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@ Graphical Models

e Belief Propagation
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Graphical Models
Literature

Excellent book about graphical models and belief propagation, written
by one of the pioneers in these topics:

@ Pearl, J.
Probabilistic Reasoning in Intelligent Systems (1990)
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Graphical Models
The Need to Factorize

Variables xq, Xo, ..., Xn

P(X1):Z...ZP(X1,X2,...,X,7)

Marginalization: Exponential time
Storage: Exponential space =- Need factorization

@ Independence?
But probabilistic modelling is about dependencies!
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Graphical Models
The Need to Factorize

Variables xq, Xo, ..., Xn

P(X1):Z...ZP(X1,X2,...,X,7)

Marginalization: Exponential time
Storage: Exponential space =- Need factorization

@ Independence?
But probabilistic modelling is about dependencies!

@ Conditional independence
Dependencies may have simple structure
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Graphical Models
Towards Bayesian Networks

Tracking a fly

o5

@ Path pretty random
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Graphical Models
Towards Bayesian Networks

Tracking a fly
@ Path pretty random
@ Positions not independent

@ But conditionally independent
(Markovian)
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Graphical Models

Towards Bayesian Networks
Tracking a fly

@ Path pretty random

@ Positions not independent

@ But conditionally independent
(Markovian)

Remember

P(x1,. ... %) =P(x1)P(xelx1) ... O -
P(Xn[Xp—1,...,%1) ?

Here: P(xp|Xp—1,...,X1) = P(Xa|Xn—1) = Linear storage
Causal factorization = Bayesian networks
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Graphical Models

Bayesian Networks (Directed Graphical Models)

Causal factorization: anc; (ancestors of )

n N -~

P(x1,...,xn) = [ [ P(xilXx)

~

m; (parents of i)
- —

Bayesian network
(aka directed graphical model,
aka causal network):

@ Graphical representation of il of

ancestry [DAG] % [P = )
@ P(xj|x,): Conditional CPT: 1§ o V| OF
probability table (CPT) L 1

Conditional Independence
ALB|C & P(A,B|C)=P(A|C)P(B|C) & P(A|C,B)=P(A|C)
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Did It Rain Tonight?

 Watson|
R | P(W =y|R) R S| P(H=y|lR,S)
y 1 y v 1
n 0.2 y n 1
n vy 0.9
n n 0.01
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Graphical Models

Monty Hall Problem
@ Let’s make a deal!

@ Door with car (hidden)

First choice of yours (remains closed)
Host opens door with goat, H # F, D
Do you switch?
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Graphical Models
Monty Hall Problem
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@ Let’s make a deal!

@ Door with car (hidden)

e First choice of yours (remains closed)
o Host opens door with goat, H # F, D
e Do you switch?

@ “Intuition”: Fifty-fifty.
F, H give no information. He would be stupid, wouldn’t he?
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Graphical Models

Winning with Bayes (1)

N @ Intuition “H does not tell anything” correct in
)miw" principle. But about what?
@Dzw @ @ Add latent / = I{D:F} = I{ﬁrstchoicecorrect}
~ opens
irst
choice
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Graphical Models

Winning with Bayes (1)

\
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car
@OSI

opens

@ Intuition “H does not tell anything” correct in
principle. But about what?

@ Add latent / = I{D:F} = I{ﬁrstchoicecorrect}

@ Gut feeling: F, H no information about /.
“He will not tell me whether | am correct”.
P(I|F,H) = P(I).

Will use Bayes to see that.
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Graphical Models

Winning with Bayes (1)

. @ Intuition “H does not tell anything” correct in
)miw" principle. But about what?
@Dzw @ @ Add latent / = I{D:F} = I{ﬁrstchoicecorrect}

. omens e Gut feeling: F, H no information about /.

“He will not tell me whether | am correct”.
choics P(I|F, H) = P(I).

Will use Bayes to see that.

@ OK, but P(Switchwins) = P(/ = 0|F,H) = P(I =0) = 2/3I
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Graphical Models

Winning with Bayes (1)

. @ Intuition “H does not tell anything” correct in
)@fjm principle. But about what?
@D:F? © Add latent / = I{D:F} = I{ﬁrstchoicecorrect}
~ omens @ Gut feeling: F, H no information about /.
“He will not tell me whether | am correct”.
e P(I|F,H) = P(l).

Will use Bayes to see that.
@ OK, but P(Switchwins) = P(/ =0|F,H) = P(/ =0) =2/3!

@ Bayes makes you switch and
double your chance of
winning!
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Graphical Models

Winning with Bayes (1)

/@kr\m @ To show: P(/|H, F) = P(I).
. e P(I|F) = P(I),

@H? @t because D, F independent.
AN

opens

irst
choice
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Graphical Models

Winning with Bayes (1)

/@kr\m @ To show: P(/|H, F) = P(I).
. e P(I|F) = P(I),

@Dzw @l because D, F independent.
~ s @ P(I|H,F)= P(I|F) < ILH|F & HLI|F
st & P(H|I,F) = P(H|F)
choice (independence is symmetric)
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Graphical Models

Winning with Bayes (1)

/@kr\m @ To show: P(/|H, F) = P(I).
. e P(I|F) = P(I),

@H? @l because D, F independent.
\ opens @ P(I|H,F) = P(l|F) < ILH|F & HLI|F
< P(H|I,F) = P(H|F)
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(EPFL) Graphical Models 30/9/2011 10/30



Graphical Models

Winning with Bayes (1)
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@H? @l because D, F independent.
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Graphical Models

Winning with Bayes (1)

/@kwim @ To show: P(/|H, F) = P(I).
. e P(I|F) = P(I),

@H? @l because D, F independent.
\ opens @ P(I|H,F) = P(l|F) < ILH|F & HLI|F
< P(H|I,F) = P(H|F)
choice (independence is symmetric)
® P(HIF,I=1)=(1/2)liy.F
If F = D, host picks random goat
D, F independent, and H £ D, F

Working with Graphical Models
@ Intermediate between lots of headscratching and doing all sums
@ Powerful division of inference in manageable, local steps
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Why Graphical Models?

@ Easy way of communicating ideas about dependencies, models

@ Precise semantics: Conditional independence constraints on
distributions. Efficient algorithms for testing these

© Lead to large savings in computations (belief propagation)
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Graphical Models
Graphical Models in Practice

Dependency structures, and efficient ways to propagate information or
constraints, are fundamental.

Coding / Information Theory T T T 1
1 1 1 1
@ LDPC codes and BP decoding orror
revolutionized this field P t
(resurrection of Gallager H= t, * 1 1
codes) Pyt o1t
1 11 1
@ Used from deep space 1 L1 1

communication (Mars rovers)
over satellite transmission to
CD players / hard drives

Courtesy MacKay: Information Theory . . . (2003)
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Graphical Models
Graphical Models in Practice

Dependency structures, and efficient ways to propagate information or
constraints, are fundamental.

Expert systems done right 600
@ QMR-DT: Invert causal biseases
network for helping medical
diagnoses

@ Hugin: Advanced decision
support (Lauritzen)

http://www.hugin.com/ Syrmptorns

@ Promedas: Medical diagnostic 4000
advisory system
(SNN Nimegen)

http://www.promedas.nl/
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Graphical Models
Graphical Models in Practice

Dependency structures, and efficient ways to propagate information or
constraints, are fundamental.
Computer Vision:

Markov Random Fields

@ Denoising, super-resolution,
restoration (early work by
Besag)

@ Depth / reconstruction from
stereo, matching,
correspondences

@ Segmentation, matting, _
blending, stitching, impainting, Gourtesy MSR
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Graphical Models
Conditional Independence Semantics

@ Graphical model formally equivalent to long (finite) list of
conditional independence constraints:
Xa, LXg | Xc,, Xa,LXp, | Xc,, ... Which do you prefer?
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Graphical Models
Conditional Independence Semantics

@ Graphical model formally equivalent to long (finite) list of
conditional independence constraints:
Xa, LXg | Xc,, Xa,LXp, | Xc,, ... Which do you prefer?

@ Graphs not just simpler for us:
Linear-time algorithm to test such constraints (Bayes ball)
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Graphical Models
Conditional Independence Semantics

@ Graphical model formally equivalent to long (finite) list of
conditional independence constraints:

Xa, LXg | Xc,, Xa,LXp, | Xc,, ... Which do you prefer?
@ Graphs not just simpler for us:
Linear-time algorithm to test such constraints (Bayes ball)

@ Distribution consistent with graph iff all Cl constraints are met.
P(x1)P(x2) ... P(xn): Consistent with all graphs
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Conditional Independence Semantics

@ Graphical model formally equivalent to long (finite) list of
conditional independence constraints:
Xa, LXg | Xc,, Xa,LXp, | Xc,, ... Which do you prefer?

@ Graphs not just simpler for us:
Linear-time algorithm to test such constraints (Bayes ball)

@ Distribution consistent with graph iff all Cl constraints are met.
P(x1)P(x2) ... P(xn): Consistent with all graphs

@ How do | see whether x4 L xg| x¢ from the graph?
Graph separation: If paths A <+ B blocked by C
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Graphical Models
Conditional Independence Semantics

@ Graphical model formally equivalent to long (finite) list of
conditional independence constraints:
Xa, LXg | Xc,, Xa,LXp, | Xc,, ... Which do you prefer?

@ Graphs not just simpler for us:
Linear-time algorithm to test such constraints (Bayes ball)

@ Distribution consistent with graph iff all Cl constraints are met.
P(x1)P(x2) ... P(xn): Consistent with all graphs

@ How do | see whether x4 L xg| x¢ from the graph?
Graph separation: If paths A <+ B blocked by C

@ For Bayesian networks (directed graphical models): d-separation.
= You'll find out in the exercises!
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Graphical Models

Undirected Graphical Models (Markov Random Fields)

@ Bayesian Networks: Describe Cls with directed graphs (DAGs)
Markov Random Fields: Describe Cls with undirected graphs
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Graphical Models

Undirected Graphical Models (Markov Random Fields)

@ Bayesian Networks: Describe Cls with directed graphs (DAGs)
Markov Random Fields: Describe Cls with undirected graphs

@ Cl semantics of undirected models: Really just graph separation
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Graphical Models

Undirected Graphical Models (Il)

@ Why two frameworks?
e Each can capture setups the other cannot
e More important: In practice, some problems are much easier to
parameterize (therefore: to learn) as MRFs, others much easier as
Bayes nets
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Graphical Models

Undirected Graphical Models (Il)

@ Why two frameworks?

e Each can capture setups the other cannot

e More important: In practice, some problems are much easier to
parameterize (therefore: to learn) as MRFs, others much easier as
Bayes nets

@ How do distributions P for MRF graph G look like?
Hammersley / Clifford:

e Maximal cliques (completely connected parts) C; of G
e P(x) consistent with MRF G <

P(x)=Z"[[®i(xc). Z:=> []®ilxc)
J X ]

with potentials ®;(x¢,) > 0. Z: Partition function.
e Potentials need not normalize to 1
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Graphical Models

Undirected Graphical Models (111)

P(x) = Z~ ' ¢1(x123) 2 (X145) 3 (X156)
P4(X4578)P5(x9)
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Graphical Models

Directed vs. Undirected

@ Sampling x ~ P(x):
Always simple from Bayes net. Can be very hard for an MRF
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Always simple from Bayes net. Can be very hard for an MRF

@ Implicit, symmetrical knowledge? Little idea about causal links
(pixels of image, correspondences)? MRFs more useful then
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Graphical Models

Directed vs. Undirected

@ Sampling x ~ P(x):
Always simple from Bayes net. Can be very hard for an MRF

@ Implicit, symmetrical knowledge? Little idea about causal links
(pixels of image, correspondences)? MRFs more useful then

@ Bottomline: Usually, one or the other is much more suitable.
Better know well about both!
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Belief Propagation

Towards Efficient Marginalization

@ With sufficient Markovian Cl constraints (directed or undirected):

P(xi,....xn) o [[@i(xn), [N <
)

Can store that. But what about computation?

(EPFL) Graphical Models 30/9/2011
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Belief Propagation

Towards Efficient Marginalization

@ With sufficient Markovian Cl constraints (directed or undirected):

P(x1,...,X o<H<b xy), INj<n

Can store that. But what about computation?

@ Short answer: It depends on global graph structure properties,
beyond local factorization

Storage: Linearin n
Computation: Exponential in n'/2 [P#NP]
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Belief Propagation
Node Elimination

Chain:
P(x1,...,x7) = ®1(X1, X2)P2(X2, X3) . . . P (X5, X7)
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Belief Propagation
Node Elimination

Chain:
P(x1,...,x7) = ®1(X1, X2)P2(X2, X3) . . . P (X5, X7)

> P(Xt, e Xas e Xe)
X4
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Belief Propagation
Node Elimination

Chain:
P(x1,...,x7) = ®1(x1, X2)P2(X2, X3) . .. P (X5, X7)

ZP(X1,...,X4,...,X7)
X4

=1 (X1, X2)P2(xX2, X3) (Z P3(x3, Xa)Pa(Xa, X5)> P5(X5, X5) P (X6, X7)

X4
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Belief Propagation
Node Elimination

P(x1,...,x7) = ®1(x1, X2)P2(X2, X3) . . . P (X5, X7)

Chain:

D> P(Xt, . Xas e Xe)
X4

=1 (X1, X2)P2(X2, X3) (Z P3(x3, Xa)Pa(Xa, X5)> P5(X5, X5)Pe (X6, X7)

X4

=04 (X1, X2)Pa(X2, X3) Mas5(X3, X5)P5(X5, X6 ) Pe (X6, X7)
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Belief Propagation

Tree Graphs
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Belief Propagation
Factor Graphs

Factor graphs: Yet another type of graphical model
@ Bipartite graph:
variable / factor nodes

@ No probability
semantics

@ Just for deriving
Markovian propagation

algorithms
@ Factor graph = tree . e
= Fast computation Variable x;
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Belief Propagation
Factor Graphs

Factor graphs: Yet another type of graphical model
@ Bipartite graph:
variable / factor nodes

@ No probability
semantics

@ Just for deriving
Markovian propagation

algorithms
@ Factor graph = tree .
= Fast computation Variable x;

Undirected GM — Factor graph: Immediate
Directed GM  — Factor graph: Easy exercise
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Belief Propagation
Towards Belief Propagation
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Belief Propagation
What is a Message?
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Belief Propagation
What is a Message?

@ Formally: Directed potential over one
variable
@ Intuition: Message T, — a:
What T, thinks x5 should be
@ Naive “definition”
e Product: All T, and edge — a
o Sum: All except x;
= Real definition recursive (G treel)
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Belief Propagation
What is a Message?

@ Formally: Directed potential over one
variable
@ Intuition: Message T, — a:
What T, thinks x5 should be
@ Naive “definition”
e Product: All T, and edge — a
o Sum: All except x;
= Real definition recursive (G treel)

Subtle points:

@ Messages: Not conditional / marginal distributions of P.
Message 1.7,-.a(Xa) has seen T only
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Belief Propagation
What is a Message?

@ Formally: Directed potential over one
variable
@ Intuition: Message T, — a:
What T, thinks x5 should be
@ Naive “definition”
e Product: All T, and edge — a
o Sum: All except x;
= Real definition recursive (G treel)

Subtle points:

@ Messages: Not conditional / marginal distributions of P.
Message 1.7,-.a(Xa) has seen T only

@ Strictly speaking: Two types of messages: O — 0,0 — O
= Understand idea, behind formalities
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Belief Propagation

Message Passing: The Recipe

Message u71_,a(Xa) to @
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Belief Propagation
Message Passing: The Recipe

Message u71_,a(Xa) to @

@ Expand factor: (Ty, by),
(T21 b2)

—o(a)
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Belief Propagation
Message Passing: The Recipe

Message u71_,a(Xa) to @

@ Expand factor: (T, by),
(T21 b2)
@ Product: Gather potentials
) ¢j(Xa7Xb17Xb2)
@ All u7—p, (Xp, ), €XCept
by « ij
© [i7-5p,(Xp,) dito

P (Xabyb, ),

/1"?1 —by (‘Tbl )
K21 —bo (Ibz )—>
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Belief Propagation
Message Passing: The Recipe

Message u71_,a(Xa) to @

@ Expand factor: (T, by),
(T21 b2)

@ Product: Gather potentials
) ¢j(Xa7Xb17Xb2)
@ All u7—p, (Xp, ), €XCept

by « ij

© [i7-5p,(Xp,) dito

© Sum: Over xp,, Xp,

P (Xabyb, ),

/1"?1 —by (‘Tbl )
K21 —bo (Ibz )—>

nT—a(Xa) o Y Pi(Xabyb,) ( 11 th(XbJ) ( 11 “hbz(xbz))

Xby +Xby T:Ti\by T:To\bs
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Belief Propagation

Message Passing: The Idea

| can never remember these message passing equations.
What | remember:

@ Messages are partial information, given part of graph
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Belief Propagation

Message Passing: The Idea

| can never remember these message passing equations.
What | remember:
@ Messages are partial information, given part of graph
@ Message passing is information propagation
e Product: Predict
e Sum: Marginalize (cover your tracks)

Directed like filtering
= We'll see cases where [[isnot [[,and > is not )
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Belief Propagation

Message Passing: The Idea

| can never remember these message passing equations.
What | remember:
@ Messages are partial information, given part of graph
@ Message passing is information propagation

e Product: Predict
e Sum: Marginalize (cover your tracks)

Directed like filtering
= We'll see cases where [[isnot [[,and > is not )

@ Marginal distributions (our goal!) are obtained by combining
messages <« combining information from all parts
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Belief Propagation

Message Passing: The Idea

| can never remember these message passing equations.
What | remember:
@ Messages are partial information, given part of graph
@ Message passing is information propagation

e Product: Predict
e Sum: Marginalize (cover your tracks)

Directed like filtering
= We'll see cases where [[isnot [[,and > is not )

@ Marginal distributions (our goal!) are obtained by combining
messages <« combining information from all parts

@ MP works on trees, because information cannot go around in
cycles

(EPFL) Graphical Models 30/9/2011
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Belief Propagation

Belief Propagation: More than Node Elimination

@ Marginalization by message passing:
P(xa) = > P(x) o ®a(xa) [] #r—a(xa)
X\ Xa JENa

N3 : Factor nodes neighbouring a « factors ®;(xa, .. .)
®,: Canbe =1
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Belief Propagation

Belief Propagation: More than Node Elimination

@ Marginalization by message passing:
P(xa) = > P(x) o ®a(xa) [] #r—a(xa)
X\ Xa JENa
N3 : Factor nodes neighbouring a « factors ®;(xa, .. .)
®,: Canbe =1
@ All marginals P(x1), P(x2), ... ? Do this ntimes. Right?

= NO! Do this twice only!
= If you understand that, you’ve understood belief propagation
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Belief Propagation

Belief Propagation: More than Node Elimination

° Marginalization by message passing'

Z P(x) o< ®4(xa) H ,UT,-—>a(Xa)
X\ Xa JENa
N3 : Factor nodes neighbouring a « factors ®;(xa, .. .)
®,: Canbe =1
@ All marginals P(x1), P(x2), ... ? Do this ntimes. Right?
= NO! Do this twice only!
If you understand that, you’ve understood belief propagation

|u

Belief Propagation on Trees
@ Message uniquely defined, independent of use, order of
computation
@ Message can be computed once all inputs received. Once
computed, it does not change anymore
@ Compute all messages (2 per edge) = All marginals, O(1) each
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Belief Propagation
Implementation of Belief Propagation

Belief Propagation (Sum-Product) on Trees

@ Designate node (any will do!) as root
@ Inward pass: Compute messages leaves — root
© Outward pass: Compute messages root — leaves
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Belief Propagation

Implementation of Belief Propagation

Belief Propagation (Sum-Product) on Trees
@ Designate node (any will do!) as root
@ Inward pass: Compute messages leaves — root
© Outward pass: Compute messages root — leaves

Messages can be normalized at will:

proalXa) =Y ®i(xg) [] Crg_p, (Xb,)- -

Xc.
Cj\a
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Belief Propagation

Implementation of Belief Propagation

Belief Propagation (Sum-Product) on Trees
@ Designate node (any will do!) as root
@ Inward pass: Compute messages leaves — root
© Outward pass: Compute messages root — leaves

Messages can be normalized at will:

BT—a(Xa) = Z

Xc\

(EPFL) Graphical Models
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Belief Propagation

Implementation of Belief Propagation

Belief Propagation (Sum-Product) on Trees

@ Designate node (any will do!) as root
@ Inward pass: Compute messages leaves — root
© Outward pass: Compute messages root — leaves

Avoiding underflow / overflow (yes, it does matter):
@ Renormalize each message to sum to 1
@ Better: Work in log domain (log-messages, log-potentials):

II - +
> — logsumexp [careful with zeros!]
i — K gvi-M — .
logsumexp(v) := log Z e’ = M+ log Zi:1 "M, M=maxy,

numerically stable
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Searching for the Mode: Max-Product

Decoding:
X, € argmax P(x)
X

max, [[: Same decomposition as >, [[.
Better: max, > in log domain
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Searching for the Mode: Max-Product

Decoding:
X, € argmax P(x)
X

max, [[: Same decomposition as >, [[.
Better: max, > in log domain
@ Max-messages:

pr-alia) = rax (log &(xg) + 3, irol))

Xc.
C/\a
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Searching for the Mode: Max-Product

Decoding:
X, € argmax P(x)
X

max, [[: Same decomposition as >, [[.
Better: max, > in log domain

@ Max-messages:

pr-alia) = rax (log &(xg) + 3, irol))

Xc.
C/\a

@ Back-pointer tables:

07-a(Xa) € argmax ('09 ®j(xg;) + Zbec_\aMTb—m(Xb)>
/)

Xc.
Cj\a
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Belief Propagation
Wrap-Up

@ Belief propagation (sum-product) on trees:
All marginals in linear time, by local information propagation

@ Max-product, max-sum, logsumexp-sum, . ..:
What matters is the graph!
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Belief Propagation
Wrap-Up

@ Belief propagation (sum-product) on trees:
All marginals in linear time, by local information propagation

@ Max-product, max-sum, logsumexp-sum, ...:
What matters is the graph!
@ What about general graphs?
o Decomposable graphs. Treewidth of a graph
e Junction tree algorithm
Interested?
o PMR Edinburgh slides:

http://www.inf.ed.ac.uk/teaching/courses/pmr/slides/jta-2x2.pdf

o Lauritzen, S; Spiegelhalter, D. Local Computations with
Probabilities on Graphical Structures and their Application to Expert
Systems. JRSS-B, 50: 157-224 (1988)
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Belief Propagation
Wrap-Up

@ Belief propagation (sum-product) on trees:
All marginals in linear time, by local information propagation

@ Max-product, max-sum, logsumexp-sum, . ..:
What matters is the graph!
@ What about general graphs?
o Decomposable graphs. Treewidth of a graph
e Junction tree algorithm
Interested?
o PMR Edinburgh slides:
http://www.inf.ed.ac.uk/teaching/courses/pmr/slides/jta-2x2.pdf
o Lauritzen, S; Spiegelhalter, D. Local Computations with
Probabilities on Graphical Structures and their Application to Expert
Systems. JRSS-B, 50: 157-224 (1988)
@ Beware (not surprising): Inference on general graphs is NP hard.
In general, approximations are a must
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