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0 Learning and Inference
e Bounding with Convexity
e Expectation Maximization

© Learning Markov Random Fields. Log-Linear Models
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Learning and Inference
Learning is Estimation

P(y,x,0) = P(y|x,0)P(x|0)P(6) (0—@
y Observed variable
x Latent variable (nuisance) @

6 Parameters (latent query, “higher up”)

@ Learning: What is a (single) good value for 67 [argmax...]
For which 6 does model fit data D = {y+,...,y,}? = Estimation

(EPFL) Graphical Models 17/10/2011 3/15



Learning and Inference
Learning is Estimation

P(y,x,0) = P(y|x,0)P(x|0)P(6) (0—@
y Observed variable
x Latent variable (nuisance) @

6 Parameters (latent query, “higher up”)

@ Learning: What is a (single) good value for 67 [argmax...]
For which 6 does model fit data D = {y+,...,y,}? = Estimation

e Maximum likelihood (ML) estimation: # = argmax log P(D|6)
e Maximum a posteriori (MAP) estimation:
6 = argmaxlog P(0|D) = argmax(log P(D|0) + log P(6))
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Learning and Inference
Learning is Estimation

P(y,x,0) = P(y|x,0)P(x|0)P(6) (0—@
y Observed variable
x Latent variable (nuisance) @

6 Parameters (latent query, “higher up”)

@ Learning: What is a (single) good value for 67 [argmax...]
For which 6 does model fit data D = {y+,...,y,}? = Estimation

e Maximum likelihood (ML) estimation: # = argmax log P(D|6)
e Maximum a posteriori (MAP) estimation:
6 = argmaxlog P(8|D) = argmax(log P(D|@) + log P(6))
@ Inference: What is posterior P(6|D)? [f...1
e Range / shape of “good values” mass
e Uncertainty in estimates

Terms like “MAP inference”: Just wrong
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Learning and Inference
Learning is Estimation

P(y,x,0) = P(y|x,0)P(x|0)P(6) (0—@
y Observed variable
x Latent variable (nuisance) @

6 Parameters (latent query, “higher up”)

@ Learning: What is a (single) good value for 67 [argmax...]
For which 6 does model fit data D = {y+,...,y,}? = Estimation

e Maximum likelihood (ML) estimation: # = argmax log P(D|6)
e Maximum a posteriori (MAP) estimation:
6 = argmaxlog P(0|D) = argmax(log P(D|0) + log P(6))
@ Inference: What is posterior P(6|D)? [f...1

e Range / shape of “good values” mass
e Uncertainty in estimates

Terms like “MAP inference”: Just wrong
@ Still: We'll need inference [P(x|y, 0)] for learning
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Learning and Inference

Why Learning can be Hard

@ Data from N(y/|u,o?l). Learn mean p = That's not hard. Why?
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Learning and Inference

Why Learning can be Hard

@ Data from N(y|u,o?l). Learn mean pu = That's not hard. Why?

o Model directed graph. CPTs: Nice form (Gaussian)
o No latent variables except parameters

= No inference required

@ Learning gets hard if you need inference: Nice-form distributions
become nasty through marginalization

e Latent nuisance variables
o Undirected models (MRFs)
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Learning and Inference

Why Learning can be Hard

@ Data from N(y|u,o?l). Learn mean pu = That's not hard. Why?
o Model directed graph. CPTs: Nice form (Gaussian)
o No latent variables except parameters
= No inference required

@ Learning gets hard if you need inference: Nice-form distributions
become nasty through marginalization
e Latent nuisance variables
o Undirected models (MRFs)

@ Marginalization creates log partition functions

Bayes net, latent variables Markov random field
log P(y|0) =log [ P(y,x|0) dx logZ =log}_, []; ®;(xc)
S——— S———

coupled decoupled

= Optimization of log partition functions needs inference
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Bounding with Convexity

Convex Functions. Jensen’s Inequality

@ Convex set C: F3 ol
X1,X2 €C, A €[0,1]
= AX1+(1—-A)x2€C
@ Convex function f : C — R:
f()\X-] + (1 - )\)Xg)
< M(x1)+ (1= N)Ff(x2) e TN
@ Same concept: f convex < T T
epi(f) := {(x,y)|f(x) < y} convex o

Dig for yourself about convexity:
@ Boyd, Vandenberghe: Convex Optimization (2004)

[http://www.stanford.edu/~boyd/cvxbook/]
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Bounding with Convexity

Convex Functions. Jensen’s Inequality

@ Convex set C:
X1,X2 €C, A €[0,1]
= AX1+(1—-A)x2€C
@ Convex function f : C — R:
f()\X-] + (1 - )\)Xg)
< M(xq) + (1 = Mf(x2)

................................

@ Same concept: f convex < o T
epi(f) = {(X,y) | f(x) <y} convex T T T
@ Equivalent: For each xq € C, there exists u s.t. Fab

f(x) > u”(x — x¢) + f(Xo) forallx € C
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Bounding with Convexity

Convex Functions. Jensen’s Inequality

@ Convex set C:
X1,X2 €C, A €[0,1]
= AX1+(1—-A)x2€C
@ Convex function f: C — R:
f()\X-] + (1 - )\)Xg)
< M(xq) + (1 = A)f(x2) S
@ Same concept: f convex < T I
epi(f) := {(x,y)| f(x) < y} convex = T T °
@ Equivalent: For each xg € C, there exists u s.t.

f(x) > u”(x — x¢) + f(xo) forallx € C
@ Jensen’s inequality: f : C — R convex, P distribution over C

Ep[f(x)] > f(Ep([x])
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Bounding with Convexity

Bounding Log Partition Functions

Recall the problem:

mgaxlog/d)(x\e) dx, o(x|0)= HCD (xc10)

@ t+— —log(t) convex function: For positive f:
log Eg[f(x)] > Egllog f(x)] (by Jensen)
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Bounding with Convexity

Bounding Log Partition Functions

Recall the problem:

mgaxlog/d)(x\e) dx, o(x|0)= HCD (xc10)

@ t+— —log(t) convex function: For positive f:
log Eg[f(x)] > Egllog f(x)] (by Jensen)
@ Variational mean field inequality F4

Iog/ X)dx > supgEq [Iog QEX))]
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Bounding with Convexity

Bounding Log Partition Functions

Recall the problem:

mgaxlog/d)(x\e) dx, o(x|0)= HCD (xc10)

@ t+— —log(t) convex function: For positive f:
log Eq[f(x)] > Eq[log f(x)] (by Jensen)
@ Variational mean field inequality

Iog/ X)dx > supgEq [Iog QEX))]
@ Pushing the log inside

log [T -- Hard, no decoupling
Jlog[];---=[>;log... Decoupling: Canbemuch easier
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Expectation Maximization

Towards Expectation Maximization

d(x)
o9 ouﬂ

Here is a very simple question: What is the best Q(x) | could choose?
F5

Iog/cb(x) dx > supgEq
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Expectation Maximization

Towards Expectation Maximization

Iog/ X)dx = supgEq [Iog QEXH

Here is a very simple question: What is the best Q(x) | could choose?
Q(x) = ®(x)/Z: The posterior in this situation
Expectation Maximization (Full Generality)
Goal: Maximize log [ ®(x|6) dx. lterate:

@ Expectation (E step): Tightest lower bound
Q(x) « (x16)/2(0)

@ Maximization (M step): Maximize lower bound
0 < argmaxEg[log ¢(x|0)] for fixed Q
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Expectation Maximization

EM Algorithm for Gaussian Mixtures
Gaussian mixture model: P(y|x) = N(ux, 1), P(x = k) =1/K

Observed data:  yq,...,¥, € R?
Latent indicators: xq,...,xp € {1,...,K}

How to find cluster centers pu,?
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Expectation Maximization

EM Algorithm for Gaussian Mixtures
Gaussian mixture model: P(y|x) = N(ux, 1), P(x = k) =1/K

Observed data:  yq,...,¥, € R?
Latent indicators: xq,...,xp € {1,...,K}

How to find cluster centers pu,?

Translation

general — particular

d(x) = [, P(yilxi)P(x;) [joint likelihood]
7] — i, ..., pk [Cluster centers]

Q(x) — Qx) =TI Qx)

Z2(0) —Z=]1;4, 2 =3, Pyilx)P(x)

Note: Decoupling
log ®(x) = log[P(y;|x)P(x)], logZ =7} logZ
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Expectation Maximization

EM Algorithm for Gaussian Mixtures
Gaussian mixture model: P(y|x) = N(ux, 1), P(x = k) =1/K

Observed data:  yq,...,¥, € R?
Latent indicators: xq,...,xp € {1,...,K}

How to find cluster centers pu,?

lterate:
@ Expectation: Posterior distribution for each datapoint

Q(x; = k) + P(xi = kly,)
© Maximization: Posterior average of all datapoints
pe =m0 Qxi = k)y; = argmax Y Q(x; = k)log P(y;[x; = k),
nk = Y _; Q(x; = k). Posterior weighted maximum likelihood
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Expectation Maximization

EM Algorithm for Bayesian Networks

P(x) = H,- P(xj|x+,,6;), m;:parents of nodej, j=1,...,J

Parameters 6;: CPT for xj|x,. Data: D = {x() = ()(j(i))}, i=1,...,n
In each x(): Coefficients can be missing

@ All x() complete: Match CPTs to empirical averages (counts)
= No EM needed
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Expectation Maximization

EM Algorithm for Bayesian Networks

P(x) = H,- P(xj|x+,,6;), m;:parents of nodej, j=1,...,J

Parameters 6;: CPT for xj|x,. Data: D = {x() = ()(j(i))}, i=1,...,n
In each x(): Coefficients can be missing

@ All x() complete: Match CPTs to empirical averages (counts)
= No EM needed

@ Partially observed x(): Your exercise sheet!
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Learning Markov Random Fields. Log-Linear Models

Log Partition Function: A Closer Look
Log partition function of P(x) = ®(x)/Z: F7

log Z = log Zx e ViXe) y(x) = Z/‘ Vj(xg,) = log ®(x)

Note: Can have >, — [ ... dx
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Learning Markov Random Fields. Log-Linear Models

Log Partition Function: A Closer Look
Log partition function of P(x) = ®(x)/Z:

log Z = log Zx e ViXe)  y(x) = Z/‘ Vj(xg,) = log ®(x)

Note: Can have >, — [ ... dx
©@ Moment-generating: F7a

Vo logZ = Ep[VeW(x)] = Z,- Ep[VoVj(Xc,)]

(EPFL) Graphical Models 17/10/2011 10/15



Learning Markov Random Fields. Log-Linear Models

Log Partition Function: A Closer Look
Log partition function of P(x) = ®(x)/Z:

log Z = log Zx e ViXe)  y(x) = Z/‘ Vj(xg,) = log ®(x)

Note: Can have >, — [ ... dx
©@ Moment-generating:

Vo log Z = Ep[VeW(x)] = Z,- Ep[VoVj(Xc,)]

@ Convex: (vx) — log >, e F7b
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Learning Markov Random Fields. Log-Linear Models

Log Partition Function: A Closer Look
Log partition function of P(x) = ®(x)/Z:

log Z = log Zx e ViXe)  y(x) = Z/‘ Vj(xg,) = log ®(x)

Note: Can have >, — [ ... dx
©@ Moment-generating:

VglogZ = Ep[VeV(X)] = Z Ep[VoVj(xc)]

@ Convex: (vx) — log >, e

Consequence of (1):

@ Computing Vg log Z: Exactly same as E step
(posterior moments over clique marginals)

@ Can use any gradient-based optimizer instead of EM F7c
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Learning Markov Random Fields. Log-Linear Models

Learning Markov Random Fields

P(x) = Z_1e\U(X), V(x) = Zj \IJ]-(XCI,)

Note: All x observed here — X
@ Maximum likelihood:

maxg log P(X) = maxg (V(X) — log Z)

Minus log Z: EM won’t do
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Learning Markov Random Fields. Log-Linear Models

Learning Markov Random Fields

P(x) = Z_1e\U(X), V(x) = Zj \IJ]-(XCI,)

Note: All x observed here — X
@ Maximum likelihood:

maxg log P(X) = maxg (V(X) — log Z)

Minus log Z: EM won’t do
@ Gradient-based optimization: F8

Vo |Og P()N() = Zj (ngj'()?cj) — EP[VBWj(XCj)])
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Learning Markov Random Fields. Log-Linear Models

Learning Markov Random Fields

P(x)=Z"1e"™ w(x)= Zj Vj(xc)

Note: All x observed here — X
@ Maximum likelihood:

maxg log P(X) = maxg (V(X) — log Z)
Minus log Z: EM won’t do
@ Gradient-based optimization:

Vo |Og P()N() = Zj (ngj'()?cj) — EP[VBWj(XCj)])

@ Log-linear models: Surprisingly often, Wj(xc,) = OTfj(ij)

°® Vglog P(X) =3 (fi(Xc) — Erlfj(xc)])
e Convex optimization problem Féa
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Learning Markov Random Fields. Log-Linear Models
lterative Proportional Fitting
Log-linear Markov random field, separable parameters:

P(x) =z 1e=1%1%%) 9 _ (0,,6,...)

@ Assume: For each j, Q(x¢,): Can easily find Ag; s.t.

Eaulfi(Xc)] = (%), where Qa(xg,) o Q(xg,)e™%" e
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Learning Markov Random Fields. Log-Linear Models
lterative Proportional Fitting
Log-linear Markov random field, separable parameters:

P(x) =z 1e=1%1%%) 9 _ (0,,6,...)

@ Assume: For each j, Q(x¢,): Can easily find Ag; s.t.

Eaulfi(Xc)] = (%), where Qa(xg,) o Q(xg,)e™%" e

@ lterative proportional fitting (IPF): Iterate

e Pick some potential j. Determine marginal P(x¢,) (inference)
e Find A6;: Ep, [fj(ch)] = fj()?cj) 3
e Update 6; < 6; + (A0)) [Afterwards: Ep[fi(xc,)] = fj(X )]
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Learning Markov Random Fields. Log-Linear Models
lterative Proportional Fitting
Log-linear Markov random field, separable parameters:

P(x) =z 1% %) g (g;,6,,...)

@ Assume: For each j, Q(x¢,): Can easily find Ag; s.t.

Eaulfi(Xc)] = (%), where Qa(xg,) o Q(xg,)e™%" e

@ lterative proportional fitting (IPF): Iterate
e Pick some potential j. Determine marginal P(x¢,) (inference)
e Find A6;: Ep, [fj(ch)] = fj()?cj)
e Update 6; < 6; + (A0)) [Afterwards: Ep[f;(x¢,)] = fi(X )]
@ Coordinate ascent: Simple, other algorithms can be faster
@ Requires inference with changing potentials
(e.g., belief propagation)
@ Problem with general MRFs: Inference hard
[not always: CRFs, next lecture] F9
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Learning Markov Random Fields. Log-Linear Models

Examples for Log-Linear Models

Vj(xg) = onj(ij): Seems special ... No, it's not: Very common!
@ Discrete model, multinomial CPTs. F10
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Learning Markov Random Fields. Log-Linear Models

Examples for Log-Linear Models

Wj(x¢,) = 07fj(xc,): Seems special ... No, it's not: Very common!
@ Discrete model, multinomial CPTs. 7y = P(x = k)
QkZIOg(Wk/TFK), f(X):(I{X:k}), k:1,...,K—1,
= P(x) =210, 7 =1/mx

Directed Bayesian networks are not log-linear models, but

@ Feature based models:
f; indicators for presence / strength of certain features
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Learning Markov Random Fields. Log-Linear Models

Examples for Log-Linear Models

Wj(x¢,) = 07fj(xc,): Seems special ... No, it's not: Very common!
@ Discrete model, multinomial CPTs. 7y = P(x = k)

QkZIOg(Wk/TFK), f(X):(I{X:k}), k:1,...,K—1,
= P(x) =210, 7 =1/mx

Directed Bayesian networks are not log-linear models, but

@ Feature based models:
f; indicators for presence / strength of certain features

@ Gaussian Markov random field
Note: Positive definiteness comes for free (log Z < ~o), does not
destroy convexity Fi0a
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Learning Markov Random Fields. Log-Linear Models

Further Points

@ Learning MRF with latent variables:

o Use EM for latent variables (marginal — joint likelihood)
o Use V-based optimization / IPF for M step (convex optimization)
[No need to maximize, just descent]
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Learning Markov Random Fields. Log-Linear Models

Further Points

@ Learning MRF with latent variables:
o Use EM for latent variables (marginal — joint likelihood)
o Use V-based optimization / IPF for M step (convex optimization)
[No need to maximize, just descent]
@ Learning with inner maximization (“Viterbi learning”)
e Sometimes: MAP (argmax) easier than inference (/)
o Learning with maximization can work well (K-Means, .. .)
o In most cases: No equivalent guarantees to learning with inference

[Exceptions: Some work by Taskar, Altun, . . . ]
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Learning Markov Random Fields. Log-Linear Models
Wrap-Up

@ Learning requires (marginal) inference in most cases
= Even frequentists need Bayesian inference

@ Inequalities from convexity: Underlying very many ideas / methods

@ Expectation Maximization: General-purpose algorithm for
marginal likelihood maximization

@ Log-linear Markov random fields: Learning is convex optimization
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