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Exercise 1. Blahut-Arimoto Algorithm

In this exercise, you will analyze a special case of the EM algorith, which can be shown
to converge to a unique optimum. This variant is older than EM itself, and is known as
Blahut-Arimoto algorithm. You can find more information on the role of this algorithm for
rate distortion theory in the textbook by Cover and Thomas.
Recall mixtures models from the lecture. For latent variable x, observed variable y (both
discrete with finite range), the log marginal likelihood is

logP (y = ỹ) = log

K∑
x=1

πxP (y = ỹ|x).

In the following, we write P (ỹ) instead of P (y = ỹ), but keep in mind the difference between
y (a variable) and ỹ (a fixed observed value for it). For the purpose of this exercise, we
will work with this single datapoint ỹ, but all you’ll show here holds for i.i.d. datasets just
as well. In this exercise, assume that P (ỹ|x) is fixed and known, and the goal is maximize
logP (ỹ) w.r.t. the distribution P (x) = (πx).
If (pi), (qi) are distributions over a finite set, the relative entropy is defined as

D[q ‖p] :=
∑
i

qi log
qi

pi
.

The function (q ,p) 7→ D[q ‖p] is convex, although you don’t need this fact here. Given two
convex sets of distributions P , Q, Csiszár and Tusnády showed that the minimum

D[q∗ ‖p∗] = min
p∈P

min
q∈Q

D[q ‖p]

is found by a simple alternating minimization algorithm: qj+1 = argmin
q
D[q ‖pj], pj+1 =

argmin
p
D[qj+1 ‖p], j = 1, 2, . . . .

1. [4 points] Bring the EM problem min(πx)(− logP (ỹ)) into the form of the alternating
minimization algorithm. What is P? What is Q?
Hint: Use the log partition function bound from the lecture. Use families P , Q of joint
distributions over (x, y), try the form q(x,y) = Q(x)I{y=ỹ}.

2. [2 points] Show that the sets P , Q you determined above (for the EM problem) are
both convex.

3. [2 points] Show that with your re-formulation of the EM problem, the E step update
is equivalent to qj+1 = argmin

q
D[q ‖pj ], and the M step update is equivalent to

pj+1 = argmin
p
D[qj+1 ‖p].

This means that in this restricted case, EM is just alternating minimization between
two convex sets, therefore converges to a unique minimum.



4. [2 points] Prove the information inequality: for any two distributions p, q , the relative
entropy D[q ‖p] is always nonnegative. Moreover, D[q ‖p] = 0 if and only if qi = pi
for all i.
Hint: Use Jensen’s inequality, in much the same way as in the lecture.

Exercise 2. Rauch-Tung-Striebel Smoother

In this exercise, you will work out the RTS smoother, based on an alternative view of HMM
inference. Recall the definition of an HMM, based on observation probabilities P (y |x) and
transition probabilities P (x·|x·−1). Given data D = {y1, . . . ,yT }, recall the difference be-
tween filtering (computing P (xt|y≤t), where y≤t = {y1, . . . ,yt}) and smoothing (computing
the marginal posteriors P (xt|D)). Since filtering is important per se (for online prediction,
given an incoming data stream), most smoothing algorithms make use of filtering code as
far as possible. An example is the two-filter smoother discussed in the lecture. The RTS
smoother is different, in that the backward pass is simpler, and the data is not required
anymore. On the other hand, since the backward pass can start only once the forward
(filtering) pass has been completed, the RTS smoother is less suitable for parallel hardware.

1. [2 points] Let us first consider a general HMM, not specifying the CPT types. You’ve
learned about belief propagation in the lecture. For a chain, compute all messages,
then combine them at each node. For LDS models, BP corresponds to the two-filter
smoother. In this exercise, you will work out an alternative to BP (for Markov chains),
that will lead to RTS smoothing.
Suppose we have determined P (xt|y≤t), t = 1, . . . , T , in a forward pass. Instead of
running an equivalent backward pass, we seek a recursion for the marginals P (xt|D)
directly. The start is easy: P (xT |D) = P (xT |y≤T ). Now assume that we have
determined P (xt|D), t > 1. Develop a recursion of the form

P (xt−1|D) =

∫
ft(xt−1,xt)P (xt|D) dxt

(if x is discrete, then
∫

becomes
∑

), so that ft can be computed easily (by local
computations that do not need any further global propagation) from the filtering dis-
tributions P (xt′ |y≤t′) we have already determined. State what ft is, and how to
compute it.
Hint: Draw the local part of the model at xt−1, xt. Look for conditional independen-
cies that help you. It is helpful to think of P (xt−1|y≤(t−1)) as a “prior” in this context
(state why).

2. [4 points] The RTS smoother is what you get if you apply this idea to the LDS model
discussed in the lecture. Develop the RTS backward pass equations (for P (xt|D),
t = 1, . . . , T ), given that you have the Kalman filter outcomes available. Use the nor-
mal form (moment parameters), it is simpler this way. Do state the final recursion of
means and covariance matrices.
Hint: Yes, you need those Gaussian formulae. ft(xt−1,xt) above will be some simpli-
fication of P (xt−1|xt, D). Work out its mean and covariance from the local filtering
distributions’ moments, and recall that the former is affine, the latter independent of
xt. Then, average over P (xt|D).
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