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Why Gaussians?

Why Gaussians?

Gaussian (aka. normal) distribution N(x |µ,⌃)

N(x |µ,⌃) = |2⇡⌃|�1/2 exp
✓
�1

2
(x � µ)T⌃�1(x � µ)

◆

Marginalization, conditioning, linear transformation, posterior:
All just linear algebra
Incredible closedness properties:

Linear transformations
Conditioning
Marginalization

Belief propagation needs such closedness
Why all that?

Gaussians are limit distributions (central limit theorems)
Gaussians are maximum entropy distributions:
No structure beyond mean, covariance
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Why Gaussians?

Gaussians are Limit Distributions

Central Limit Theorem
x1 ⇠ P(x1), mean µ, covariance ⌃.
Imagine independent, indentically distributed (i.i.d.) replicas x2, x3, . . .

x̄ (n) :=
p

n

 
n

�1
nX

i=1

x
i

� µ

!

| {z }
!0 a.s.

) P(x̄ (n))
D! N(0,⌃)
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Why Gaussians?

Gaussians are Limit Distributions

Central Limit Theorem
x1 ⇠ P(x1), mean µ, covariance ⌃.
Imagine independent, indentically distributed (i.i.d.) replicas x2, x3, . . .
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p
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| {z }
!0 a.s.

) P(x̄ (n))
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What does that mean?
Averaging of i.i.d. variables: Mean, covariance retained
Everything else smoothed away (by symmetry)
) What remains: Gaussian
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Why Gaussians?

Gaussians are Limit Distributions

Central Limit Theorem
x1 ⇠ P(x1), mean µ, covariance ⌃.
Imagine independent, indentically distributed (i.i.d.) replicas x2, x3, . . .

x̄ (n) :=
p

n

 
n

�1
nX

i=1

x
i

� µ

!

| {z }
!0 a.s.

) P(x̄ (n))
D! N(0,⌃)

What does that mean?
Averaging of i.i.d. variables: Mean, covariance retained
Everything else smoothed away (by symmetry)
) What remains: Gaussian

For the meticulous:
If x1 has no covariance, there are other stable distributions
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Why Gaussians?

Gaussians are Limit Distributions

Central Limit Theorem
x1 ⇠ P(x1), mean µ, covariance ⌃.
Imagine independent, indentically distributed (i.i.d.) replicas x2, x3, . . .

x̄ (n) :=
p

n

 
n

�1
nX

i=1

x
i

� µ

!

| {z }
!0 a.s.

) P(x̄ (n))
D! N(0,⌃)

Implications for Statistics:
Most models with finite number of parameters:
Maximum likelihood estimator asymptotically normal
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Why Gaussians?

Gaussians are Limit Distributions

Central Limit Theorem
x1 ⇠ P(x1), mean µ, covariance ⌃.
Imagine independent, indentically distributed (i.i.d.) replicas x2, x3, . . .

x̄ (n) :=
p

n

 
n

�1
nX

i=1

x
i

� µ

!

| {z }
!0 a.s.

) P(x̄ (n))
D! N(0,⌃)

Implications for closedness:
Linear transformations, marginalization:
Limit distributions have to be closed
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Why Gaussians?

Gaussians are Maximum Entropy Distributions
How much uncertainty / little structure is in a distribution?
Differential Entropy

H[P] = E
P

[� log P(x )] =
Z

P(x )(� log P(x )) dx
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Why Gaussians?

Gaussians are Maximum Entropy Distributions
How much uncertainty / little structure is in a distribution?
Differential Entropy

H[P] = E
P

[� log P(x )] =
Z

P(x )(� log P(x )) dx

Information theory (Shannon)
Immensely useful, basis of probabilistic machine learning.
Part II: Scratch surface. But dig for yourself:

Cover, Thomas: Elements of Information Theory (1991)
One of my top five all times favourite textbooks. Read it!
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Why Gaussians?

Gaussians are Maximum Entropy Distributions
How much uncertainty / little structure is in a distribution?
Differential Entropy

H[P] = E
P

[� log P(x )] =
Z

P(x )(� log P(x )) dx

Given mean µ, covariance ⌃: Maximum entropy distribution?

N(µ,⌃) = argmax
P

{H[P] | E
P

[x ] = µ, Cov
P

[x ] = ⌃}

What does that mean?

Gaussian “nothing but mean and covariance”.
Any other structure? It’s not a Gaussian
Would expect nice closedness properties for MaxEnt distributions
Upper bound on entropy:

H[P]  H [N (0,Cov
P

[x ])] =
1
2

log |2⇡ e Cov
P

[x ]|
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Why Gaussians?

Too Simple for Real World?
I want to model / learn structure.
Why should I care for an unstructured distribution?
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Why Gaussians?

Too Simple for Real World?
I want to model / learn structure.
Why should I care for an unstructured distribution?

Gaussians are elementary building blocks
Gaussian + Structure (latent variables) ! Wealth of models
) We’ll see a few in what follows
Many distributions are Gaussian scale mixtures [part II]
Gaussian (implicitly) behind much of classical estimation
methodology
Carrier distribution for approximate inference [part II]
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Why Gaussians?

Too Simple for Real World?
I want to model / learn structure.
Why should I care for an unstructured distribution?

Gaussians are elementary building blocks
Gaussian + Structure (latent variables) ! Wealth of models
) We’ll see a few in what follows
Many distributions are Gaussian scale mixtures [part II]
Gaussian (implicitly) behind much of classical estimation
methodology
Carrier distribution for approximate inference [part II]

Maximum entropy for general variables / moments?
) Exponential families
Not in this lecture, but dig for yourself:

M. Seeger: PhD thesis, Appendix A.4.1
http://people.mmci.uni-saarland.de/⇠mseeger/papers/thesis-appa.pdf
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Linear Transformations. Marginalization

Gaussian Contours: Ellipsoids
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Linear Transformations. Marginalization

Linear Transformations

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

(EPFL) Graphical Models 7/10/2011 8 / 20



Linear Transformations. Marginalization

Linear Transformations

For any random variable x with covariance [expectation linear!]

E[Ax ] = AE[x ]

Cov[Ax ] = E[AxxT AT ]� E[Ax ]E[Ax ]T

= A
⇣

E[xxT ]� E[x ]E[x ]T
⌘

AT = ACov[x ]AT

Gaussian is just mean and covariance

x ⇠ N(µ,⌃) ) y = Ax + b ⇠ N(Aµ + b,A⌃AT )
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Linear Transformations. Marginalization

Linear Transformations

For any random variable x with covariance [expectation linear!]

E[Ax ] = AE[x ]

Cov[Ax ] = E[AxxT AT ]� E[Ax ]E[Ax ]T

= A
⇣

E[xxT ]� E[x ]E[x ]T
⌘

AT = ACov[x ]AT

Gaussian is just mean and covariance

x ⇠ N(µ,⌃) ) y = Ax + b ⇠ N(Aµ + b,A⌃AT )

[Missing here: Formal proof that P(y ) is Gaussian. ) Ask me offline]
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Linear Transformations. Marginalization

Related Points

Checking the normalization factor:
x ⇠ N(0,⌃). ⌃ = U⇤UT eigendecomposition
(U orthonormal (like rotation), ⇤ diagonal).
y = UT x (rotate eigenvectors ! axes) ) dy = dx

Z
e

� 1
2 xT⌃�1x

dx =

Z
e

� 1
2 yT UT⌃�1U y

dy =
Y

i

Z
e

� 1
2 y

2
i

/�
i

dy

i

=
Y

i

(2⇡�
i

)1/2 = |2⇡⌃|1/2 [determinant =
Y

eigenvalues]

Recall: UT⌃�1U = ⇤�1.

For Gaussian:
⌃ diagonal ) P(x ) =

Q
i

P(x
i

)
Uncorrelated components ) Independent components
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Linear Transformations. Marginalization

Marginal Distribution

x 2 Rn, x ⇠ N(µ,⌃).
I ⇢ {1, . . . , n}. x

I

:= (x
i

)
i2I

.
Prize question: What is P(x

I

)?

Pick selection matrix I
I,· ) x

I

= I
I,·x

P(x
I

) = N(I
I,·µ, I

I,·⌃I ·,I) = N(µ
I

,⌃
I

)

Marginalization (linear transformations):
Very simple if you have µ, ⌃
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Linear Transformations. Marginalization

Conditioning would be easy if . . .

x 2 Rn, x ⇠ N(µ,⌃).
I ⇢ {1, . . . , n}. R = {1, . . . , n} \ I.
Next prize question: What is P(x

I

|x
R

)?

Not so simple. But it would be if . . .
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Linear Transformations. Marginalization

Conditioning would be easy if . . .

x 2 Rn, x ⇠ N(µ,⌃).
I ⇢ {1, . . . , n}. R = {1, . . . , n} \ I.
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Linear Transformations. Marginalization

Conditioning would be easy if . . .

x 2 Rn, x ⇠ N(µ,⌃).
I ⇢ {1, . . . , n}. R = {1, . . . , n} \ I.
Next prize question: What is P(x

I

|x
R

)?
Not so simple. But it would be if . . .

P(x
I

|x
R

) / e

� 1
2 ((x I

�µ
I

)T A
I

(x
I

�µ
I

)+2(x
R

�µ
R

)T AT

I,R(x I

�µ
I

)),

A = ⌃�1
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Natural and Moment Parameterization

Natural and Moment Parameterization
Two ways of parameterizing a Gaussian. You know:

Gaussian in moment (aka. mean) parameters µ, ⌃

/ e

� 1
2 (x�µ)T⌃�1(x�µ)

/ e

� 1
2 (x�µ)T⌃�1(x�µ)

Why two parameterizations for the same thing?

Some things simple in moment parameters:
Linear transforms, marginalization [everything “sum”]
Some things simple in natural parameters:
Conditioning, density product [everything “product”]

For belief propagation (sum-product): Conversions all the time
Conversion $ Matrix inversion
) Makes Gaussian propagation numerically difficult
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Gaussian in moment (aka. mean) parameters µ, ⌃

/ e

� 1
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Why two parameterizations for the same thing?
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Conditioning, density product [everything “product”]
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Natural and Moment Parameterization

Natural and Moment Parameterization
Two ways of parameterizing a Gaussian. You know:

Gaussian in moment (aka. mean) parameters µ, ⌃

/ e

� 1
2 (x�µ)T⌃�1(x�µ)

Now you know:

Gaussian in natural (aka. canonical) parameters r , A

/ e

� 1
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Why two parameterizations for the same thing?
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Linear transforms, marginalization [everything “sum”]
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Conditioning, density product [everything “product”]
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) Makes Gaussian propagation numerically difficult

(EPFL) Graphical Models 7/10/2011 13 / 20



Natural and Moment Parameterization

Natural and Moment Parameterization

Gaussian in moment (aka. mean) parameters µ, ⌃
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Natural and Moment Parameterization

Conditional Distribution

P(x
I

|x
R

): What does it mean? Factorization
1 Sample x

R

⇠ N(µ
R

,⌃
R

)
2 Sample x

I

from Gaussian depending on x
R

E[x ] = µ, Cov[x ] = ⌃ afterwards?
) Rule (2) must be P(x

I

|x
R

)!
For meticulous: We already know that P(x

I

|x
R

) is Gaussian (by inspection)

Ansatz: y = x � µ.
y

I

= u + By
R

, u ⇠ N(0,C).
E[x

I

|x
R

] linear in x
R

. Cov[x
I

|x
R

] independent of x
R
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Natural and Moment Parameterization

Conditional Distribution

P(x
I

|x
R

): What does it mean? Factorization
1 Sample x

R

⇠ N(µ
R

,⌃
R

)
2 Sample x

I

from Gaussian depending on x
R

E[x ] = µ, Cov[x ] = ⌃ afterwards?
) Rule (2) must be P(x

I

|x
R

)!
For meticulous: We already know that P(x

I

|x
R

) is Gaussian (by inspection)

Ansatz: y = x � µ.
y

I

= u + By
R

, u ⇠ N(0,C).
Schur complement: C = ⌃/⌃

R

:= ⌃
I

�⌃
I,R⌃

�1
R

⌃
R,I

E[x
I

|x
R

] = µ
I

+⌃
I,R⌃

�1
R

(x
R

� µ
R

),

Cov[x
I

|x
R

] = ⌃/⌃
R

= ⌃
I

�⌃
I,R⌃

�1
R

⌃
R,I

E[x
I

|x
R

] linear in x
R

. Cov[x
I

|x
R

] independent of x
R
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Schur Complement. Useful Identities from Conditioning

The Schur Complement

P(x
I

, x
R

)| {z }
Cov[·]=⌃

= P(x
I

|x
R

)| {z }
Cov[·]=⌃/⌃

R

⇥ P(x
R

)| {z }
Cov[·]=⌃

R

Holds more generally, whenever ⌃, ⌃
R

nonsingular.
Not just for symmetric ⌃
Determinant identity

|⌃| = |⌃/⌃
R

| · |⌃
R

|
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Schur Complement. Useful Identities from Conditioning

The Schur Complement

P(x
I

, x
R

)| {z }
Cov[·]=⌃

= P(x
I

|x
R

)| {z }
Cov[·]=⌃/⌃

R

⇥ P(x
R

)| {z }
Cov[·]=⌃

R

Holds more generally, whenever ⌃, ⌃
R

nonsingular.
Not just for symmetric ⌃
Determinant identity

|⌃| = |⌃/⌃
R

| · |⌃
R

|

Useful special case:

|I + UV | = |I + V U |
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Schur Complement. Useful Identities from Conditioning

Partitioned Inverse Equations

⌃�1 =


A

I

A
I,R

A
R,I A

R

�
=


(⌃/⌃

R

)�1 �(⌃/⌃
R

)�1B
�BT (⌃/⌃

R

)�1 ⌃�1
R

+ BT (⌃/⌃
R

)�1B

�

B = ⌃
I,R⌃

�1
R

Very useful if |I|, |R| different
) Do inverses in smaller of them only!

Could have conditioned on x
I

just as well:
Woodbury formula: (⌃/⌃

I

)�1 = ⌃�1
R

+ BT (⌃/⌃
R

)�1B
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Schur Complement. Useful Identities from Conditioning

Partitioned Inverse Equations

⌃�1 =


A

I

A
I,R

A
R,I A

R

�
=


(⌃/⌃

R

)�1 �(⌃/⌃
R

)�1B
�BT (⌃/⌃

R

)�1 ⌃�1
R

+ BT (⌃/⌃
R

)�1B

�

B = ⌃
I,R⌃

�1
R

Very useful if |I|, |R| different
) Do inverses in smaller of them only!
Could have conditioned on x

I

just as well:
Woodbury formula: (⌃/⌃

I

)�1 = ⌃�1
R

+ BT (⌃/⌃
R

)�1B

(E + F G�1H )�1 = E�1 � E�1F (G + HE�1F )�1HE�1

) Not least formula to learn by heart
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Products. Tower Formulae

Product of Gaussians

N(x |µ1,⌃1)N(x |µ2,⌃2) = N(x |µ,⌃)C

Product: Combination of messages / information

Easy in natural parameters:

e

rT

1 x� 1
2 xT A1x ⇥ e

rT

2 x� 1
2 xT A2x = e

(r1+r2)
T x� 1

2 xT (A1+A2)x

) Sum of natural parameters

And C? Often not needed. If you need it:
Sampling argument (saves pages of algebra)
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1 µ1 +⌃
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“weighted avg.”
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Sampling argument (saves pages of algebra)
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Products. Tower Formulae

Linear-Gaussian Model

u ⇠ N(µ0,⌃0) Prior
y = X u + ", " ⇠ N(0, ) Likelihood

1 Joint / marginal distribution: Tower formulae

E[y ] = E[E[y |u ]], Cov[y ] = Cov[E[y |u ]] + E[Cov[y |u ]]

Cov[u , y ] = Cov[u ,E[y |u ]] + E[Cov[u , y |u ]]

2 Posterior: Product Prior ⇥ Likelihood
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y = X u + ", " ⇠ N(0, ) Likelihood

1 Joint / marginal distribution: Tower formulae

E[y ] = E[E[y |u ]], Cov[y ] = Cov[E[y |u ]] + E[Cov[y |u ]]

Cov[u , y ] = Cov[u ,E[y |u ]] + E[Cov[u , y |u ]]

2 Posterior: Product Prior ⇥ Likelihood

exp
⇣
�1

2
[(y � X u)T �1(y � X u) + (u � µ0)

T⌃�1
0 (u � µ0)]

⌘
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Linear-Gaussian Model

u ⇠ N(µ0,⌃0) Prior
y = X u + ", " ⇠ N(0, ) Likelihood
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E[y ] = E[E[y |u ]], Cov[y ] = Cov[E[y |u ]] + E[Cov[y |u ]]

Cov[u , y ] = Cov[u ,E[y |u ]] + E[Cov[u , y |u ]]

2 Posterior: Product Prior ⇥ Likelihood

exp
⇣
�1

2
[uT (X T �1X +⌃�1

0 )
| {z }

Cov[u |y ]�1

u�2uT (X T �1y +⌃�1
0 µ0)| {z }

Cov[u |y ]�1E[u |y ]

+ . . . ]
⌘

Normal equations:
E[u |y ] = (X T �1X +⌃�1

0 )�1(X T �1y +⌃�1
0 µ0)
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What if y less coefficients than u?
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Linear-Gaussian Model

u ⇠ N(µ0,⌃0) Prior
y = X u + ", " ⇠ N(0, ) Likelihood

2 Posterior: Product Prior ⇥ Likelihood

exp
⇣
�1

2
[uT (X T �1X +⌃�1

0 )
| {z }

Cov[u |y ]�1

u�2uT (X T �1y +⌃�1
0 µ0)| {z }

Cov[u |y ]�1E[u |y ]

+ . . . ]
⌘

What if y less coefficients than u?

Cov[u |y ] = Cov[(u y )]/Cov[y ] = ⌃0 �⌃0X T ( + X⌃0X T )�1X⌃0,

E[u |y ] = E[u ] + Cov[u , y ]Cov[y ]�1(y � E[y ])

= µ0 +⌃0X T ( + X⌃0X T )�1(y � Xµ0)
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Products. Tower Formulae

Wrap-Up

Practice those Gaussian calculations
They come back at you all the time
They look messy only as long as you don’t understand them
Short derivations take much less time (waste it with funnier things)
Short derivations contain fewer mistakes
Short derivations are just so much cooler!
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