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Announcement

Please bring your Assignment 5 sheet along to next tutorial.
Points were not recorded.
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0 Hidden Markov Models
@ Linear Dynamical Systems

e General Filtering / Smoothing
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Hidden Markov Models
Forward in Time

66666

@ Final lecture in part I: We’ll do a big step ... intime
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@ Final lecture in part I: We’ll do a big step ... intime
@ Why dynamic models?

@ Number one reason for causal dependence: Succession in time
e Filtering, tracking, forward prediction, time series, sequential
learning, ...
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66666

@ Final lecture in part I: We’ll do a big step ... intime
@ Why dynamic models?
@ Number one reason for causal dependence: Succession in time
e Filtering, tracking, forward prediction, time series, sequential
learning, ...
@ What's special about dynamic models?
Only one direction (time arrow) — Linear (in)dependence —
Markov chain — Chains are (simple) trees — Belief propagation!
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Hidden Markov Models
Forward in Time

66666

@ Final lecture in part I: We’ll do a big step ... intime
@ Why dynamic models?
@ Number one reason for causal dependence: Succession in time
e Filtering, tracking, forward prediction, time series, sequential
learning, ...
@ What's special about dynamic models?
Only one direction (time arrow) — Linear (in)dependence —
Markov chain — Chains are (simple) trees — Belief propagation!

@ Markov chain: Present separates between past and future
(X<i)L(X=) | Xi
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Hidden Markov Models
Vocabulary

Hidden Markov Model Fo

P(y,lx;)  Observation likelihood
P(xj|x;_1) Transition kernel
P(x1) Initial state prior

Stationary Model: CPTs independent of .
Notation: x_; = (X1,...,Xj_1)
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Hidden Markov Models
Vocabulary

Hidden Markov Model

P(y,lx;)  Observation likelihood
P(xj|x;_1) Transition kernel
P(x1) Initial state prior

Stationary Model: CPTs independent of j.
Notation: x_; = (X1,...,Xj_1)
o Filtering: P(x;|y ;) (sequential prediction)
@ Smoothing: P(x;|y,_,) (inference given past and future)

@ Learning: Fitting parameters of P(y|x), P(x.|x._1):
EM, based on smoothing [EM comes from HMM research]
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Hidden Markov Models
Filtering: Information Forward Propagation

@ Formal: Message
passing on factor graph
F3

Hj—2—j-1(Tj-1)
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Hidden Markov Models
Filtering: Information Forward Propagation

@ Formal: Message
passing on factor graph

@ Above formulae:
Information forward
propagation:

1(j—2)—(j—1) (Xj—1):
Prior “from the past”
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Hidden Markov Models
Filtering: Information Forward Propagation

@ Formal: Message
passing on factor graph

@ Above formulae:
Information forward
propagation:

1(j—2)—(j—1) (Xj—1):
Prior “from the past”

@ Measurement: Prior — posterior: oc p(j_2)—(j—1)(Xj—1) P(¥j-11Xj-1)
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Hidden Markov Models
Filtering: Information Forward Propagation

@ Formal: Message
passing on factor graph

@ Above formulae:
Information forward
propagation:

1(j—2)—(j—1) (Xj—1):
Prior “from the past”

@ Measurement: Prior — posterior: oc p(j_2)—(j—1)(Xj—1) P(¥j-11Xj-1)
@ Diffusion, information propagation (marginalization):
1=y (X5) 0 305 (tr—2)=(—1) (X1 ) P(Yj=11X5-1)) P(X1] X -1)
= Know how to do (1), (2)? Can do BP! Fab
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Sum-Product Algorithm for HMMs

@ Backward messages: Exactly the same, just reverse time arrow
@ Measurement: Prior — posterior: oc pje(j1)(X) P(yj|X})
@ Diffusion, information propagation (marginalization):
Hi—1ye—(Xj—1) o< 205 POGIX—1) (ki +1) () P(j1%7)) F4
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Sum-Product Algorithm for HMMs

@ Backward messages: Exactly the same, just reverse time arrow
@ Measurement: Prior — posterior: oc pje(j1)(X) P(yj|X})
@ Diffusion, information propagation (marginalization):
ti—1) i (Xi=1) o< 22 POXG1X5-1) (ki i) (X5) P(¥51%7))
@ Forward / backward pass independent: can be run in parallel
@ Posterior marginals: Fdb
P(xily1...s) o< (1) () PV 1X) 1) (%)
P(Xj—1,X1Y1..0) o i—2)-(-1)(X-1) P(Yj-11X-1) P(xj X;-1)
Pilxi) e+ (%)
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Hidden Markov Models
HMMSs in Practice

Enormously influential, both in practice and algorithm development

Speech recognition:
SR today: = HMIMs with clever search tricks

@ EM came from there (Baum, Welch: Forward-backward algorithm)

@ Swiped field clean of anything else (rule-based, hand-coded,
linguistic, ...) in 1970s. Early work at CMU (Baker, Lowerre) and
IBM (Jelinek)

@ X;: Subphonemes. y;: Spectral features of acoustic waveform.
P(y|x): Gaussian mixture

@ One of the big success stories of statistical learning over other
“loftier” approaches

@ Today more industry than research: Big groups, big computers,
huge amounts of data
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Hidden Markov Models
HMMSs in Practice

Enormously influential, both in practice and algorithm development

Bio-Informatics:
Introduced there early 90s by David Haussler (machine learning
theorist, turned famous computational biologist)

@ Before that: Dynamic programming sequence alignment (BLAST)
@ Most macromolecules of organic chemistry are chains (some
folded in complex ways):
x; € {A,C, T, G} (ortriplets), x; € {amino acids}
@ Sequence matching by pair HMMs (two y; chains, common x;)
@ Gene finding: HGP estimates about # human genes: HMMs
@ Protein categorization (homologues)

@ Together with tree models: Phylogenetics, evolutionary history of
species
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Hidden Markov Models
Further Remarks

@ How do | obtain argmax log P({y,}, {x;})?
For example: How to | decode words from acoustic waveform?
= Max-product algorithm: Viterbi decoding

o Learning with inner (Viterbi) maximization usually used in SR:
Faster than EM (beam search, pruning)

(EPFL) Graphical Models 21/10/2011 9/22



Hidden Markov Models
Further Remarks

@ How do | obtain argmax log P({y,}, {x;})?
For example: How to | decode words from acoustic waveform?
= Max-product algorithm: Viterbi decoding
o Learning with inner (Viterbi) maximization usually used in SR:
Faster than EM (beam search, pruning)
@ Simple modifications give nonstationary transition kernels
(e.g., for non-geometric duration time)

(EPFL) Graphical Models 21/10/2011 9/22



Hidden Markov Models
Further Remarks

@ How do | obtain argmax log P({y,}, {x;})?
For example: How to | decode words from acoustic waveform?
= Max-product algorithm: Viterbi decoding
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into HMMs themselves (of potentially different length)
@ HMMs for large state spaces: Model structure within x; itself
e Factorial HMM [next lecture]

(EPFL) Graphical Models 21/10/2011 9/22



Hidden Markov Models
Further Remarks

@ How do | obtain argmax log P({y,}, {x;})?
For example: How to | decode words from acoustic waveform?
= Max-product algorithm: Viterbi decoding
o Learning with inner (Viterbi) maximization usually used in SR:
Faster than EM (beam search, pruning)
@ Simple modifications give nonstationary transition kernels
(e.g., for non-geometric duration time)
@ Not hard to do hierarchical / multi-scale HMMs: Nodes expand
into HMMs themselves (of potentially different length)
@ HMMs for large state spaces: Model structure within x; itself
e Factorial HMM [next lecture]
@ Common theme: On some level: Markov chain (usually latent).
Belief propagation
o Message sizes independent of sequence length
@ Running time linear in sequence length
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Linear Dynamical Systems

Dynamical Systems

@ The world is not discrete. Problems involving motion,
co-ocurrence: Differential equations, continuous variables

@ Reasoning about uncertainty in such problems:
Dynamical state space models
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Linear Dynamical Systems

Dynamical Systems

@ The world is not discrete. Problems involving motion,
co-ocurrence: Differential equations, continuous variables

@ Reasoning about uncertainty in such problems:
Dynamical state space models

@ State: Finite set variables, containing all information to move on
(separate past from future). Can include derivatives as well
(location, orientation, velocity, angular velocity, acceleration,
torque, ...). Usually (partly) latent

@ Reason about distribution over state, conditioned on past
observations (filtering) or all observations (smoothing). Propagate
such state distributions (belief states)
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Linear Dynamical Systems

Dynamical Systems

@ The world is not discrete. Problems involving motion,
co-ocurrence: Differential equations, continuous variables

@ Reasoning about uncertainty in such problems:
Dynamical state space models

@ State: Finite set variables, containing all information to move on
(separate past from future). Can include derivatives as well
(location, orientation, velocity, angular velocity, acceleration,
torque, ...). Usually (partly) latent

@ Reason about distribution over state, conditioned on past
observations (filtering) or all observations (smoothing). Propagate
such state distributions (belief states)

@ Use this inference for higher order tasks

e Learning about environment, world model, sensor accuracy
e Planning behaviour, interaction which modifies environment
= Whatever you do: Inference is at the bottom
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Linear Dynamical Systems

Linear Dynamical System

@ Example: Moving robot localization F8
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Linear Dynamical Systems

Linear Dynamical System

@ Example: Moving robot localization
@ Local conditional probabilities: Linear-Gaussian

Xt = Aixi_1 + Greqt, €1~ N(0,1) Transition prior
Yi=Cixt+eot, et~ N(O, ;) Observation likelihood

ekt independent of others.
Stationary LDS: A, G, C, ¥ independent of t
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Linear Dynamical Systems

Linear Dynamical System

@ Example: Moving robot localization
@ Local conditional probabilities: Linear-Gaussian

Xt = Aixi_1 + Greqt, €1~ N(0,1) Transition prior
Yi=Cixt+eot, et~ N(O, ;) Observation likelihood

ekt independent of others.
Stationary LDS: A, G, C, ¥ independent of t
@ Inference in such a model? Combine what you know:
o HMM for discrete latent states
e Factor analysis for linear-Gaussian model, independent states
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Linear Dynamical Systems

Behind the Equations

@ Behind the equation mess in engineering textbooks, there is a
simple idea. What you need to remember:

e Above formulae: That idea, and the generic primitives it requires
o Below formulae: Numerically uncritical way of implementation
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Linear Dynamical Systems

Behind the Equations

@ Behind the equation mess in engineering textbooks, there is a
simple idea. What you need to remember:
e Above formulae: That idea, and the generic primitives it requires
o Below formulae: Numerically uncritical way of implementation
@ Simple idea:
o All distributions / messages in this model: Gaussian.
You need to maintain / pass:

@ Moment parameters (mean, covariance), or
@ Natural parameters

o Belief propagation primitives: Measurement (prior — posterior),
information propagation (marginalization)
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Linear Dynamical Systems

Behind the Equations

@ Behind the equation mess in engineering textbooks, there is a
simple idea. What you need to remember:

e Above formulae: That idea, and the generic primitives it requires
o Below formulae: Numerically uncritical way of implementation
@ Simple idea:

o All distributions / messages in this model: Gaussian.
You need to maintain / pass:

@ Moment parameters (mean, covariance), or
@ Natural parameters

o Belief propagation primitives: Measurement (prior — posterior),
information propagation (marginalization)
@ Below formulae: Get these primitives right

o Use linear algebra to get them in the right form
o Use numerically trusted solutions for elementary steps
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Linear Dynamical Systems

Kalman Filtering

Filtering with moment parameters:
info. prop.
NXtalpeqe—1: B 1) — N(Xt|pge—1, Zyje-1)

measurement

— N(Xt|pyt, Zge)

@ Information propagation: x; = AiX;_1 + Gieq ¢
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Linear Dynamical Systems

Kalman Filtering

Filtering with moment parameters:

info. prop.

N(Xt 1 |pe—1it—1, Bt—qji—1)  —> N(Xtlpg—1, Bge-1)

measurement

— N(Xt|pyt, )

@ Information propagation: x; = AiX;_1 + Gteq ¢
.
Bt = A jt-1, Syt = ASr 1Al + GG

@ Measurement: “Prior” N(Xt|pegjs—1, Xgjt—1)-
Likelihood N(y;|C:x:, ). Posterior? F10
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Linear Dynamical Systems
Kalman Filtering

Filtering with moment parameters:

info. prop.
NXttpeq—1, Beoqpe—1)  — N(Xtlpge—1, Zeje-1)
measurement

— N(Xt|pyt, Zge)

@ Information propagation: x; = AiX;_1 + Gieq ¢
T T
Bit—1 = Atpe_q)t—1,  Bpjt—1 = ArXi_q1-1A; + GiG;

@ Measurement: “Prior” N(X¢|pesjt—1, Xjt—1)-
Likelihood N(y;|Cix:, ¥). Posterior?

34t = Cov[(Xt ¥)]/Cov[y,] = Zp—1 — Zyjr—1 CtTEf1 Ci3y1—1
ket = E[Xx] + Cov[xq, yiCovly:l (¥ — Ely4])
= Wyr—1 + g1 C/E;'(y, - Ciugji—1), Et =T+ CrXp;_q c/
—_———
Kalman gain
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Linear Dynamical Systems
Remarks

@ Kalman gain matrix:
Kt = S 1Cl (%1 + €Dy 1 €)™ {= Covixe, yi]Covly ] '}

Residual error y; — E[y,|y ;] — correction mean estimate.
Can also write: Xy = (I — K¢Ct)Xy;_4
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Linear Dynamical Systems
Remarks

@ Kalman gain matrix:
Kt = S 1Cl (%1 + €Dy 1 €)™ {= Covixe, yi]Covly ] '}

Residual error y; — E[y;|y ;] — correction mean estimate.
Can also write: Xy = (I — K¢Ct)Xy;_4
@ Recall: In the moment parameterization:

Information propagation Simple
Measurement Difficult (needs matrix factorization)

In the natural parameterization, these roles are reversed
@ Information filter: Propagate natural parameters ry;, Sy; instead of
moment parameters [Sy; = ZH:, Fijp = 2511“”1‘]
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Linear Dynamical Systems
In Practice

“Below the formulae”: What'’s he talking about?
= In practice, neither of them work (on real problems)

@ Intheory, X or Sy stay positive definite. In practice they don't!

@ Root of problem: Information propagation / measurement simple
linear in different parameterizations. Conversion (matrix inversion)
prone to numerical errors
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Linear Dynamical Systems
In Practice

“Below the formulae”: What'’s he talking about?
= In practice, neither of them work (on real problems)
@ Intheory, X or Sy stay positive definite. In practice they don't!
@ Root of problem: Information propagation / measurement simple
linear in different parameterizations. Conversion (matrix inversion)
prone to numerical errors
@ First improvement: Propagate matrix factorization:
Kalman square root filter = F,|,FIT,. Propagate F;
Information square root filter 252 = FyF ;. Propagate Fy;
@ Further improvements: Formulate as weighted least squares
problem. Use stable LS method from numerical mathematics

[Paige, Saunders: Least Squares Estimation of Discrete Linear Dynamic Systems Using Orthogonal
Transformations (1977)]
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Linear Dynamical Systems
Smoothing

@ All approaches use filtering for forward pass
@ Rauch-Tung-Striebel (RTS) smoother: Backward pass computes
marginals E[x;| D], Cov[x;|D] directly, D = {y;}. ldea:
P(x:|D) = /P(xtx,+1,D)P(xt+1|D) dXiqq
L [ POtlxis y<)POXAID) it [XeLyq[Xi]

Work out moments of P(x¢|X;,1,y<,) from filtering variables.
Average x;,1 over P(x;,1|D). Details: In your exercises
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Linear Dynamical Systems
Smoothing

@ All approaches use filtering for forward pass

@ Rauch-Tung-Striebel (RTS) smoother: Backward pass computes
marginals E[x;| D], Cov[x;|D] directly, D = {y;}. ldea:

P(x:|D) = /P(tht+1,D)P(Xt+1|D) axi 1
é/P(XtXt+17.Vgt)"'->()(t+1|D)dx1‘+1 [Xt Ly ¢l Xti4]

Work out moments of P(x¢|X;,1,y<,) from filtering variables.
Average x;,1 over P(x;,1|D). Details: In your exercises
@ Two-filter smoothing: Analogous to forward-backward BP

o Run backward filter (in parallel to forward filter) F13
o Combine results by Gaussian product formula. Do not count
observation twice!
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Linear Dynamical Systems
Learning

@ Recall last lecture: Most difficult part of learning is inference
@ EM algorithm: E step is smoothing. M step: Like in factor analysis

@ Gradient-based optimization: Average gradients of log-potentials
over marginal posterior (smoothing)
@ Formulae even worse, but we are not impressed
@ Above formulae: Decomposition:
@ Marginal inference (smoothing)
@ Gradient accumulation, given marginals
@ Parameter updates
o Below formulae: Use stable filtering / smoothing implementation.
Gradient accumulation typically harmless
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Linear Dynamical Systems
Conditional Random Fields

@ Undirected sequence model. Different properties through global
normalization (HMM: local normalization)

@ Markov random field with tree graph

@ Heavily used in text / language modelling (labeling, named entity
recognition)

@ Training with complete data (all x; given): lterative, but convex
optimization (for log-linear potentials). Can be done very efficiently
(Quasi Newton optimization; approximate Newton optimization
with Hessian-vector product)

@ Traning with incomplete data: EM outer loop required
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Linear Dynamical Systems
Conditional Random Fields

@ Undirected sequence model. Different properties through global
normalization (HMM: local normalization)

@ Markov random field with tree graph

@ Heavily used in text / language modelling (labeling, named entity
recognition)

@ Training with complete data (all x; given): lterative, but convex
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General Filtering / Smoothing
General State Space Models

@ We've had state space models

o All discrete:
Multinomial family

o All linear-Gaussian:
Gaussian family

@ What about other situations?

o Nonlinear dynamical system: Transition / observation mapping
nonlinear. Noise dependent on current state

e Switching state space model: State consists of continuous and
discrete variables

= Graph is still a chain. Efficient inference by BP?
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General Filtering / Smoothing
General State Space Models

@ We've had state space models

o All discrete:
Multinomial family

o All linear-Gaussian:
Gaussian family

@ What about other situations?

o Nonlinear dynamical system: Transition / observation mapping
nonlinear. Noise dependent on current state

e Switching state space model: State consists of continuous and
discrete variables

= Graph is still a chain. Efficient inference by BP?
@ Problem: Only multinomial, Gaussian families

o Closed under conditioning and marginalization
o Fixed-size parameterization

= Inference for general state space models: NP hard Fi6
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General Filtering / Smoothing
Approximate Filtering

Dynamic programming requires fixed-size message representations
= Blow-up has to be countered by approximations
@ Approximate transition / observation potentials locally

o Extended Kalman filter: Linearize transition / observation mapping
by Taylor expansion at p;_1—1 / py1—1 resp. Use exact propagation
with approximated potentials
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General Filtering / Smoothing
Approximate Filtering

Dynamic programming requires fixed-size message representations
= Blow-up has to be countered by approximations
@ Approximate transition / observation potentials locally
o Extended Kalman filter: Linearize transition / observation mapping
by Taylor expansion at p;_1—1 / py1—1 resp. Use exact propagation
with approximated potentials
@ Use exact local propagation, project resulting message back into
representation family. Projection done optimally by matching
family moments (mean, covariance for Gaussian). Variants:
o Assumed density filter
e Unscented filter (cheap quadrature by exact monomials)
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General Filtering / Smoothing
Approximate Filtering

Dynamic programming requires fixed-size message representations
= Blow-up has to be countered by approximations
@ Approximate transition / observation potentials locally
o Extended Kalman filter: Linearize transition / observation mapping
by Taylor expansion at p;_1—1 / py1—1 resp. Use exact propagation
with approximated potentials
@ Use exact local propagation, project resulting message back into
representation family. Projection done optimally by matching
family moments (mean, covariance for Gaussian). Variants:
o Assumed density filter
e Unscented filter (cheap quadrature by exact monomials)
@ EKF cheap and cheerful. ADF works better in general, but needs
quadrature to approximate moments. Projection more general:
e EKF can be seen as special backprojection as well
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General Filtering / Smoothing

What about Smoothing?

@ Approximate filters: One-shot approach, local approximations
never re-visited. But: Approximate inference is iterative

@ Correct learning requires marginals given all data (also future)
= Smoothing
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General Filtering / Smoothing

What about Smoothing?

@ Approximate filters: One-shot approach, local approximations
never re-visited. But: Approximate inference is iterative

@ Correct learning requires marginals given all data (also future)
= Smoothing
@ Options:
o Apply filter approximation technique to smoother
(e.g., two-filter smoother) = not iterative
o Better: Use principled approximate inference framework
[expectation propagation, part Il]
@ General warning: Numerically even more difficult than inference in
fixed LDS = Attention to numerical details essential
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General Filtering / Smoothing
Wrap-Up

@ Hidden Markov model (discrete states): Non-Markovian behaviour
from Markovian ingredients

@ Linear dynamical system: Simple idea, messy equations. Does
not work without numerically careful implementation

@ Conditional random field: Alternative to HMM for large text /
language problems

@ Filtering / smoothing for general state space models:
Approximation by (moment matching) backprojection
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