bound)?
@ For continuous X: Gaussian maximizes (differential) entropy

H[P(X /Px)logP %) dx < (1/2)log |27 € Covp[x]|

[recall lecture 3]. Covariance is part of M1 ()
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Convex Variational Relaxations

Semidefinite Relaxations (Il)

MC St ={p=0]|M(p):=0}

How about the entropy H[u| (need concave upper bound)?
@ For continuous X: Gaussian maximizes (differential) entropy

H[P(X /Px)logP %) dx < (1/2)log |27 € Covp[x]|

[recall lecture 3]. Covariance is part of M1 ()
@ x discrete — X continuous by reverse quantization F11

X=x+u, u~U[-1/2,1/2]), i@ = P(x(X))

density distribution
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Convex Variational Relaxations

Semidefinite Relaxations (Il)

MC St ={p=0]|M(p):=0}

How about the entropy H[u| (need concave upper bound)?
@ For continuous X: Gaussian maximizes (differential) entropy

H[P(X /Px)logP %) dx < (1/2)log |27 € Covp[x]|

[recall lecture 3]. Covariance is part of M1 ()
@ x discrete — X continuous by reverse quantization

X=x+u, u~U[-1/2,1/2]), i@ = P(x(X))

density distribution
@ Convex semidefinite inference relaxation Wainwright, Jordan, IEEE SP 54(6)

o Tighter than LBP. Better marginal approximations
e Much more expensive (no local belief propagation solver)
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Convex Variational Relaxations

Convexity of (reweighted) Bethe

I1; 1i(xc) L
P(x) ~ H,TX/)"’I_“ nj=W{jli€ G}, ne€ Mioc

Recall Bethe approximation: Pretend G was a tree
= When is this convex? Convexification?

Energy term —07 pu? Linear — convex

(EPFL) Graphical Models 18/11/2011 9/12



Convex Variational Relaxations

Convexity of (reweighted) Bethe

I1; 1i(xc) L
P(x) ~ W7 ni=1{jlie G}, neMioca
Recall Bethe approximation: Pretend G was a tree
= When is this convex? Convexification?

Energy term —07 pu? Linear — convex
Constraint set Mjgca? Convex polytope
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Convex Variational Relaxations

Convexity of (reweighted) Bethe

I1; 1i(xc)
[T pi(xi)m=1"
Recall Bethe approximation: Pretend G was a tree
= When is this convex? Convexification?

P(x) ~ ni={jlie Cj}|a 1 € Miocal

Energy term —07 pu? Linear — convex
Constraint set Mjgca? Convex polytope
Bethe neg-entropy —Hpgethe[t]? Not convex!

—Hpethe[pt] = — Z HIp( XC, ‘1'2 — 1)H[pi(xi)]

convex (posmve) concave (negative)
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Convex Variational Relaxations

Convexity of (reweighted) Bethe

I1; 1i(xc)
[T pi(xi)m=1"
Recall Bethe approximation: Pretend G was a tree
= When is this convex? Convexification?

P(x) ~ ni={jlie Cj}|a 1 € Miocal

Energy term —07 pu? Linear — convex
Constraint set Mjgca? Convex polytope
Bethe neg-entropy —Hpgethe[t]? Not convex!

—Haethe[p] = — Z Hlpj(x¢) ‘1'2 — 1)H[pi(x7)]
convex (posmve) concave (negative)
@ Above: Conditional neg-entropy is convex (i € G)! Fi2
pj(xc) = —H[uj(xcni) | pi(xi)] = —H[pj(Xc)] + 1 - H{pi(xi)]
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Convex Variational Relaxations

Convexity of (reweighted) Bethe (ll)

—Hpethe[1] = — Z H[pj(xc)] +Z — )H[ui(x7)]

convex (posmve) concave (negative)

@ Resource allocation game: Assign H[pi(x;)] to “free” —H[u;(x;)].
Any concave terms left?
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Convex Variational Relaxations

Convexity of (reweighted) Bethe (ll)

—Hpethe[1] = — Z H[pj(xc)] +Z — )H[ui(x7)]

convex (posmve) concave (negative)

@ Resource allocation game: Assign H[pi(x;)] to “free” —H[u;(x;)].
Any concave terms left?

@ G tree: Nothing left. Hey: Bethe relaxation convex for trees!
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Convex Variational Relaxations

Convexity of (reweighted) Bethe (ll)

—Hpethe[1] = — Z H[pj(xc)] +Z — )H[ui(x7)]

convex (positive) concave (negative)

@ Resource allocation game: Assign H[pi(x;)] to “free” —H[u;(x;)].
Any concave terms left?

@ G tree: Nothing left. Hey: Bethe relaxation convex for trees!
Knew that already:

@ Not relaxation, but exact then
@ And exact variational inference is convex
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Convex Variational Relaxations

Convexity of (reweighted) Bethe (ll)

—Hpethe[1] = — Z H[pj(xc)] +Z — )H[ui(x7)]

convex (positive) concave (negative)

@ Resource allocation game: Assign H[pi(x;)] to “free” —H[u;(x;)].
Any concave terms left?

@ G has single cycle: Nothing left either [exercise sheet]

o Bethe relaxation convex (solution usually not correct)
o LBP always converges
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Convex Variational Relaxations

Convexity of (reweighted) Bethe (ll)

—Hpethe[1] = — Z H[pj(xc)] +Z — )H[ui(x7)]

convex (positive) concave (negative)

@ Resource allocation game: Assign H[pi(x;)] to “free” —H[u;(x;)].
Any concave terms left?

@ Convexify Bethe relaxation by decreasing counting numbers n;
until “nothing left” Heskes, JAIR 26 (2006)
o Reweighted Bethe relaxations solved by reweighted LBP
e Somewhat lacks interpretability
o TRW-BP (last exercise sheet) example with additional motivation
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Convex Variational Relaxations
LP Relaxations

What about the mode (decoding)? Integer programming: F14

MAP : x, = argmaxlog [Zf‘eorf(x)} = argmax ' f(x)
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Convex Variational Relaxations
LP Relaxations

What about the mode (decoding)? Integer programming:
MAP : x, = argmaxlog [Zf‘eorf(x)} = argmax ' f(x)
Linear criterion = Linear programming transformation
max 0 f(x) = maxEq[0' f(x)] = max 6T
2x0TH(x) = maxEql0Tf(x)] = max 07

= Variational inference without entropy term
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Convex Variational Relaxations
LP Relaxations

What about the mode (decoding)? Integer programming:
MAP : x, = argmaxlog [Zf‘e‘gr’(")} = argmax ' f(x)

Linear criterion = Linear programming transformation

max 07 f(x) = maxEp[0 f(x)] = max 0"
12 (x) hax ol0 f(x)] HEX/(l 7

= Variational inference without entropy term

@ LP relaxations by outer bounds: M C Mgca
= Result always a tractable LP. Fi4b
Catch: Mocq too many extreme points = Fractional solutions
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Convex Variational Relaxations
LP Relaxations

What about the mode (decoding)? Integer programming:
MAP : x, = argmaxlog [Zf‘e‘gr’(")} = argmax ' f(x)

Linear criterion = Linear programming transformation

max 07 f(x) = maxEp[0 f(x)] = max 0"
12 (x) hax ol0 f(x)] HEX/(l 7

= Variational inference without entropy term

@ LP relaxations by outer bounds: M C Mgca

= Result always a tractable LP.

Catch: Mocq too many extreme points = Fractional solutions
@ Key question: Does max-product solve this LP?

o For tree: Yes, and MP is a dual algorithm
e In general: No.
But (carefully) reweighted max-product does
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Convex Variational Relaxations
LP Relaxations

What about the mode (decoding)? Integer programming:
MAP : x, = argmaxlog [Zf‘e‘gr’(")} = argmax ' f(x)

Linear criterion = Linear programming transformation

max 07 f(x) = maxEp[0 f(x)] = max 0"
1ax (x) Q(x))( ol0 f(x)] HEX/(l 7

= Variational inference without entropy term

@ LP relaxations by outer bounds: M C Mgca

= Result always a tractable LP.

Catch: Mocq too many extreme points = Fractional solutions
@ Why should | care?

e For several NP-hard problems: Mo “first order” LP relaxation
frequently used
o Reweighted MP: Fastest known algorithm in some cases
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Convex Variational Relaxations
Wrap-Up

@ Convex variational relaxations: Concave upper bound to entropy,
convex outer bound to marginal polytope

@ Bethe problem can be convex (graph with < 1 cycle). It can be
convexified

@ First-order LP relaxations by fast convergent reweighted
max-product
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