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Convex Variational Relaxations

Convex Variational Relaxations

Inference: Convex variational problem, intractable

Relaxations lead to approximate solutions.
Tractable, but may be non-convex

Structured mean field: MMF non-convex
Loopy belief propagation: HBethe[µ] non-convex

Why convex relaxation?

Unique solution. Know when you’re done
Robust under small data changes (f.ex.: experimental design)
Statistical advantages Wainwright, JMLR 7 (2006)

Exact inference convex. Are convex relaxations also tighter?
⇒ Unfortunately not ((G)LBP hard to beat)
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Convex Variational Relaxations

Convex Relaxations: The Recipe

log Z = maxµ∈M
{
θTµ + H[µ]

}
M =

{
(µj)

∣∣∣µj = EQ[f j(xCj )] for some Q(x )
}

M can be hard to fence in
θ ↔ µ can be hard to compute
H[µ] can be hard to compute F2
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Convex Variational Relaxations

Convex Relaxations: The Recipe

log Z ≤ maxτ∈M
{
θTτ + H̃[τ]

}
, µ = τK , θ\K = 0,

M =
{
(µj)

∣∣∣µj = EQ[f j(xCj )] for some Q(x )
}

Recipe for convex relaxation
1 Concave upper bound H̃[τ] to entropy H[µ], tractable function of

pseudomarginals τ (small enough, but µ = τK ) F2b

2 Convex outer bound M̃ = {τ} ⊃ M (f.ex.: Mlocal)
Notes

Convex optimization. Upper bound to log Z (not lower, like MF)
τ can have more components than µ (clique marginals).
Embedding: µ = τK , H[τ] = H[µ],M = {τ | τK = µ ∈M}
Must have H[τ] ≤ H̃[τ] for all τ ∈M (⇔ τK ∈M)
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Convex Variational Relaxations

Examples for Convex Relaxations

log Z ≤ maxτ∈M̃
{
θTτ + H̃[τ]

}
Tree-reweighted belief propagation [Wainwright et.al., UAI 02]

⇒ Exercise sheet
Conditional entropy decomposition [Globerson et.al., AISTATS 07] F3

H[P(x )] =
∑

i
H[P(xi |x<i)] ≤

∑
i
H[P(xi |xSi )],

Si ⊂ {1, . . . , i − 1}, S′i = Si ∪ {i}

And: P(xS′
i
) 7→ H[P(xi |xSi )] = H[P(xS′

i
)]− H[P(xSi )] concave!
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Convex Variational Relaxations

Conditional Entropy Decomposition

H[τ] =H1 + H3|1 + H7|13 + H9|137 + H2|1379+

H4|13792 + H6|137924+

H8|1379246 + H5|13792468
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Convex Variational Relaxations

Conditional Entropy Decomposition

H[τ] ≤ H1 + H3 + H7 + H9 + H2|13+

H4|17 + H6|39+

H8|79 + H5|2468
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Convex Variational Relaxations

Conditional Entropy Decomposition

H[τ] ≤ H1 + H3 + H7 + H9 + H213 − H13+

H417 − H17 + H639 − H39+

H879 − H79 + H52468 − H2468

Here, HS := H[τS]. Relaxation:
H3 ≥ H3|1, H7 ≥ H7|13, H9 ≥ H9|137, . . .

Index set for τ:
Nodes, edges (µ)
{13,17,39,79}
{213,417,639,879}, {52468,2468}
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Convex Variational Relaxations

Conditional Entropy Decomposition

H[τ] ≤ H1 + H3 + H7 + H9 + H213 − H13+

H417 − H17 + H639 − H39+

H879 − H79 + H52468 − H2468

Here, HS := H[τS]. Relaxation:
H3 ≥ H3|1, H7 ≥ H7|13, H9 ≥ H9|137, . . .

Index set for τ:
Nodes, edges (µ)
{13,17,39,79}
{213,417,639,879}, {52468,2468}

Note: In general (6= tree), relaxation cannot be avoided
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Convex Variational Relaxations

Semidefinite Relaxations

M =
{
(µj)

∣∣∣µj = EQ[f j(xCj )] for some Q(x )
}
, x ∈ {0,1}m

Binary MRF. Pairwise and single node potentials (|Cj | ≤ 2)
So far: Fencing inM by linear inequalities (larger polytope).

{A | A � 0 (pos. semidef.)} ⇔ {A | tr AxxT ≥ 0 ∀x}

1 SD constraint: ∞ many linear constraints! Still tractable

SD outer bound: If µ ∈M, then

EQ

[(
1
x

)
(1 xT )

]
= M1(µ) � 0 ⇒ µ ∈ S1 = {M1(µ) � 0}

First-order SD outer bound (convex cone)

Can use intersection withMlocal
Higher-order possible (g(x ) instead of x )
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Convex Variational Relaxations

Semidefinite Relaxations (II)

M⊂ S1 = {µ � 0 | M1(µ) � 0}

How about the entropy H[µ] (need concave upper bound)?
For continuous x̃ : Gaussian maximizes (differential) entropy

H[P(x̃ )] = −
∫

P(x̃ ) log P(x̃ )d x̃ ≤ (1/2) log |2π e CovP [x ]|

[recall lecture 3]. Covariance is part of M1(µ)

x discrete→ x̃ continuous by reverse quantization

x̃ = x + u , ui ∼ U([−1/2,1/2]), P(x̃ )︸ ︷︷ ︸
density

= P(x (x̃ ))︸ ︷︷ ︸
distribution

Convex semidefinite inference relaxation Wainwright, Jordan, IEEE SP 54(6)

Tighter than LBP. Better marginal approximations
Much more expensive (no local belief propagation solver)
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Convex Variational Relaxations

Convexity of (reweighted) Bethe

P(x ) ≈
∏

j µj(xCj )∏
i µi(xi)ni−1 , ni = |{j | i ∈ Cj}|, µ ∈Mlocal

Recall Bethe approximation: Pretend G was a tree
⇒When is this convex? Convexification?

Energy term −θTµ? Linear→ convex
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Convexity of (reweighted) Bethe

P(x ) ≈
∏

j µj(xCj )∏
i µi(xi)ni−1 , ni = |{j | i ∈ Cj}|, µ ∈Mlocal

Recall Bethe approximation: Pretend G was a tree
⇒When is this convex? Convexification?

Energy term −θTµ? Linear→ convex
Constraint setMlocal? Convex polytope
Bethe neg-entropy −HBethe[µ]? Not convex!

−HBethe[µ] = −
∑

j
H[µj(xCj )]︸ ︷︷ ︸

convex (positive)

+
∑

i
(ni − 1)H[µi(xi)]︸ ︷︷ ︸

concave (negative)

Above: Conditional neg-entropy is convex (i ∈ Cj )!

µj(xCj ) 7→ −H[µj(xCj\i) |µi(xi)] = −H[µj(xCj )] + 1 · H[µi(xi)]
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Above: Conditional neg-entropy is convex (i ∈ Cj )! F12

µj(xCj ) 7→ −H[µj(xCj\i) |µi(xi)] = −H[µj(xCj )] + 1 · H[µi(xi)]
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Convex Variational Relaxations

Convexity of (reweighted) Bethe (II)

−HBethe[µ] = −
∑

j
H[µj(xCj )]︸ ︷︷ ︸

convex (positive)

+
∑

i
(ni − 1)H[µi(xi)]︸ ︷︷ ︸

concave (negative)

Resource allocation game: Assign H[µi(xi)] to “free” −H[µj(xCj )].
Any concave terms left?
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Convex Variational Relaxations

Convexity of (reweighted) Bethe (II)

−HBethe[µ] = −
∑

j
H[µj(xCj )]︸ ︷︷ ︸

convex (positive)

+
∑

i
(ni − 1)H[µi(xi)]︸ ︷︷ ︸

concave (negative)

Resource allocation game: Assign H[µi(xi)] to “free” −H[µj(xCj )].
Any concave terms left?

G tree: Nothing left. Hey: Bethe relaxation convex for trees!

Not relaxation, but exact then
And exact variational inference is convex
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Convex Variational Relaxations

Convexity of (reweighted) Bethe (II)

−HBethe[µ] = −
∑

j
H[µj(xCj )]︸ ︷︷ ︸

convex (positive)

+
∑

i
(ni − 1)H[µi(xi)]︸ ︷︷ ︸

concave (negative)

Resource allocation game: Assign H[µi(xi)] to “free” −H[µj(xCj )].
Any concave terms left?

G tree: Nothing left. Hey: Bethe relaxation convex for trees!
Knew that already:

Not relaxation, but exact then
And exact variational inference is convex
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Convex Variational Relaxations

Convexity of (reweighted) Bethe (II)

−HBethe[µ] = −
∑

j
H[µj(xCj )]︸ ︷︷ ︸

convex (positive)

+
∑

i
(ni − 1)H[µi(xi)]︸ ︷︷ ︸

concave (negative)

Resource allocation game: Assign H[µi(xi)] to “free” −H[µj(xCj )].
Any concave terms left?

G has single cycle: Nothing left either [exercise sheet]
Bethe relaxation convex (solution usually not correct)
LBP always converges
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Convex Variational Relaxations

Convexity of (reweighted) Bethe (II)

−HBethe[µ] = −
∑

j
H[µj(xCj )]︸ ︷︷ ︸

convex (positive)

+
∑

i
(ni − 1)H[µi(xi)]︸ ︷︷ ︸

concave (negative)

Resource allocation game: Assign H[µi(xi)] to “free” −H[µj(xCj )].
Any concave terms left?

Convexify Bethe relaxation by decreasing counting numbers ni
until “nothing left” Heskes, JAIR 26 (2006)

Reweighted Bethe relaxations solved by reweighted LBP
Somewhat lacks interpretability
TRW-BP (last exercise sheet) example with additional motivation
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Convex Variational Relaxations

LP Relaxations
What about the mode (decoding)? Integer programming: F14

MAP : x∗ = argmax log
[
Z−1eθT f (x )

]
= argmaxθT f (x )

LP relaxations by outer bounds: M⊂Mlocal
⇒ Result always a tractable LP.
Catch: Mlocal too many extreme points⇒ Fractional solutions
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LP Relaxations
What about the mode (decoding)? Integer programming:

MAP : x∗ = argmax log
[
Z−1eθT f (x )

]
= argmaxθT f (x )

Linear criterion⇒ Linear programming transformation

max
x

θT f (x ) = max
Q(x )

EQ[θ
T f (x )] = max

µ∈M
θTµ

⇒ Variational inference without entropy term

LP relaxations by outer bounds: M⊂Mlocal
⇒ Result always a tractable LP.
Catch: Mlocal too many extreme points⇒ Fractional solutions

(EPFL) Graphical Models 18/11/2011 11 / 12



Convex Variational Relaxations

LP Relaxations
What about the mode (decoding)? Integer programming:

MAP : x∗ = argmax log
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= argmaxθT f (x )

Linear criterion⇒ Linear programming transformation

max
x

θT f (x ) = max
Q(x )

EQ[θ
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⇒ Variational inference without entropy term
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⇒ Result always a tractable LP. F14b

Catch: Mlocal too many extreme points⇒ Fractional solutions
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Convex Variational Relaxations

LP Relaxations
What about the mode (decoding)? Integer programming:

MAP : x∗ = argmax log
[
Z−1eθT f (x )

]
= argmaxθT f (x )

Linear criterion⇒ Linear programming transformation

max
x

θT f (x ) = max
Q(x )

EQ[θ
T f (x )] = max

µ∈M
θTµ

⇒ Variational inference without entropy term

LP relaxations by outer bounds: M⊂Mlocal
⇒ Result always a tractable LP.
Catch: Mlocal too many extreme points⇒ Fractional solutions
Key question: Does max-product solve this LP?

For tree: Yes, and MP is a dual algorithm
In general: No.
But (carefully) reweighted max-product does

(EPFL) Graphical Models 18/11/2011 11 / 12



Convex Variational Relaxations

LP Relaxations
What about the mode (decoding)? Integer programming:

MAP : x∗ = argmax log
[
Z−1eθT f (x )

]
= argmaxθT f (x )

Linear criterion⇒ Linear programming transformation

max
x

θT f (x ) = max
Q(x )

EQ[θ
T f (x )] = max

µ∈M
θTµ

⇒ Variational inference without entropy term

LP relaxations by outer bounds: M⊂Mlocal
⇒ Result always a tractable LP.
Catch: Mlocal too many extreme points⇒ Fractional solutions
Why should I care?

For several NP-hard problems: Mlocal “first order” LP relaxation
frequently used
Reweighted MP: Fastest known algorithm in some cases
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Convex Variational Relaxations

Wrap-Up

Convex variational relaxations: Concave upper bound to entropy,
convex outer bound to marginal polytope
Bethe problem can be convex (graph with ≤ 1 cycle). It can be
convexified
First-order LP relaxations by fast convergent reweighted
max-product
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