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Exercise 1. Explaining Away
Recall the sprinkler network (“Did it Rain Tonight” lecture slides). An important effect with
probabilistic reasoning, which can clearly be demonstrated in human subject studies, but
is hard to replicate in non-probabilistic expert systems, is explaining away. In a sense, this
effect is what makes the semantics of causal (Bayesian) networks a bit tricky at first sight
(see Exercise 2), and which contributes to the complicated nonlocal couplings in posterior
distributions. If several (unobserved) causes can explain some effect, then evidence of this
effect having happened creates a dependency between the causes: each of them becomes
more likely than a priori. Further evidence of effects that could be caused by some, but not
others, will strongly decrease posterior probabilities of the latter. Such causes are “explained
away”, even though (in fact, precisely because) there is no causal link between them and the
latter effect.

1. [3 points] Recall the variables H (Holmes’ grass wet?), R (rain last night?), S (Holmes
sprinkler ran?), W (Watson’s grass wet?). Compute P (H = y). Compute P (R =
y|H = y), P (S = y|H = y), compare them to the prior probabilities. Compute the
table P (R,S|H = y), show that R and S are dependent, given {H = y}.
Compare P (R = y|S = y,H = y) with P (R = y|S = y). I am confused: “Holmes’
sprinkler does not cause rain to fall, even if Holmes finds his grass wet”. Clear up this
confusion (1–2 sentences).

2. [4 points] Compute P (R = y|H = y,W = y), P (S = y|H = y,W = y), compare
them to P (R = y|H = y), P (S = y|H = y). Relate your findings to explaining away.
What is P (R = y|H = y,W = n), P (S = y|H = y,W = n)?
The CPT has P (W = y|R = n) = 2/10. Suppose that P (W = y|R = n) = p ∈ [0, 1]
instead (everything else in the CPTs stays the same). What is P (S = y|H = y,W = y)
in this case (as function of p)? Explain your finding, its values for p = 0 and for p = 1.

Exercise 2. Semantics of Bayesian Networks (d-separation)
Recall that the graph part of a graphical model is equivalent (but more convenient to
work with) to a list of conditional independence constraints: the conditional independence
semantics of the graph. Make sure you understand what “constraint” means in this case
(and in general in mathematics). A distribution is consistent with the graph if it meets all
(conditional independence) constraints implied by the graph. It may meet other constraints
(for example, a completely factorized distribution is consistent with any graph), but it
must not violate any of them. Think about the graph as a scaffold, a set of preconditions,
which message-passing inference algorithms use to distribute the task, independent of the
distribution that is fed to them later on (as long as it’s consistent).
Conditional independence statements have the form A⊥B|C, A and B variables, C a set
of variables, all disjoint. Literally, conditional independence means that information flow
between A and B is blocked by evidence on C (i.e. , knowing the value of C): if you know
C, then w.r.t. knowledge of A, it does not help to know B as well (and vice versa). Not
surprisingly, this is encoded by separation in graphs: A⊥B|C if there is no path from A



to B that is not blocked by some variable in C (here, in a directed graph, you can walk
along an edge in both directions). Note that C can be empty, in which case we talk about
independence per se (unconditional).
In undirected graphical models (Markov random fields), graph separation is just as expected.
But looking at Exercise 1, this cannot work for directed models (Bayesian networks). The
causes R and S are independent (i.e. , blocked) with no evidence, or also if W alone is
observed (which does not lie on a path between them). However, once H gets observed,
separating them in the “normal” way, they become dependent (explaining away). The reason
is the configuration R→ H ← S, turning usual graph separation on its head. But directed
model graph separation can still be defined using local rules, as we will explore here.

1. [3 points] Given three nodes A, C, B, there are three different graphs with C between
A and B: A→ C → B (1), A← C → B (2), and A→ C ← B (3). For each of these,
consider the two cases “C observed” (a) and “C not observed” (b), and argue whether
we should assert the independence of A and B [In order to show that we cannot, give
an example of a distribution consistent with the graph, under which A and B are
not independent (conditioned on C in case (a), unconditional in case (b)). In order
to show we can, show that the definition of (conditional) independence is fulfilled for
arbitrary distributions consistent with the graph]. What does that mean in terms of
graph separation (C acting on path between A and B)?

2. [3 points]You will have noticed that (3) behaves differently from the others, somewhat
the opposite. You know why this is the case (explaining away). It is called a v-node

configuration. A and B are dependent, given C. But is that all? Consider A→ C ← B
as part of a larger network, extending downstream of C (see Figure 1, left). Without
any evidence, does the interpretation still hold? How about C being unobserved, but
evidence in the downstream part? State the the rule precisely when we can assert
independence of A and B in this case (no need for complete example distributions,
but give sound arguments).
Hint: For creating counterexamples, deterministic distributions such as P (X |Y ) =
I{X=Y } are useful. Go back to your argument why for (3), not knowing C leaves A,
B independent. With further nodes downstream, when exactly can you still use this
argument?

3. [3 points] Consider the Bayesian network of Figure 1, right. Does it imply the
following statements? [If so: argue (why are all paths blocked? If not: state the
shortest path that is not blocked]

• A⊥B|H

• A⊥B|F

• A⊥H |E

State the smallest set of nodes which blocks X and Y [argue your point; ∅ is a set as
well]

• X = C, Y = D

• X = A, Y = H

• X = A, Y = F

Exercise 3. Directed and Undirected Graphical Models
Directed and undirected graphical models are different formalisms. Not only is one of them
much more convenient to use in certain situations than the other, and vice versa, but their
implied conditional independence semantics are different.
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Figure 1: Left: V-node configuration, as part of larger graph. Right: Example Bayesian
network

1. [3 points] Given a Bayesian network (directed graphical model), state a procedure
for converting it into a Markov random field (undirected graphical model). Make sure
you understand that conversion (in this context) means that:

• Every distribution consistent with the directed graph has to be consistent with the
resulting undirected graph as well. In other words, all conditional independence
statements implied by the undirected graph are also implied by the directed graph
(not necessarily the other way around).

• The resulting undirected graph is minimal in fulfilling this requirement. None of
its true subgraphs (obtained by removing edges) does the job. More precisely,
for every true subgraph, there exists a distribution consistent with the Bayesian
network, but not with the undirected subgraph.

Hint: Remember the Hammersley-Clifford theorem from the lecture, which precisely
characterizes the set of distributions consistent with an undirected graph, in terms of
potential functions on maximal cliques. For a directed graphical model, how do the
potential functions look like?

2. [1 point] Apply this procedure to the directed graph A → C ← B (v-node config-
uration, explaining away). State a conditional independence relationship implied by
the directed, but not by the undirected graph. This is an example of a directed graph
which cannot be exactly represented by an undirected graph.

3. [2 points] Consider the undirected model of Figure 2. Prove that no directed model
can imply the same conditional independence constraints. State a directed conversion
(in the sense of a)).
Hint: Look for v-nodes.
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Figure 2: Undirected graphical model which cannot be exactly represented by a directed
model.
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