
PROBABILISTIC GRAPHICAL MODELS - EE 717

Volkan Cevher and Matthias Seeger Fall 2011

Teaching assistants: Hemant Tyagi & Young Jun Ko

Homework 3

Assigned: 10/10/2011.
Due: 21/10/2011.

Exercise 1. Bayesian Update with Cholesky Factors

Remember the robot localization example from the lecture. The robot’s state is coded in
u ∈ R

n, but the knowledge of the robot about the value of u is uncertain. Say, its belief in
u is N(u|µ,Σ) (robotics people call this belief state). Obtaining a noisy measurement y,
whose likelihood is P (y|u) = N(xTu, σ2) for some covariate x (which is known to the robot,
say the specification of sensors), the robot can update its belief from prior P (u) to posterior
P (u|y), which becomes the new belief state. This process is called Bayesian filtering (you’ll
see more of that).
From the lecture, we know that P (u|y) = N(µ′,Σ′), where

Σ′ = Σ −Σx(σ2 + xTΣx)−1xTΣ, µ′ = µ +Σx(σ2 + xTΣx)−1(y − xTµ). (1)

Revisit the material, make yourself clear why these formulae are the way they are, and
that there is nothing messy about them, because you know where they come from (it’s
just conditioning, “product”). Also remember which type of Gaussian parameterization we
are using here, that there is a different type in which all problems here would disappear,
although in that case, other essential operations would be tricky (marginalization, “sum”).
However, these update equations do not have good numerical properties. In other words,
assume the robot got a lot of measurements, and compare the online setting of absorbing
one measurement at a time by (1) with the offline setting of collecting all measurements,
then doing a single update. Quite likely, you would get substantially different results. In
fact, with a static robot, it would probably all work out, but once the robot moves around,
increasing the uncertainty in P (u) due to the movement (diffusion), you’d be in trouble.
In fact, whatever you do in an online scenario, you’ll always have more numerical error (on
average) than offline. But you can do better than (1): the topic of this exercise. This is not
a numerical mathematics course, so we’ll not try to find out why this is better. Roughly,
matrices, and matrix operations, with large condition numbers have to be avoided, and the
condition number of a Cholesky factor is much less than of a matrix itself (square root).

1. [1 point] Let Σ = LLT be the Cholesky factorization. The key is to maintain
L instead of Σ. Also, let µ = La. Our belief representation will be (L,a). A
representation is any amount of information, fulfilling:

• Reasonable storage requirements

• Desired queries to P (u) can be computed efficiently enough

• For Bayesian updates P (u) → P (u|y), the representation update (L,a) →
(L′,a′) can be computed reliably (with as little numerical error as possible) and
efficiently enough

In short, you describe and communicate your method in terms of distributions P (u),
maybe graphs, but you implement it in terms of a representation.
For some v , r = vTu (u ∼ P (u)) is Gaussian. Show how to compute mean, variance
of r most efficiently. What is the cost? Compare that to the cost for using the
representation (Σ,µ) instead for this query.



2. [3 points] Now to the update, based on observation (x, y). Suppose (in this part)
that you have w = LTx. Bring (1) into the form Σ′ = L(I − vvT )LT , µ′ = Lb, and
show how to compute v , b in O(n).
Hint: You may define another vector as a rescaled version of w. If you divide by
numbers, argue why they are 6= 0.

3. [1 point] Suppose I gave you some Cholesky downdate code, which maps (L, z ,v , α) →
(L′, z′), so that

L′(L′)T = L(I − vvT )LT , L′z′ = L(z − αv)

for nonzero v and some α of your choice. Show how to compute the representation
update (L,a) → (L′,a′), if all you are allowed to do is call the downdate routine once,
do a single multiplication matrix-vector multiplication with LT , and O(n) computa-
tions otherwise.
Such downdate code is contained in numerical packages. On the course website, I
have linked some wrapper code of mine, as well as a report telling you how this works
(if you are interested). The procedure you developed here seems a convolved way of
doing (1), but this “intuition” is wrong. It comes at exactly the same computational
cost (time, memory; in fact, it is even slightly faster), and has much better numerical
properties.

Exercise 2. Spectral Analysis of Conjugate Gradients Algorithm

Recall the CG algorithm for approximately solving Ax = b, where A ∈ R
n×n is positive

definite. The algorithm minimizes the quadratic q(x) = (1/2)xTAx − bTx iteratively,
constructing a sequence x1, x2, . . . , requiring a single matrix-vector multiplication with A

per iteration. After at most n steps, neglecting numerical errors (which, in practice, you
cannot!), the exact solution x∗ = A−1b is reached, in that xn = x∗. Depending on A, this
can also happen earlier (you can use the Cayley-Hamilton theorem from linear algebra to
understand this point). However, the main rationale for CG today is to approximate x∗ by
xk with k � n. Whether xk is close to x∗ or not, depends on properties of A and b (it
depends on numerical errors as well, but we ignore these in the present exercise, assuming
that all computations are exact). In this exercise, we will analyze the convergence behaviour
in terms of the eigenspectrum of A.
Let x∗ = A−1b and q∗ = q(x∗) = −(1/2)bTA−1b. Then, q(xk) is nonincreasing and
≥ q∗. We’ll try to bound q(xk) − q∗. The eigendecomposition is A = QΛQT , Q ∈ R

n×n

orthonormal (QTQ = I), Λ diagonal (positive elements).

1. [2 points] Assume that we start from x0 = 0. The Krylov subspace Kk is spanned
by {Ajb | j = 0, . . . , k − 1}. We saw that xk = argmin

x∈Kk
q(x). For a polynomial

P (t) =
∑k−1

j=0 αjt
j , αj ∈ R, define

P (B) :=

k−1
∑

j=0

αjB
j , B ∈ R

n×n.

Take care that P (B)P (C ) 6= P (C )P (B) in general if B , C do not commute, and
recall that B0 := I. Show that

P (A) = QP (Λ)QT .

Defining y = QTx, b̄ = QTb, show that q(x) and q∗ can be written in terms of y , b̄,
and {λi}. Hint: What is an eigendecomposition of A−1?

2. [4 points] Let yk = QTxk. Show that xk = Pk(A)b for some polynomial Pk(t) of
degree < k, and that yk = Pk(Λ)b̄. In other words, yk,i = Pk(λi)b̄i. By writing q(xk)

2



in terms of yk, prove that

q(xk)− q∗ = min
Pk | deg(Pk)<k

(1/2)

n
∑

i=1

(b̄2i /λi)(λiPk(λi)− 1)2.

Here, deg(Pk) is the degree of Pk, the largest j such that tj features with a nonzero
coefficient.

3. [3 points] Argue that this means that the error q(xk)− q∗ is bounded in terms of a
polynomial P of degree ≤ k, such that P (0) = −1 (equivalent: such that P (0) = 1).
The existence of such a polynomial which is small on all λi, implies that the error is
small. Prove that if {λ1, . . . , λn} = {κ1, . . . , κk}, i.e. if A has no more than k different
eigenvalues, then xk = x∗.
Remark: Using Chebishev polynomials, minPk

maxt∈[λmin,λmax] Pk(t) can be deter-
mined for 0 < λmin ≤ λmax, which leads to the worst-case error bound

q(xk)− q∗ ≤

(

ρ− 1

ρ+ 1

)k

, ρ =
√

λmax/λmin.

Therefore, we should aim for well-conditioned matrices A (λmax/λmin small), which is
what many preconditioning stategies try to do. On the other hand, if the spectrum of
A comes in separate clusters, this bound is overly pessimistic.

3


