Probabilistic Graphical Models

Lecture 3: Gaussian Distributions

Volkan Cevher, Matthias Seeger
Ecole Polytechnique Fédérale de Lausanne

7/10/2011

Outline

(1) Why Gaussians?
(2) Linear Transformations. Marginalization
(3) Natural and Moment Parameterization
4. Schur Complement. Useful Identities from Conditioning
(5) Products. Tower Formulae

Why Gaussians?

Gaussian (aka. normal) distribution $N(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$
N(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=|2 \pi \boldsymbol{\Sigma}|^{-1 / 2} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)
$$

- Marginalization, conditioning, linear transformation, posterior: All just linear algebra
- Incredible closedness properties:
- Linear transformations
- Conditioning
- Marginalization

Belief propagation needs such closedness

- Why all that?
- Gaussians are limit distributions (central limit theorems)
- Gaussians are maximum entropy distributions: No structure beyond mean, covariance

Gaussians are Limit Distributions

Central Limit Theorem

$\boldsymbol{x}_{1} \sim P\left(\boldsymbol{x}_{1}\right)$, mean $\boldsymbol{\mu}$, covariance $\boldsymbol{\Sigma}$.
Imagine independent, indentically distributed (i.i.d.) replicas $\boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \ldots$

$$
\overline{\boldsymbol{x}}^{(n)}:=\sqrt{n} \underbrace{\left(n^{-1} \sum_{i=1}^{n} \boldsymbol{x}_{i}-\boldsymbol{\mu}\right)}_{\rightarrow 0 \text { a.s. }} \Rightarrow P\left(\overline{\boldsymbol{x}}^{(n)}\right) \xrightarrow{D} N(\mathbf{0}, \boldsymbol{\Sigma})
$$

Gaussians are Limit Distributions

Central Limit Theorem

$\boldsymbol{x}_{1} \sim P\left(\boldsymbol{x}_{1}\right)$, mean $\boldsymbol{\mu}$, covariance $\boldsymbol{\Sigma}$.
Imagine independent, indentically distributed (i.i.d.) replicas $\boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \ldots$

$$
\overline{\boldsymbol{x}}^{(n)}:=\sqrt{n} \underbrace{\left(n^{-1} \sum_{i=1}^{n} \boldsymbol{x}_{i}-\boldsymbol{\mu}\right)}_{\rightarrow 0 \text { a.s. }} \Rightarrow P\left(\overline{\boldsymbol{x}}^{(n)}\right) \xrightarrow{D} N(\mathbf{0}, \boldsymbol{\Sigma})
$$

What does that mean?

- Averaging of i.i.d. variables: Mean, covariance retained
- Everything else smoothed away (by symmetry) \Rightarrow What remains: Gaussian

Gaussians are Limit Distributions

Central Limit Theorem

$\boldsymbol{x}_{1} \sim P\left(\boldsymbol{x}_{1}\right)$, mean $\boldsymbol{\mu}$, covariance $\boldsymbol{\Sigma}$.
Imagine independent, indentically distributed (i.i.d.) replicas $\boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \ldots$

$$
\overline{\boldsymbol{x}}^{(n)}:=\sqrt{n} \underbrace{\left(n^{-1} \sum_{i=1}^{n} \boldsymbol{x}_{i}-\boldsymbol{\mu}\right)}_{\rightarrow 0 \text { a.s. }} \Rightarrow P\left(\overline{\boldsymbol{x}}^{(n)}\right) \xrightarrow{D} N(\mathbf{0}, \boldsymbol{\Sigma})
$$

What does that mean?

- Averaging of i.i.d. variables: Mean, covariance retained
- Everything else smoothed away (by symmetry) \Rightarrow What remains: Gaussian

For the meticulous:
If \boldsymbol{x}_{1} has no covariance, there are other stable distributions

Gaussians are Limit Distributions

Central Limit Theorem

$\boldsymbol{x}_{1} \sim P\left(\boldsymbol{x}_{1}\right)$, mean $\boldsymbol{\mu}$, covariance $\boldsymbol{\Sigma}$.
Imagine independent, indentically distributed (i.i.d.) replicas $\boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \ldots$

$$
\overline{\boldsymbol{x}}^{(n)}:=\sqrt{n} \underbrace{\left(n^{-1} \sum_{i=1}^{n} \boldsymbol{x}_{i}-\boldsymbol{\mu}\right)}_{\rightarrow 0 \text { a.s. }} \Rightarrow P\left(\overline{\boldsymbol{x}}^{(n)}\right) \xrightarrow{D} N(\mathbf{0}, \boldsymbol{\Sigma})
$$

Implications for Statistics:

- Most models with finite number of parameters:

Maximum likelihood estimator asymptotically normal

Gaussians are Limit Distributions

Central Limit Theorem

$\boldsymbol{x}_{1} \sim P\left(\boldsymbol{x}_{1}\right)$, mean $\boldsymbol{\mu}$, covariance $\boldsymbol{\Sigma}$.
Imagine independent, indentically distributed (i.i.d.) replicas $\boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \ldots$

$$
\overline{\boldsymbol{x}}^{(n)}:=\sqrt{n} \underbrace{\left(n^{-1} \sum_{i=1}^{n} \boldsymbol{x}_{i}-\boldsymbol{\mu}\right)}_{\rightarrow 0 \text { a.s. }} \Rightarrow P\left(\overline{\boldsymbol{x}}^{(n)}\right) \xrightarrow{D} N(\mathbf{0}, \boldsymbol{\Sigma})
$$

Implications for closedness:

- Linear transformations, marginalization:

Limit distributions have to be closed

Gaussians are Maximum Entropy Distributions

How much uncertainty / little structure is in a distribution?
Differential Entropy

$$
\mathrm{H}[P]=\mathrm{E}_{P}[-\log P(\boldsymbol{x})]=\int P(\boldsymbol{x})(-\log P(\boldsymbol{x})) d \boldsymbol{x}
$$

Gaussians are Maximum Entropy Distributions

How much uncertainty / little structure is in a distribution?
Differential Entropy

$$
\mathrm{H}[P]=\mathrm{E}_{P}[-\log P(\boldsymbol{x})]=\int P(\boldsymbol{x})(-\log P(\boldsymbol{x})) d \boldsymbol{x}
$$

Information theory (Shannon)

Immensely useful, basis of probabilistic machine learning.
Part II: Scratch surface. But dig for yourself:

- Cover, Thomas: Elements of Information Theory (1991)

One of my top five all times favourite textbooks. Read it!

Gaussians are Maximum Entropy Distributions

How much uncertainty / little structure is in a distribution?
Differential Entropy

$$
\mathrm{H}[P]=\mathrm{E}_{P}[-\log P(\boldsymbol{x})]=\int P(\boldsymbol{x})(-\log P(\boldsymbol{x})) d \boldsymbol{x}
$$

- Given mean μ, covariance Σ : Maximum entropy distribution?

$$
N(\mu, \boldsymbol{\Sigma})=\operatorname{argmax}_{P}\left\{\mathrm{H}[P] \mid \mathrm{E}_{P}[\boldsymbol{x}]=\boldsymbol{\mu}, \operatorname{Cov}_{P}[\boldsymbol{x}]=\boldsymbol{\Sigma}\right\}
$$

Gaussians are Maximum Entropy Distributions

How much uncertainty / little structure is in a distribution?
Differential Entropy

$$
\mathrm{H}[P]=\mathrm{E}_{P}[-\log P(\boldsymbol{x})]=\int P(\boldsymbol{x})(-\log P(\boldsymbol{x})) d \boldsymbol{x}
$$

- Given mean μ, covariance Σ : Maximum entropy distribution?

$$
N(\mu, \boldsymbol{\Sigma})=\operatorname{argmax}_{P}\left\{\mathrm{H}[P] \mid \mathrm{E}_{P}[\boldsymbol{x}]=\boldsymbol{\mu}, \operatorname{Cov}_{P}[\boldsymbol{x}]=\boldsymbol{\Sigma}\right\}
$$

- What does that mean?
- Gaussian "nothing but mean and covariance".

Any other structure? It's not a Gaussian

- Would expect nice closedness properties for MaxEnt distributions
- Upper bound on entropy:

$$
\mathrm{H}[P] \leq \mathrm{H}\left[N\left(\mathbf{0}, \operatorname{Cov}_{P}[\boldsymbol{x}]\right)\right]=\frac{1}{2} \log \left|2 \pi e \operatorname{Cov}_{P}[\boldsymbol{x}]\right|
$$

Too Simple for Real World?

I want to model / learn structure.
Why should I care for an unstructured distribution?

Too Simple for Real World?

I want to model / learn structure.
Why should I care for an unstructured distribution?
Gaussians are elementary building blocks

- Gaussian + Structure (latent variables) \rightarrow Wealth of models \Rightarrow We'll see a few in what follows
- Many distributions are Gaussian scale mixtures [part II]
- Gaussian (implicitly) behind much of classical estimation methodology
- Carrier distribution for approximate inference [part II]

Too Simple for Real World?

I want to model / learn structure.
Why should I care for an unstructured distribution?
Gaussians are elementary building blocks

- Gaussian + Structure (latent variables) \rightarrow Wealth of models \Rightarrow We'll see a few in what follows
- Many distributions are Gaussian scale mixtures [part II]
- Gaussian (implicitly) behind much of classical estimation methodology
- Carrier distribution for approximate inference [part II]

Maximum entropy for general variables / moments?
\Rightarrow Exponential families
Not in this lecture, but dig for yourself:

- M. Seeger: PhD thesis, Appendix A.4.1

Gaussian Contours: Ellipsoids

Linear Transformations

Linear Transformations

- For any random variable \boldsymbol{x} with covariance [expectation linear!]

$$
\begin{aligned}
\mathrm{E}[\boldsymbol{A} \boldsymbol{x}] & =\boldsymbol{A} \mathrm{E}[\boldsymbol{x}] \\
\operatorname{Cov}[\boldsymbol{A} \boldsymbol{x}] & =\mathrm{E}\left[\boldsymbol{A} \boldsymbol{x} \boldsymbol{x}^{T} \boldsymbol{A}^{T}\right]-\mathrm{E}[\boldsymbol{A} \boldsymbol{x}] \mathrm{E}[\boldsymbol{A} \boldsymbol{x}]^{T} \\
& =\boldsymbol{A}\left(\mathrm{E}\left[\boldsymbol{x} \boldsymbol{x}^{T}\right]-\mathrm{E}[\boldsymbol{x}] \mathrm{E}[\boldsymbol{x}]^{T}\right) \boldsymbol{A}^{T}=\boldsymbol{A} \operatorname{Cov}[\boldsymbol{x}] \boldsymbol{A}^{T}
\end{aligned}
$$

Linear Transformations

- For any random variable \boldsymbol{x} with covariance [expectation linear!]

$$
\begin{aligned}
\mathrm{E}[\boldsymbol{A} \boldsymbol{x}] & =\boldsymbol{A} \mathrm{E}[\boldsymbol{x}] \\
\operatorname{Cov}[\boldsymbol{A} \boldsymbol{x}] & =\mathrm{E}\left[\boldsymbol{A} \boldsymbol{x} \boldsymbol{x}^{T} \boldsymbol{A}^{T}\right]-\mathrm{E}[\boldsymbol{A} \boldsymbol{x}] \mathrm{E}[\boldsymbol{A} \boldsymbol{x}]^{T} \\
& =\boldsymbol{A}\left(\mathrm{E}\left[\boldsymbol{x} \boldsymbol{x}^{T}\right]-\mathrm{E}[\boldsymbol{x}] \mathrm{E}[\boldsymbol{x}]^{T}\right) \boldsymbol{A}^{T}=\boldsymbol{A} \operatorname{Cov}[\boldsymbol{x}] \boldsymbol{A}^{T}
\end{aligned}
$$

- Gaussian is just mean and covariance

$$
\boldsymbol{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Rightarrow \boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b} \sim N\left(\boldsymbol{A} \boldsymbol{\mu}+\boldsymbol{b}, \boldsymbol{A} \Sigma \boldsymbol{A}^{T}\right)
$$

Linear Transformations

- For any random variable \boldsymbol{x} with covariance [expectation linear!]

$$
\begin{aligned}
\mathrm{E}[\boldsymbol{A} \boldsymbol{x}] & =\boldsymbol{A} \mathrm{E}[\boldsymbol{x}] \\
\operatorname{Cov}[\boldsymbol{A} \boldsymbol{x}] & =\mathrm{E}\left[\boldsymbol{A} \boldsymbol{x} \boldsymbol{x}^{T} \boldsymbol{A}^{T}\right]-\mathrm{E}[\boldsymbol{A} \boldsymbol{x}] \mathrm{E}[\boldsymbol{A} \boldsymbol{x}]^{T} \\
& =\boldsymbol{A}\left(\mathrm{E}\left[\boldsymbol{x} \boldsymbol{x}^{T}\right]-\mathrm{E}[\boldsymbol{x}] \mathrm{E}[\boldsymbol{x}]^{T}\right) \boldsymbol{A}^{T}=\boldsymbol{A} \operatorname{Cov}[\boldsymbol{x}] \boldsymbol{A}^{T}
\end{aligned}
$$

- Gaussian is just mean and covariance

$$
\boldsymbol{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Rightarrow \boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b} \sim N\left(\boldsymbol{A} \boldsymbol{\mu}+\boldsymbol{b}, \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{T}\right)
$$

[Missing here: Formal proof that $P(\boldsymbol{y})$ is Gaussian. \Rightarrow Ask me offline]

Related Points

- Checking the normalization factor: $\boldsymbol{x} \sim N(\mathbf{0}, \boldsymbol{\Sigma}) . \boldsymbol{\Sigma}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T}$ eigendecomposition (\boldsymbol{U} orthonormal (like rotation), $\boldsymbol{\Lambda}$ diagonal). $\boldsymbol{y}=\boldsymbol{U}^{T} \boldsymbol{x}$ (rotate eigenvectors \rightarrow axes $) \Rightarrow d \boldsymbol{y}=d \boldsymbol{x}$

$$
\begin{aligned}
& \int e^{-\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}} d \boldsymbol{x}=\int e^{-\frac{1}{2} \boldsymbol{y}^{\top} \boldsymbol{U}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{U} \boldsymbol{y}} d \boldsymbol{y}=\prod_{i} \int e^{-\frac{1}{2} y_{i}^{2} / \lambda_{i}} d y_{i} \\
= & \prod_{i}\left(2 \pi \lambda_{i}\right)^{1 / 2}=|2 \pi \boldsymbol{\Sigma}|^{1 / 2}\left[\text { determinant }=\prod \text { eigenvalues }\right]
\end{aligned}
$$

Recall: $\boldsymbol{U}^{\boldsymbol{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}=\boldsymbol{\Lambda}^{-1}$.

Related Points

- Checking the normalization factor: $\boldsymbol{x} \sim N(\mathbf{0}, \boldsymbol{\Sigma}) . \boldsymbol{\Sigma}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T}$ eigendecomposition (\boldsymbol{U} orthonormal (like rotation), $\boldsymbol{\Lambda}$ diagonal). $\boldsymbol{y}=\boldsymbol{U}^{T} \boldsymbol{x}$ (rotate eigenvectors \rightarrow axes $) \Rightarrow d \boldsymbol{y}=d \boldsymbol{x}$

$$
\begin{aligned}
& \int e^{-\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}} d \boldsymbol{x}=\int e^{-\frac{1}{2} \boldsymbol{y}^{\top} \boldsymbol{U}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{U} \boldsymbol{y}} d \boldsymbol{y}=\prod_{i} \int e^{-\frac{1}{2} y_{i}^{2} / \lambda_{i}} d y_{i} \\
= & \prod_{i}\left(2 \pi \lambda_{i}\right)^{1 / 2}=|2 \pi \boldsymbol{\Sigma}|^{1 / 2}\left[\text { determinant }=\prod \text { eigenvalues }\right]
\end{aligned}
$$

Recall: $\boldsymbol{U}^{\boldsymbol{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}=\boldsymbol{\Lambda}^{-1}$.

- For Gaussian:
Σ diagonal

$$
\Rightarrow P(\boldsymbol{x})=\prod_{i} P\left(x_{i}\right)
$$

Uncorrelated components \Rightarrow Independent components

Marginal Distribution

- $\boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
$I \subset\{1, \ldots, n\} . \boldsymbol{x}_{I}:=\left(x_{i}\right)_{i \in I}$.
Prize question: What is $P\left(\boldsymbol{x}_{l}\right)$?

Marginal Distribution

- $\boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
$I \subset\{1, \ldots, n\} . \boldsymbol{x}_{I}:=\left(x_{i}\right)_{i \in l}$.
Prize question: What is $P\left(\boldsymbol{x}_{l}\right)$?
- Pick selection matrix $\boldsymbol{I}_{I, \cdot} \Rightarrow \boldsymbol{x}_{I}=\boldsymbol{I}_{I, .} \boldsymbol{x}$

$$
P\left(\boldsymbol{x}_{l}\right)=N\left(\boldsymbol{I}_{l}, \cdot \boldsymbol{\mu}, \boldsymbol{I}_{l,} \cdot \boldsymbol{\Sigma} \boldsymbol{I}_{\cdot, l}\right)=N\left(\boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l}\right)
$$

Marginal Distribution

- $\boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
$I \subset\{1, \ldots, n\} . \boldsymbol{x}_{I}:=\left(x_{i}\right)_{i \in I}$.
Prize question: What is $P\left(\boldsymbol{x}_{l}\right)$?
- Pick selection matrix $\boldsymbol{I}_{I, \cdot} \Rightarrow \boldsymbol{x}_{I}=\boldsymbol{I}_{I, .} \boldsymbol{x}$

$$
P\left(\boldsymbol{x}_{l}\right)=N\left(\boldsymbol{I}_{l}, \cdot \boldsymbol{\mu}, \boldsymbol{I}_{I,} \cdot \boldsymbol{\Sigma} \boldsymbol{I}_{\cdot, l}\right)=N\left(\boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l}\right)
$$

- Marginalization (linear transformations):

Very simple if you have $\boldsymbol{\mu}, \boldsymbol{\Sigma}$

Conditioning would be easy if . . .

- $\boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. $I \subset\{1, \ldots, n\} . R=\{1, \ldots, n\} \backslash I$. Next prize question: What is $P\left(\boldsymbol{x}_{\|} \mid \boldsymbol{x}_{R}\right)$?

Conditioning would be easy if . . .

- $\boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. $I \subset\{1, \ldots, n\} . R=\{1, \ldots, n\} \backslash I$. Next prize question: What is $P\left(\boldsymbol{x}_{\|} \mid \boldsymbol{x}_{R}\right)$?
- Not so simple. But it would be if ...

Conditioning would be easy if ...

- $\boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
$I \subset\{1, \ldots, n\} . R=\{1, \ldots, n\} \backslash I$.
Next prize question: What is $P\left(\boldsymbol{x}_{\|} \mid \boldsymbol{x}_{R}\right)$?
- Not so simple. But it would be if ...

$$
\begin{aligned}
P\left(\boldsymbol{x}_{l} \mid \boldsymbol{x}_{R}\right) & \propto e^{-\frac{1}{2}\left(\left(\boldsymbol{x}_{l}-\boldsymbol{\mu}_{l}\right)^{T} \boldsymbol{A}_{l}\left(\boldsymbol{x}_{l}-\boldsymbol{\mu}_{l}\right)+2\left(\boldsymbol{x}_{R}-\boldsymbol{\mu}_{R}\right)^{T} \boldsymbol{A}_{l, R}^{T}\left(\boldsymbol{x}_{l}-\boldsymbol{\mu}_{l}\right)\right)}, \\
\boldsymbol{A} & =\boldsymbol{\Sigma}^{-1}
\end{aligned}
$$

Natural and Moment Parameterization

Two ways of parameterizing a Gaussian. You know:
Gaussian in moment (aka. mean) parameters μ, Σ

$$
\propto e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)}
$$

$$
\propto e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)}
$$

Natural and Moment Parameterization

Two ways of parameterizing a Gaussian. You know:
Gaussian in moment (aka. mean) parameters $\mu, \boldsymbol{\Sigma}$

$$
\propto e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}
$$

$$
\propto e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{A}(\boldsymbol{x}-\boldsymbol{\mu})}, \quad \boldsymbol{A}=\boldsymbol{\Sigma}^{-1}
$$

Natural and Moment Parameterization

Two ways of parameterizing a Gaussian. You know:
Gaussian in moment (aka. mean) parameters $\mu, \boldsymbol{\Sigma}$

$$
\propto e^{-\frac{1}{2}(\boldsymbol{x}-\mu)^{T} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}
$$

$$
\propto e^{-\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}+(\boldsymbol{A} \mu)^{T} \boldsymbol{x}}, \quad \boldsymbol{A}=\boldsymbol{\Sigma}^{-1}
$$

Natural and Moment Parameterization

Two ways of parameterizing a Gaussian. You know:
Gaussian in moment (aka. mean) parameters $\mu, \boldsymbol{\Sigma}$

$$
\propto e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)}
$$

$$
\propto e^{-\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}+\boldsymbol{r}^{T} \boldsymbol{x}}, \quad \boldsymbol{A}=\boldsymbol{\Sigma}^{-1}, \boldsymbol{r}=\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}
$$

Natural and Moment Parameterization

Two ways of parameterizing a Gaussian. You know:
Gaussian in moment (aka. mean) parameters $\boldsymbol{\mu}, \boldsymbol{\Sigma}$

$$
\propto e^{-\frac{1}{2}(\boldsymbol{x}-\mu)^{T} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}
$$

Now you know:
Gaussian in natural (aka. canonical) parameters $\boldsymbol{r}, \boldsymbol{A}$

$$
\propto e^{-\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}+\boldsymbol{r}^{T} \boldsymbol{x}}, \quad \boldsymbol{A}=\boldsymbol{\Sigma}^{-1}, \boldsymbol{r}=\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}
$$

Natural and Moment Parameterization

Gaussian in moment (aka. mean) parameters μ, Σ

$$
\propto e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}
$$

Gaussian in natural (aka. canonical) parameters $\boldsymbol{r}, \boldsymbol{A}$

$$
\propto e^{-\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}+\boldsymbol{r}^{\top} \boldsymbol{x}}, \quad \boldsymbol{A}=\boldsymbol{\Sigma}^{-1}, \boldsymbol{r}=\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}
$$

- Why two parameterizations for the same thing?
- Some things simple in moment parameters: Linear transforms, marginalization [everything "sum"]
- Some things simple in natural parameters: Conditioning, density product [everything "product"]

Natural and Moment Parameterization

Gaussian in moment (aka. mean) parameters μ, Σ

$$
\propto e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}
$$

Gaussian in natural (aka. canonical) parameters $\boldsymbol{r}, \boldsymbol{A}$

$$
\propto e^{-\frac{1}{2} x^{\top} A x+r^{\top} x}, \quad A=\Sigma^{-1}, r=\boldsymbol{\Sigma}^{-1} \mu
$$

- Why two parameterizations for the same thing?
- Some things simple in moment parameters: Linear transforms, marginalization [everything "sum"]
- Some things simple in natural parameters: Conditioning, density product [everything "product"]
- For belief propagation (sum-product): Conversions all the time
- Conversion \leftrightarrow Matrix inversion
\Rightarrow Makes Gaussian propagation numerically difficult

Conditional Distribution

- $P\left(\boldsymbol{x}_{l} \mid \boldsymbol{x}_{R}\right)$: What does it mean? Factorization
(1) Sample $\boldsymbol{x}_{R} \sim N\left(\boldsymbol{\mu}_{R}, \boldsymbol{\Sigma}_{R}\right)$
(2) Sample $\boldsymbol{x}_{/}$from Gaussian depending on \boldsymbol{x}_{R}
- $\mathrm{E}[\boldsymbol{x}]=\boldsymbol{\mu}, \operatorname{Cov}[\boldsymbol{x}]=\boldsymbol{\Sigma}$ afterwards?
\Rightarrow Rule (2) must be $P\left(\boldsymbol{x}_{I} \mid \boldsymbol{x}_{R}\right)$!

Conditional Distribution

- $P\left(\boldsymbol{x}_{l} \mid \boldsymbol{x}_{R}\right)$: What does it mean? Factorization
(1) Sample $\boldsymbol{x}_{R} \sim N\left(\boldsymbol{\mu}_{R}, \boldsymbol{\Sigma}_{R}\right)$
(2) Sample $\boldsymbol{x}_{/}$from Gaussian depending on \boldsymbol{x}_{R}
- $\mathrm{E}[\boldsymbol{x}]=\boldsymbol{\mu}, \operatorname{Cov}[\boldsymbol{x}]=\boldsymbol{\Sigma}$ afterwards?
\Rightarrow Rule (2) must be $P\left(\boldsymbol{x}_{I} \mid \boldsymbol{x}_{R}\right)$!
For meticulous: We already know that $P\left(\boldsymbol{x}_{\|} \mid \boldsymbol{x}_{R}\right)$ is Gaussian (by inspection)
- Ansatz: $\boldsymbol{y}=\boldsymbol{x}-\boldsymbol{\mu}$.

$$
\boldsymbol{y}_{I}=\boldsymbol{u}+\boldsymbol{B} \boldsymbol{y}_{R}, \boldsymbol{u} \sim N(\mathbf{0}, \boldsymbol{C}) .
$$

Conditional Distribution

- $P\left(\boldsymbol{x}_{l} \mid \boldsymbol{x}_{R}\right)$: What does it mean? Factorization
(c) Sample $\boldsymbol{x}_{R} \sim N\left(\boldsymbol{\mu}_{R}, \boldsymbol{\Sigma}_{R}\right)$
(2) Sample $\boldsymbol{x}_{/}$from Gaussian depending on \boldsymbol{x}_{R}
- $\mathrm{E}[\boldsymbol{x}]=\boldsymbol{\mu}, \operatorname{Cov}[\boldsymbol{x}]=\boldsymbol{\Sigma}$ afterwards?
\Rightarrow Rule (2) must be $P\left(\boldsymbol{x}_{\boldsymbol{l}} \mid \boldsymbol{x}_{R}\right)$!
For meticulous: We already know that $P\left(\boldsymbol{x}_{\|} \mid \boldsymbol{x}_{R}\right)$ is Gaussian (by inspection)
- Ansatz: $\boldsymbol{y}=\boldsymbol{x}-\boldsymbol{\mu}$.
$\boldsymbol{y}_{I}=\boldsymbol{u}+\boldsymbol{B} \boldsymbol{y}_{R}, \boldsymbol{u} \sim N(\mathbf{0}, \boldsymbol{C})$.
Schur complement: $\boldsymbol{C}=\boldsymbol{\Sigma} / \boldsymbol{\Sigma}_{R}:=\boldsymbol{\Sigma}_{l}-\boldsymbol{\Sigma}_{l, R} \boldsymbol{\Sigma}_{R}^{-1} \boldsymbol{\Sigma}_{R, l}$

$$
\begin{aligned}
\mathrm{E}\left[\boldsymbol{x}_{l} \mid \boldsymbol{x}_{R}\right] & =\boldsymbol{\mu}_{l}+\boldsymbol{\Sigma}_{l, R} \boldsymbol{\Sigma}_{R}^{-1}\left(\boldsymbol{x}_{R}-\boldsymbol{\mu}_{R}\right), \\
\operatorname{Cov}\left[\boldsymbol{x}_{l} \mid \boldsymbol{x}_{R}\right] & =\boldsymbol{\Sigma} / \boldsymbol{\Sigma}_{R}=\boldsymbol{\Sigma}_{l}-\boldsymbol{\Sigma}_{l, R} \boldsymbol{\Sigma}_{R}^{-1} \boldsymbol{\Sigma}_{R, I}
\end{aligned}
$$

- $\mathrm{E}\left[\boldsymbol{x}_{\|} \mid \boldsymbol{x}_{R}\right]$ linear in $\boldsymbol{x}_{R} \cdot \operatorname{Cov}\left[\boldsymbol{x}_{l} \mid \boldsymbol{x}_{R}\right]$ independent of \boldsymbol{x}_{R}

The Schur Complement

$$
\underbrace{P\left(\boldsymbol{x}_{/}, \boldsymbol{x}_{R}\right)}_{\operatorname{Cov}[\cdot]=\boldsymbol{\Sigma}}=\underbrace{P\left(\boldsymbol{x}_{l} \mid \boldsymbol{x}_{R}\right)}_{\operatorname{Cov}[\cdot]=\boldsymbol{\Sigma} / \boldsymbol{\Sigma}_{R}} \times \underbrace{P\left(\boldsymbol{x}_{R}\right)}_{\operatorname{Cov}[\cdot]=\boldsymbol{\Sigma}_{R}}
$$

The Schur Complement

$$
\underbrace{P\left(\boldsymbol{x}_{/}, \boldsymbol{x}_{R}\right)}_{\operatorname{Cov}[\cdot]=\boldsymbol{\Sigma}}=\underbrace{P\left(\boldsymbol{x}_{/} \mid \boldsymbol{x}_{R}\right)}_{\operatorname{Cov}[\cdot]=\boldsymbol{\Sigma} / \boldsymbol{\Sigma}_{R}} \times \underbrace{P\left(\boldsymbol{x}_{R}\right)}_{\operatorname{Cov}[\cdot]=\boldsymbol{\Sigma}_{R}}
$$

- Holds more generally, whenever $\boldsymbol{\Sigma}, \boldsymbol{\Sigma}_{R}$ nonsingular. Not just for symmetric $\boldsymbol{\Sigma}$
- Determinant identity

$$
|\boldsymbol{\Sigma}|=\left|\boldsymbol{\Sigma} / \boldsymbol{\Sigma}_{R}\right| \cdot\left|\boldsymbol{\Sigma}_{R}\right|
$$

The Schur Complement

$$
\underbrace{P\left(\boldsymbol{x}_{I}, \boldsymbol{x}_{R}\right)}_{\operatorname{Cov}[\cdot]=\boldsymbol{\Sigma}}=\underbrace{P\left(\boldsymbol{x}_{I} \mid \boldsymbol{x}_{R}\right)}_{\operatorname{Cov}[\cdot]=\boldsymbol{\Sigma} / \boldsymbol{\Sigma}_{R}} \times \underbrace{P\left(\boldsymbol{x}_{R}\right)}_{\operatorname{Cov}[\cdot]=\boldsymbol{\Sigma}_{R}}
$$

- Holds more generally, whenever $\boldsymbol{\Sigma}, \boldsymbol{\Sigma}_{R}$ nonsingular. Not just for symmetric Σ
- Determinant identity

$$
|\boldsymbol{\Sigma}|=\left|\boldsymbol{\Sigma} / \boldsymbol{\Sigma}_{R}\right| \cdot\left|\boldsymbol{\Sigma}_{R}\right|
$$

Useful special case:

$$
|\boldsymbol{I}+\boldsymbol{U} \boldsymbol{V}|=|\boldsymbol{I}+\boldsymbol{V} \boldsymbol{U}|
$$

Partitioned Inverse Equations

$$
\begin{aligned}
\boldsymbol{\Sigma}^{-1} & =\left[\begin{array}{cc}
\boldsymbol{A}_{l} & \boldsymbol{A}_{l, R} \\
\boldsymbol{A}_{R, I} & \boldsymbol{A}_{R}
\end{array}\right]=\left[\begin{array}{cc}
\left(\boldsymbol{\Sigma} / \boldsymbol{\Sigma}_{R}\right)^{-1} & -\left(\boldsymbol{\Sigma} / \boldsymbol{\Sigma}_{R}\right)^{-1} \boldsymbol{B} \\
-\boldsymbol{B}^{\top}\left(\boldsymbol{\Sigma} / \boldsymbol{\Sigma}_{R}\right)^{-1} & \boldsymbol{\Sigma}_{R}^{-1}+\boldsymbol{B}^{\top}\left(\boldsymbol{\Sigma} / \boldsymbol{\Sigma}_{R}\right)^{-1} \boldsymbol{B}
\end{array}\right] \\
\boldsymbol{B} & =\boldsymbol{\Sigma}_{l, R} \boldsymbol{\Sigma}_{R}^{-1}
\end{aligned}
$$

- Very useful if $|I|,|R|$ different \Rightarrow Do inverses in smaller of them only!

Partitioned Inverse Equations

$$
\boldsymbol{\Sigma}^{-1}=\left[\begin{array}{cc}
\boldsymbol{A}_{l} & \boldsymbol{A}_{l, R} \\
\boldsymbol{A}_{R, I} & \boldsymbol{A}_{R}
\end{array}\right]=\left[\begin{array}{cc}
\left(\boldsymbol{\Sigma} / \boldsymbol{\Sigma}_{R}\right)^{-1} & -\left(\boldsymbol{\Sigma} / \boldsymbol{\Sigma}_{R}\right)^{-1} \boldsymbol{B} \\
-\boldsymbol{B}^{T}\left(\boldsymbol{\Sigma} / \boldsymbol{\Sigma}_{R}\right)^{-1} & \boldsymbol{\Sigma}_{R}^{-1}+\boldsymbol{B}^{T}\left(\boldsymbol{\Sigma} / \boldsymbol{\Sigma}_{R}\right)^{-1} \boldsymbol{B}
\end{array}\right]
$$

$$
\boldsymbol{B}=\boldsymbol{\Sigma}_{l, R} \boldsymbol{\Sigma}_{R}^{-1}
$$

- Very useful if $|I,|R|$ different \Rightarrow Do inverses in smaller of them only!
- Could have conditioned on \boldsymbol{x}_{l} just as well: Woodbury formula: $\left(\boldsymbol{\Sigma} / \boldsymbol{\Sigma}_{l}\right)^{-1}=\boldsymbol{\Sigma}_{R}^{-1}+\boldsymbol{B}^{\top}\left(\boldsymbol{\Sigma} / \boldsymbol{\Sigma}_{R}\right)^{-1} \boldsymbol{B}$

$$
\left(E+F G^{-1} \boldsymbol{H}\right)^{-1}=\boldsymbol{E}^{-1}-\boldsymbol{E}^{-1} \boldsymbol{F}\left(\boldsymbol{G}+\boldsymbol{H} \boldsymbol{E}^{-1} \boldsymbol{F}\right)^{-1} \boldsymbol{H} \boldsymbol{E}^{-1}
$$

\Rightarrow Not least formula to learn by heart

Product of Gaussians

$$
N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right)=N(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) C
$$

- Product: Combination of messages / information

Product of Gaussians

$$
N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right)=N(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) C
$$

- Product: Combination of messages / information
- Easy in natural parameters:

$$
e^{\boldsymbol{r}_{1}^{T} \boldsymbol{x}-\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A}_{1} \boldsymbol{x}} \times e^{\boldsymbol{r}_{2}^{T} \boldsymbol{x}-\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A}_{2} \boldsymbol{x}}=e^{\left(\boldsymbol{r}_{1}+\boldsymbol{r}_{2}\right)^{T} \boldsymbol{x}-\frac{1}{2} \boldsymbol{x}^{T}\left(\boldsymbol{A}_{1}+\boldsymbol{A}_{2}\right) \boldsymbol{x}}
$$

\Rightarrow Sum of natural parameters

$$
\boldsymbol{A}=\boldsymbol{A}_{1}+\boldsymbol{A}_{2}, \quad \boldsymbol{r}=\boldsymbol{r}_{1}+\boldsymbol{r}_{2}
$$

Product of Gaussians

$$
N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right)=N(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) C
$$

- Product: Combination of messages / information
- Easy in natural parameters:

$$
e^{\boldsymbol{r}_{1}^{T} \boldsymbol{x}-\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A}_{1} \boldsymbol{x}} \times e^{\boldsymbol{r}_{2}^{T} \boldsymbol{x}-\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A}_{2} \boldsymbol{x}}=e^{\left(\boldsymbol{r}_{1}+\boldsymbol{r}_{2}\right)^{T} \boldsymbol{x}-\frac{1}{2} \boldsymbol{x}^{T}\left(\boldsymbol{A}_{1}+\boldsymbol{A}_{2}\right) \boldsymbol{x}}
$$

\Rightarrow Sum of natural parameters

$$
\boldsymbol{\Sigma}^{-1}=\boldsymbol{\Sigma}_{1}^{-1}+\boldsymbol{\Sigma}_{2}^{-1}, \quad \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}=\boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\mu}_{2}
$$

Product of Gaussians

$$
N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right)=N(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) C
$$

- Product: Combination of messages / information
- Easy in natural parameters:

$$
e^{\boldsymbol{r}_{1}^{T} \boldsymbol{x}-\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A}_{1} \boldsymbol{x}} \times e^{\boldsymbol{r}_{2}^{T} \boldsymbol{x}-\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A}_{2} \boldsymbol{x}}=e^{\left(\boldsymbol{r}_{1}+\boldsymbol{r}_{2}\right)^{T} \boldsymbol{x}-\frac{1}{2} \boldsymbol{x}^{T}\left(\boldsymbol{A}_{1}+\boldsymbol{A}_{2}\right) \boldsymbol{x}}
$$

\Rightarrow Sum of natural parameters

$$
\boldsymbol{\Sigma}=\left(\boldsymbol{\Sigma}_{1}^{-1}+\boldsymbol{\Sigma}_{2}^{-1}\right)^{-1}, \quad \boldsymbol{\mu}=\underbrace{\boldsymbol{\Sigma}\left(\boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\mu}_{2}\right)}_{\text {"weighted avg." }}
$$

Product of Gaussians

$$
N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right)=N(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) C
$$

- Product: Combination of messages / information
- Easy in natural parameters:

$$
e^{\boldsymbol{r}_{1}^{T} \boldsymbol{x}-\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A}_{1} \boldsymbol{x}} \times e^{\boldsymbol{r}_{2}^{T} \boldsymbol{x}-\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A}_{2} \boldsymbol{x}}=e^{\left(\boldsymbol{r}_{1}+\boldsymbol{r}_{2}\right)^{T} \boldsymbol{x}-\frac{1}{2} \boldsymbol{x}^{T}\left(\boldsymbol{A}_{1}+\boldsymbol{A}_{2}\right) \boldsymbol{x}}
$$

\Rightarrow Sum of natural parameters

$$
\boldsymbol{\Sigma}=\left(\boldsymbol{\Sigma}_{1}^{-1}+\boldsymbol{\Sigma}_{2}^{-1}\right)^{-1}, \quad \boldsymbol{\mu}=\underbrace{\boldsymbol{\Sigma}\left(\boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\mu}_{2}\right)}_{\text {"weighted avg." }}
$$

- And C ? Often not needed. If you need it: Sampling argument (saves pages of algebra)

Linear-Gaussian Model

$$
\begin{array}{ll}
\boldsymbol{u} \sim N\left(\mu_{0}, \boldsymbol{\Sigma}_{0}\right) & \text { Prior } \\
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{u}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim N(\mathbf{0}, \boldsymbol{\Psi}) & \text { Likelihood }
\end{array}
$$

(1) Joint / marginal distribution: Tower formulae

$$
\begin{aligned}
\mathrm{E}[\boldsymbol{y}] & =\mathrm{E}[\mathrm{E}[\boldsymbol{y} \mid \boldsymbol{u}]], \quad \operatorname{Cov}[\boldsymbol{y}]=\operatorname{Cov}[\mathrm{E}[\boldsymbol{y} \mid \boldsymbol{u}]]+\mathrm{E}[\operatorname{Cov}[\boldsymbol{y} \mid \boldsymbol{u}]] \\
\operatorname{Cov}[\boldsymbol{u}, \boldsymbol{y}] & =\operatorname{Cov}[\boldsymbol{u}, \mathrm{E}[\boldsymbol{y} \mid \boldsymbol{u}]]+\mathrm{E}[\operatorname{Cov}[\boldsymbol{u}, \boldsymbol{y} \mid \boldsymbol{u}]]
\end{aligned}
$$

Linear-Gaussian Model

$$
\begin{array}{ll}
\boldsymbol{u} \sim N\left(\mu_{0}, \boldsymbol{\Sigma}_{0}\right) & \text { Prior } \\
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{u}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim N(\mathbf{0}, \boldsymbol{\Psi}) & \text { Likelihood }
\end{array}
$$

(1) Joint / marginal distribution: Tower formulae

$$
\begin{aligned}
\mathrm{E}[\boldsymbol{y}] & =\mathrm{E}[\mathrm{E}[\boldsymbol{y} \mid \boldsymbol{u}]], \quad \operatorname{Cov}[\boldsymbol{y}]=\operatorname{Cov}[\mathrm{E}[\boldsymbol{y} \mid \boldsymbol{u}]]+\mathrm{E}[\operatorname{Cov}[\boldsymbol{y} \mid \boldsymbol{u}]] \\
\operatorname{Cov}[\boldsymbol{u}, \boldsymbol{y}] & =\operatorname{Cov}[\boldsymbol{u}, \mathrm{E}[\boldsymbol{y} \mid \boldsymbol{u}]]+\mathrm{E}[\operatorname{Cov}[\boldsymbol{u}, \boldsymbol{y} \mid \boldsymbol{u}]]
\end{aligned}
$$

(2) Posterior: Product Prior \times Likelihood

$$
\exp \left(-\frac{1}{2}\left[(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{u})^{T} \boldsymbol{\Psi}^{-1}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{u})+\left(\boldsymbol{u}-\boldsymbol{\mu}_{0}\right)^{T} \boldsymbol{\Sigma}_{0}^{-1}\left(\boldsymbol{u}-\boldsymbol{\mu}_{0}\right)\right]\right)
$$

Linear-Gaussian Model

$$
\begin{array}{ll}
\boldsymbol{u} \sim N\left(\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}\right) & \text { Prior } \\
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{u}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim N(\mathbf{0}, \boldsymbol{\Psi}) & \text { Likelihood }
\end{array}
$$

(1) Joint / marginal distribution: Tower formulae

$$
\begin{aligned}
\mathrm{E}[\boldsymbol{y}] & =\mathrm{E}[\mathrm{E}[\boldsymbol{y} \mid \boldsymbol{u}]], \quad \operatorname{Cov}[\boldsymbol{y}]=\operatorname{Cov}[\mathrm{E}[\boldsymbol{y} \mid \boldsymbol{u}]]+\mathrm{E}[\operatorname{Cov}[\boldsymbol{y} \mid \boldsymbol{u}]] \\
\operatorname{Cov}[\boldsymbol{u}, \boldsymbol{y}] & =\operatorname{Cov}[\boldsymbol{u}, \mathrm{E}[\boldsymbol{y} \mid \boldsymbol{u}]]+\mathrm{E}[\operatorname{Cov}[\boldsymbol{u}, \boldsymbol{y} \mid \boldsymbol{u}]]
\end{aligned}
$$

(2) Posterior: Product Prior \times Likelihood
$\exp (-\frac{1}{2}[\boldsymbol{u}^{T} \underbrace{\left(\boldsymbol{X}^{T} \boldsymbol{\Psi}^{-1} \boldsymbol{X}+\boldsymbol{\Sigma}_{0}^{-1}\right)}_{\operatorname{Cov}[\boldsymbol{u} \mid \boldsymbol{y}]^{-1}} \boldsymbol{u}-2 \boldsymbol{u}^{T} \underbrace{\left(\boldsymbol{X}^{T} \boldsymbol{\Psi}^{-1} \boldsymbol{y}+\boldsymbol{\Sigma}_{0}^{-1} \boldsymbol{\mu}_{0}\right)}_{\operatorname{Cov}[\boldsymbol{u} \mid \boldsymbol{y}]^{-1} \mathrm{E}[\boldsymbol{u} \mid \boldsymbol{y}]}+\ldots])$
Normal equations:
$\mathrm{E}[\boldsymbol{u} \mid \boldsymbol{y}]=\left(\boldsymbol{X}^{\top} \boldsymbol{\Psi}^{-1} \boldsymbol{X}+\boldsymbol{\Sigma}_{0}^{-1}\right)^{-1}\left(\boldsymbol{X}^{\top} \boldsymbol{\Psi}^{-1} \boldsymbol{y}+\boldsymbol{\Sigma}_{0}^{-1} \boldsymbol{\mu}_{0}\right)$

Linear-Gaussian Model

$$
\begin{array}{ll}
\boldsymbol{u} \sim N\left(\mu_{0}, \boldsymbol{\Sigma}_{0}\right) & \text { Prior } \\
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{u}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim N(\mathbf{0}, \boldsymbol{\Psi}) & \text { Likelihood }
\end{array}
$$

(2) Posterior: Product Prior \times Likelihood

$$
\exp (-\frac{1}{2}[\boldsymbol{u}^{T} \underbrace{\left(\boldsymbol{X}^{T} \boldsymbol{\Psi}^{-1} \boldsymbol{X}+\boldsymbol{\Sigma}_{0}^{-1}\right)}_{\operatorname{Cov}[\boldsymbol{u} \mid \boldsymbol{y}]^{-1}} \boldsymbol{u}-2 \boldsymbol{u}^{T} \underbrace{\left(\boldsymbol{X}^{T} \boldsymbol{\Psi}^{-1} \boldsymbol{y}+\boldsymbol{\Sigma}_{0}^{-1} \boldsymbol{\mu}_{0}\right)}_{\operatorname{Cov}[\boldsymbol{u} \mid \boldsymbol{y}]^{-1} \mathrm{E}[\boldsymbol{u} \mid \boldsymbol{y}]}+\ldots])
$$

What if \boldsymbol{y} less coefficients than \boldsymbol{u} ?

Linear-Gaussian Model

$$
\begin{array}{ll}
\boldsymbol{u} \sim N\left(\mu_{0}, \boldsymbol{\Sigma}_{0}\right) & \text { Prior } \\
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{u}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim N(\mathbf{0}, \boldsymbol{\Psi}) & \text { Likelihood }
\end{array}
$$

(2) Posterior: Product Prior \times Likelihood

$$
\exp (-\frac{1}{2}[\boldsymbol{u}^{\top} \underbrace{\left(\boldsymbol{X}^{\top} \boldsymbol{\Psi}^{-1} \boldsymbol{X}+\boldsymbol{\Sigma}_{0}^{-1}\right)}_{\operatorname{Cov}[\boldsymbol{u} \mid \boldsymbol{y}]^{-1}} \boldsymbol{u}-2 \boldsymbol{u}^{\top} \underbrace{\left(\boldsymbol{X}^{\top} \boldsymbol{\Psi}^{-1} \boldsymbol{y}+\boldsymbol{\Sigma}_{0}^{-1} \boldsymbol{\mu}_{0}\right)}_{\operatorname{Cov}[\boldsymbol{u} \mid \boldsymbol{y}]^{-1} \mathrm{E}[\boldsymbol{u} \mid \boldsymbol{y}]}+\ldots])
$$

What if \boldsymbol{y} less coefficients than \boldsymbol{u} ?

$$
\begin{aligned}
\operatorname{Cov}[\boldsymbol{u} \mid \boldsymbol{y}] & =\operatorname{Cov}[(\boldsymbol{u} \boldsymbol{y})] / \operatorname{Cov}[\boldsymbol{y}]=\boldsymbol{\Sigma}_{0}-\boldsymbol{\Sigma}_{0} \boldsymbol{X}^{T}\left(\boldsymbol{\Psi}+\boldsymbol{X} \boldsymbol{\Sigma}_{0} \boldsymbol{X}^{T}\right)^{-1} \boldsymbol{X} \boldsymbol{\Sigma}_{0}, \\
\mathrm{E}[\boldsymbol{u} \mid \boldsymbol{y}] & =\mathrm{E}[\boldsymbol{u}]+\operatorname{Cov}[\boldsymbol{u}, \boldsymbol{y}] \operatorname{Cov}[\boldsymbol{y}]^{-1}(\boldsymbol{y}-\mathrm{E}[\boldsymbol{y}]) \\
& =\boldsymbol{\mu}_{0}+\boldsymbol{\Sigma}_{0} \boldsymbol{X}^{T}\left(\boldsymbol{\Psi}+\boldsymbol{X} \Sigma_{0} \boldsymbol{X}^{T}\right)^{-1}\left(\boldsymbol{y}-\boldsymbol{X} \mu_{0}\right)
\end{aligned}
$$

Wrap-Up

Practice those Gaussian calculations

- They come back at you all the time
- They look messy only as long as you don't understand them
- Short derivations take much less time (waste it with funnier things)
- Short derivations contain fewer mistakes
- Short derivations are just so much cooler!

