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0 Why Gaussians?

e Linear Transformations. Marginalization

e Natural and Moment Parameterization

e Schur Complement. Useful Identities from Conditioning

e Products. Tower Formulae
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Why Gaussians?

Why Gaussians?

Gaussian (aka. normal) distribution N(x|u, X)

N(x|p. B) = [272 12 exp (—;(x )T (x u))

@ Marginalization, conditioning, linear transformation, posterior:
All just linear algebra
@ Incredible closedness properties:
o Linear transformations
o Conditioning
e Marginalization
Belief propagation needs such closedness
@ Why all that?
e Gaussians are limit distributions (central limit theorems)
e Gaussians are maximum entropy distributions:
No structure beyond mean, covariance
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Why Gaussians?
Gaussians are Limit Distributions

Central Limit Theorem
x1 ~ P(x1), mean p, covariance X.
Imagine independent, indentically distributed (i.i.d.) replicas x», x3, ...

n
x("M .= /n (n_1 > xi— u) = P(x™) 3 N0, x)
i=1

~~

—0 a.s.

(EPFL) Graphical Models 7/10/2011 4/20



Why Gaussians?
Gaussians are Limit Distributions

Central Limit Theorem
x1 ~ P(x1), mean u, covariance X.
Imagine independent, indentically distributed (i.i.d.) replicas x», x3, ...

n
x("M .= /n (n—1 > xi— u) = P(x™) 3 N0, x)
i=1

~~

—0 a.s.

What does that mean?

@ Averaging of i.i.d. variables: Mean, covariance retained

@ Everything else smoothed away (by symmetry)
= What remains: Gaussian
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Why Gaussians?
Gaussians are Limit Distributions

Central Limit Theorem
x1 ~ P(x1), mean u, covariance X.
Imagine independent, indentically distributed (i.i.d.) replicas x», x3, ...

n
x("M .= /n (n—1 > xi— u) = P(x™) 3 N0, x)
i=1

~
—0 a.s.

What does that mean?

@ Averaging of i.i.d. variables: Mean, covariance retained

@ Everything else smoothed away (by symmetry)
= What remains: Gaussian

For the meticulous:
If X1 has no covariance, there are other stable distributions
(EPFL)
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Why Gaussians?
Gaussians are Limit Distributions

Central Limit Theorem
x1 ~ P(x1), mean u, covariance X.
Imagine independent, indentically distributed (i.i.d.) replicas x», x3, ...

n
x("M .= /n (n—1 > xi— u) = P(x™) 3 N0, x)
i=1

~~

—0 a.s.

Implications for Statistics:

@ Most models with finite number of parameters:
Maximum likelihood estimator asymptotically normal
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Why Gaussians?
Gaussians are Limit Distributions

Central Limit Theorem
x1 ~ P(x1), mean p, covariance X.
Imagine independent, indentically distributed (i.i.d.) replicas x», x3, ...

n
x("M .= /n (n_1 > xi— u) = P(x™) 3 N0, x)
i=1

~~

—0 a.s.

Implications for closedness:

@ Linear transformations, marginalization:
Limit distributions have to be closed
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Why Gaussians?

Gaussians are Maximum Entropy Distributions

How much uncertainty / little structure is in a distribution?
Differential Entropy

HIP] = ¢l log P(x)] = [ P(x)(~ log P(x)) dx

(EPFL) Graphical Models 7/10/2011 5/20



Why Gaussians?

Gaussians are Maximum Entropy Distributions

How much uncertainty / little structure is in a distribution?
Differential Entropy

HIP] = ¢l log P(x)] = [ P(x)(~ log P(x)) dx

Information theory (Shannon)

Immensely useful, basis of probabilistic machine learning.
Part Il: Scratch surface. But dig for yourself:

@ Cover, Thomas: Elements of Information Theory (1991)
One of my top five all times favourite textbooks. Read it!
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Why Gaussians?

Gaussians are Maximum Entropy Distributions

How much uncertainty / little structure is in a distribution?
Differential Entropy

HIP] = ¢l log P(x)] = [ P(x)(~ log P(x)) dx

@ Given mean u, covariance X3: Maximum entropy distribution?

N(. 2) = argmaxp {H[P] | Ep[x] = . Covplx] = 5}
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Why Gaussians?

Gaussians are Maximum Entropy Distributions

How much uncertainty / little structure is in a distribution?
Differential Entropy

HIP] = ¢l log P(x)] = [ P(x)(~ log P(x)) dx

@ Given mean u, covariance X3: Maximum entropy distribution?
N(p. %) = argmaxp {H[P] | Ep[X] = 1, Covp[x] = =}

@ What does that mean?
e Gaussian “nothing but mean and covariance”.
Any other structure? It's not a Gaussian
o Would expect nice closedness properties for MaxEnt distributions

e Upper bound on entropy:

H[P] < H[N(0,Covp[x])] = %Iog |27 e Covp[x]|
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Why Gaussians?
Too Simple for Real World?

| want to model / learn structure.
Why should | care for an unstructured distribution?
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Why Gaussians?
Too Simple for Real World?

| want to model / learn structure.
Why should | care for an unstructured distribution?

Gaussians are elementary building blocks

@ Gaussian + Structure (latent variables) — Wealth of models
= We’ll see a few in what follows

@ Many distributions are Gaussian scale mixtures [part II]

@ Gaussian (implicitly) behind much of classical estimation
methodology

@ Carrier distribution for approximate inference [part |l]
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Why Gaussians?
Too Simple for Real World?

| want to model / learn structure.
Why should | care for an unstructured distribution?

Gaussians are elementary building blocks

@ Gaussian + Structure (latent variables) — Wealth of models
= We’ll see a few in what follows

@ Many distributions are Gaussian scale mixtures [part II]

@ Gaussian (implicitly) behind much of classical estimation
methodology

@ Carrier distribution for approximate inference [part |l]

Maximum entropy for general variables / moments?
= Exponential families
Not in this lecture, but dig for yourself:

@ M. Seeger: PhD thesis, Appendix A.4.1

http://people.mmci.uni-saarland.de/~mseeger/papers/thesis-appa.pdf
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Linear Transformations. Marginalization

Gaussian Contours: Ellipsoids
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Linear Transformations. Marginalization

Linear Transformations
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Linear Transformations. Marginalization

Linear Transformations

@ For any random variable x with covariance [expectation linear!]

E[Ax] = AE|x]
Cov[Ax] = E[Axx"AT] — E[Ax]E[Ax]
—A (E[xxT] — E[x]E[x] T) AT = ACov[x]AT
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Linear Transformations. Marginalization

Linear Transformations

@ For any random variable x with covariance [expectation linear!]

E[Ax] = AE|x]
Cov[Ax] = E[Axx"AT] — E[Ax]E[Ax]
—A (E[xxT] — E[x]E[x] T) AT = ACov[x]AT

@ Gaussian is just mean and covariance

x~NuX) = y=Ax+b~ NAp+b ATA)
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Linear Transformations. Marginalization

Linear Transformations

@ For any random variable x with covariance [expectation linear!]

E[Ax] = AE|x]
Cov[Ax] = E[Axx"AT] — E[Ax]E[Ax]
—A <E[xxT] — E[x]E[x] T) AT = ACov[x]AT

@ Gaussian is just mean and covariance

x~NuX) = y=Ax+b~ NAp+b ATA)

[Missing here: Formal proof that P(y) is Gaussian. = Ask me offline]
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Linear Transformations. Marginalization

Related Points

@ Checking the normalization factor:
x ~ N(0,%). = = UAU' eigendecomposition
(U orthonormal (like rotation), A diagonal).
y = UTx (rotate eigenvectors — axes) = dy = dx

1y Ts—1 1yTyTs—1 12/,
/ezxZ xdx:/eszE Uydy:Hi/ez}’,-/)udy,.

= Hi(27r>\,-)1/2 = [27X|"/2 [determinant = ] ] eigenvalues]

Recal: U's-1U = A1,
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Linear Transformations. Marginalization

Related Points

@ Checking the normalization factor:
x ~ N(0,%). = = UAU' eigendecomposition
(U orthonormal (like rotation), A diagonal).
y = UTx (rotate eigenvectors — axes) = dy = dx

/e;XTZ1x ax = /e;yTUTZ1Uy dy — H,/e;y’z/)\i dy,
]
= Hi(27r>\,-)1/2 = [27X|"/2 [determinant = ] ] eigenvalues]

Recall: U'S"'U = A,

@ For Gaussian:
3. diagonal = P(x) =11; P(x})
Uncorrelated components =- Independent components
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Linear Transformations. Marginalization

Marginal Distribution

@ X eR", x ~N(p,X).
e {1,...,”}. X = (X,'),'e/.
Prize question: What is P(x,)?
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Linear Transformations. Marginalization

Marginal Distribution

@ X eR", x ~N(p,X).
e {1,...,”}. X = (X,'),'e/.
Prize question: What is P(x,)?
@ Pick selection matrix I;. = x; =1,.x

P(x)) = NI, 1;.21.)) = N(py, =)
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Linear Transformations. Marginalization

Marginal Distribution

@ X eR", x ~N(p,X).
e {1,...,”}. X = (X,'),'e/.
Prize question: What is P(x,)?

@ Pick selection matrix I;. = x; =1,.x
P(x;) = N(lj.p, 1121 1) = N(pp, X))

@ Marginalization (linear transformations):
Very simple if you have u, ¥
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Linear Transformations. Marginalization

Conditioning would be easy if . ..

@ xcR", x ~N(pu,X).
Ic{1,....,n}. R={1,....,n}\ I
Next prize question: What is P(x,|xg)?
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Linear Transformations. Marginalization

Conditioning would be easy if . ..

@ xcR", x ~N(pu,X).
Ic{1,....,n}. R={1,....,n}\ I
Next prize question: What is P(x,|xg)?

@ Not so simple. But it would be if ...
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Linear Transformations. Marginalization

Conditioning would be easy if . ..

@ x cR", x ~ N(pu,X).

Ic{1,....,n}. R={1,....n}\ L

Next prize question: What is P(x|xg)?
@ Not so simple. But it would be if . ..

P(x/|xg) o e_%((XI—NI)TAI(XI—ILI)+2(XH—NR)TAIT:R(XI—ILI))’

A=x"1
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Natural and Moment Parameterization

Natural and Moment Parameterization

Two ways of parameterizing a Gaussian. You know:

Gaussian in moment (aka. mean) parameters p, ¥

x @ 3(x—1)T= (x—p)

x @ 3(x—1)T= (x—p)
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Natural and Moment Parameterization

Natural and Moment Parameterization

Two ways of parameterizing a Gaussian. You know:

Gaussian in moment (aka. mean) parameters p, ¥

x @ 3(x—1)T= (x—p)

~ e*%(X*M)TA(X*u)’ A—>1
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Natural and Moment Parameterization

Natural and Moment Parameterization

Two ways of parameterizing a Gaussian. You know:

Gaussian in moment (aka. mean) parameters p, ¥

x @ 3(x—1)T= (x—p)

x ef%xTAer(Ay,)Tx, A— >

(EPFL) Graphical Models 7/10/2011 13/20



Natural and Moment Parameterization

Natural and Moment Parameterization
Two ways of parameterizing a Gaussian. You know:

Gaussian in moment (aka. mean) parameters p, ¥

Ty T T
x e 2% Ax+r x, A= 2717 r— 271114
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Natural and Moment Parameterization

Natural and Moment Parameterization

Two ways of parameterizing a Gaussian. You know:

Gaussian in moment (aka. mean) parameters p, ¥

x @ 3(x—1)T= (x—p)

Now you know:

Gaussian in natural (aka. canonical) parameters r, A

15T T _ _
Oce—zx AX+r x’ A=Y 1 r=Y 1
) 12
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Natural and Moment Parameterization

Natural and Moment Parameterization

Gaussian in moment (aka. mean) parameters p,

x e 2(x—p)T=7 (x—p)

Gaussian in natural (aka. canonical) parameters r, A

_1xT T _ _
x e 2xAx+rx7 A=3'r=x 1#

@ Why two parameterizations for the same thing?
@ Some things simple in moment parameters:
Linear transforms, marginalization [everything “sum”]
@ Some things simple in natural parameters:
Conditioning, density product [everything “product”]
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Natural and Moment Parameterization

Natural and Moment Parameterization

Gaussian in moment (aka. mean) parameters p,

x e 2(x—p)T=7 (x—p)

Gaussian in natural (aka. canonical) parameters r, A

_1xT T _ _
x e 2xAx+rx7 A=3'r=x 1#

@ Why two parameterizations for the same thing?

@ Some things simple in moment parameters:
Linear transforms, marginalization [everything “sum”]
@ Some things simple in natural parameters:
Conditioning, density product [everything “product”]

@ For belief propagation (sum-product): Conversions all the time

@ Conversion «» Matrix inversion
= Makes Gaussian propagation numerically difficult
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Natural and Moment Parameterization

Conditional Distribution

@ P(x/|xg): What does it mean? Factorization
@ Sample xg ~ N(ug, XR)
@ Sample x; from Gaussian depending on xg
@ E[x] = pn, Cov[x] = X afterwards?
= Rule (2) must be P(x/|xR)!

For meticulous: We already know that P(x;|xg) is Gaussian (by inspection)
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Natural and Moment Parameterization

Conditional Distribution

@ P(x/|xg): What does it mean? Factorization
o Sample Xp ~ N(;l,,q, ER)
@ Sample x; from Gaussian depending on xg
@ E[x] = pn, Cov[x] = X afterwards?
= Rule (2) must be P(x/|xR)!
For meticulous: We already know that P(x;|xg) is Gaussian (by inspection)
@ Ansatz: y = x — p.
y,=u-+Byg, u~ N(,C).
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Natural and Moment Parameterization

Conditional Distribution

@ P(x|xg): What does it mean? Factorization
0 Sample Xp ~ N(;l,,q, EF;)
@ Sample x; from Gaussian depending on xg
@ E[x] = p, Cov[x] = X afterwards?
= Rule (2) must be P(x/|xg)!
For meticulous: We already know that P(x,|xg) is Gaussian (by inspection)
@ Ansatz: y = x — p.
y,=u-+Byg, u~ N(,C).
Schur complement: C = E/EH =3 — 2/7/?2512[?7/

E[x/|Xg] = p/ + 21 pER" (XA — 1R);
Cov[X/|Xg] = £/Xg =X/ — %555 Sg,

@ E[x/|xpg] linear in xg. Cov[x,|xg] independent of xg
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Schur Complement. Useful Identities from Conditioning

The Schur Complement

P(x;,xgr) = P(x/|xg) x P(xg)
—_—— —— ——

Cov[]=% Cov[[|=%/3gr Cov[]=3p
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Schur Complement. Useful Identities from Conditioning

The Schur Complement

P(x;,xgr) = P(x/|xg) x P(xg)
—_—— —— ——

Cov[]=% Cov[[|=%/3gr Cov[]=3p

@ Holds more generally, whenever 3, Xz nonsingular.
Not just for symmetric X

@ Determinant identity

|3| = [X/ZR| - 2R
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Schur Complement. Useful Identities from Conditioning

The Schur Complement

P(x;,xgr) = P(x/|xg) x P(xg)
—_—— —_——— ——

Cov[|=%2 Cov[[|=X/2g Cov[]|=%g

@ Holds more generally, whenever 3, X g nonsingular.
Not just for symmetric X

@ Determinant identity
|X| = |2/XZg- |Z4|
Useful special case:

I+ UV|=l1+ VU
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Schur Complement. Useful Identities from Conditioning

Partitioned Inverse Equations

si_| A Ar]_[ (E/Za) -(2/=r)'B
Ag, Ag -B'(z/2g)" =3'+B'(Z/ZR)'B
B:E/’REE‘I

@ Very useful if |/], |R| different
= Do inverses in smaller of them only!
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Schur Complement. Useful Identities from Conditioning

Partitioned Inverse Equations

s _ [ A Ar } _ [ (2/3p)! —(=/2g)'B
-B'(z/zgp)" =5'+B'(Z/ZR)'B

@ Very useful if |/|, |R| different
= Do inverses in smaller of them only!

@ Could have conditioned on x; just as well:
Woodbury formula: (£/%))~' = =5' + B'(2/Zg)"'B

(E+FG 'HY'=E'"—-E'"F(G+HE 'F) '"HE™'

= Not least formula to learn by heart
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Products. Tower Formulae
Product of Gaussians

N(X’M1,21)N(X|[j,2’ 22) = N(X|Ha E)C

@ Product: Combination of messages / information
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Products. Tower Formulae
Product of Gaussians

N(X’M1,21)N(X|[j,2’ 22) = N(X|Ha E)C

@ Product: Combination of messages / information

@ Easy in natural parameters:
er{xf%xTAm % er;—X7%XTA2X — el +r2)Tx—3xT(A1+A2)x

= Sum of natural parameters

)4:)4-|—i-1427 r=rqy+1ro
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Products. Tower Formulae
Product of Gaussians

N(X’M1,21)N(X|[j,2’ 22) = N(X|Ha E)C

@ Product: Combination of messages / information
@ Easy in natural parameters:

T XTA1

el X— rIx—IxTAxx _ elr +r2)Tx—3xT(A1+A2)x

X e

= Sum of natural parameters

2 =274+, S =37 + 3 e
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Products. Tower Formulae
Product of Gaussians

N(X’M1,21)N(X|[j,2’ 22) = N(X|Ha E)C

@ Product: Combination of messages / information
@ Easy in natural parameters:

T XTA1

el X— rIx—IxTAxx _ elr +r2)Tx—3xT(A1+A2)x

x e
= Sum of natural parameters

=7+, p=2 w2 )

“weighted avg.”
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Products. Tower Formulae
Product of Gaussians

N(X’M1,21)N(X|[j,2’ 22) = N(X|Ha E)C

@ Product: Combination of messages / information
@ Easy in natural parameters:

er{xf%xTAm % er;—X7%XTA2X — el +r2)Tx—3xT(A1+A2)x

= Sum of natural parameters

=7+, p=2 w2 )

“weighted avg.”

@ And C? Often not needed. If you need it:
Sampling argument (saves pages of algebra)
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Products. Tower Formulae
Linear-Gaussian Model

u ~ N(po, Xo) Prior
Y= Xu-+e, e~ NO ¥) Likelihood

@ Joint / marginal distribution: Tower formulae

Ely] = E[E[y|u]], Cov[y] = Cov[E[y|u]] + E[Cov]y|u]]
Cov[u, y] = Cov[u,E[y|u]] + E[Cov|[u, y|u]]
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Products. Tower Formulae
Linear-Gaussian Model

u ~ N(po, Xo) Prior
Y= Xu-+e, e~ NO ¥) Likelihood

@ Joint / marginal distribution: Tower formulae

Ely] = E[E[y|u]], Cov[y] = Cov[E[y|u]] + E[Cov]y|u]]
Cov[u, y] = Cov[u,E[y|u]] + E[Cov|[u, y|u]]

@ Posterior: Product Prior x Likelihood

exp(—%[(y —Xu)" ¥y — Xu)+ (U — po) Ey" (U - Ho)])
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Products. Tower Formulae
Linear-Gaussian Model

u ~ N(po, Xo) Prior
Y= Xu-+e, e~ NO ¥) Likelihood

@ Joint / marginal distribution: Tower formulae

Ely] = E[E[y|u]], Cov[y] = Cov[E[y|u]] + E[Cov]y|u]]
Cov[u, y] = Cov[u,E[y|u]] + E[Cov|[u, y|u]]

@ Posterior: Product Prior x Likelihood

1
exp(—E[uT XTe "X+ Yu—2u" (XTO 'y + 27 o) + .. .])

C()v[;lTy]*1 COV[U|YF1E[U|}’]

Normal equations:
Eluly] = (X7 'X +35") (X7 1y + 27 o)
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Products. Tower Formulae
Linear-Gaussian Model

u ~ N(po, Xo) Prior
Y= Xu-+e, e~ NO ¥) Likelihood

@ Posterior: Product Prior x Likelihood

’
exp(—E[uT XTe X+, Yu—2u" (X" Ty + 2, po) + .. .])

Cov[uly]~! Cov[u|y]=—"E[uly]

What if y less coefficients than u?
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Products. Tower Formulae
Linear-Gaussian Model

u ~ N(po, Xo) Prior
Y= Xu-+e, e~ NO ¥) Likelihood

@ Posterior: Product Prior x Likelihood

’
exp(—E[uT XTe X+, Yu—2u" (X" Ty + 2, po) + .. .])

Cov[uly]~! Cov[u|y]=—"E[uly]

What if y less coefficients than u?

Cov[uly] = Cov[(u y)]/Covly] = o — X" (¥ + XZo X)X,
E[u]y] = E[u] + Cov[u, y]Cov]y]~'(y — E[y])
= pto + S0 X" (¥ + XZoXT) 7 (y — Xpo)
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Products. Tower Formulae
Wrap-Up

Practice those Gaussian calculations
@ They come back at you all the time
@ They look messy only as long as you don’t understand them
@ Short derivations take much less time (waste it with funnier things)
@ Short derivations contain fewer mistakes
@ Short derivations are just so much cooler!

(EPFL) Graphical Models 7/10/2011 20/20



	Why Gaussians?
	Linear Transformations. Marginalization
	Natural and Moment Parameterization
	Schur Complement. Useful Identities from Conditioning
	Products. Tower Formulae

