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Exercise 1. Pseudomarginals and Marginals

Recall the definition of marginal polytope M and local normalization polytope Mlocal, and
that M ⊂ Mlocal. Make sure you understand that both depend on the graph of a model
only. Since LBP operates with pseudomarginals τ ∈ Mlocal only, it can converge to values
that are not globally consistent: τ 6∈ M, meaning that there is no distribution that exhibits
τ as marginals. In this exercise, you will show that even for very simple graphs (that are
not trees), Mlocal \M is not empty.

1. [1 point] Consider the three-cycle: three binary nodes with values {0, 1}, three edges,
and some τ with τs(xs) = 1/2, s = 1, 2, 3, moreover τst(xs, xt) = τst ∈ [0, 1/2] for
xs = xt, τst(xs, xt) = 1/2−τst otherwise (xs 6= xt). There are three degrees of freedom
τ12, τ23, τ13. Show that for any assignment τst ∈ [0, 1/2]: τ ∈ Mlocal.

2. [3 points] Set τ12 = τ23 = 0.4 and τ13 = 0.1. We should be dubious about this
assignment: x1, x2 and x2, x3 are encouraged to be the same, but x1, x3 to be different.
Prove that τ is not in M.
Hint: Here is a nice idea, a generalization of which you will learn about in the next
lecture. Let y be the vector (1 x1 x2 x3)

T , and M := E[yyT ] for some distribution
over x. Then, M is positive semidefinite (explain why). Use proof by contradiction.
If τ defined above was in M, there would be a distribution Q(x) realizing it. Express
M in terms of τ , and prove that it is not positive definite, which is a contradiction
(argue why).

Exercise 2. Tree-reweighted Sum-Product

Recall the variational formulation of inference:

logZ = sup
µ∈M

{

θTµ +H[µ]
}

, M =
{

(µj)
∣

∣

∣
µj = EQ[f j(xCj

)] for someQ(x)
}

.

While this is a convex optimization problem, it is not tractable in general, and we have to
use relaxations. Some of the most frequently used relaxations, such as structured mean field
or LBP, are not convex. In this exercise, you will learn about a convex inference relaxation
(more about this in the next lecture). The ingredients are

• A tractable, concave upper bound to the entropy H[µ] (which itself is concave, but
not tractable)

• A tractable, convex outer bound to the marginal polytope M (which itself is convex,
but not tractable)

Although the method is more general, we’ll be concerned here with pairwise MRFs over
discrete variables:

P (x) = Z−1 exp

(

∑

s∈V
θs(xs) +

∑

(s,t)∈E
θst(xs, xt)

)

.



Make sure to understand this notation. V is the set of variables (nodes), E the set of
edges (cliques). The feature mapping (called f (x) in the lecture) consists of indicators
x 7→ I{xs=x̃} for all x̃, s ∈ V , and x 7→ I{xs=x̃,xt=x̃′} for all x̃, x̃′, (s, t) ∈ E, and in θs(xs),
θst(xs, xt), xs and xt are indices into the overall vector θ . Therefore,

θTf (x) =
∑

s∈V
θs(xs) +

∑

(s,t)∈E
θst(xs, xt),

θTµ =
∑

s∈V

∑

xs

θs(xs)µs(xs) +
∑

(s,t)∈E

∑

xs,xt

θst(xs, xt)µst(xs, xt).

The graph is given by G = (V,E). Assume that it is connected, but not a tree (otherwise
we do not have to approximate inference). We need the following result, which you do not
have to prove. Let G̃ be a subgraph of G, in the sense that G̃ = (V, Ẽ), Ẽ ⊂ E, and let MG

and MG̃ be the marginal polytopes w.r.t. either graph. If µ ∈ MG, define µG̃ as projection

onto G̃’s structure, meaning that µG̃ consists of µs(·), s ∈ V , and µst(·, ·), (s, t) ∈ Ẽ, then
µG̃ ∈ MG̃ (this is obvious). The real statement is this: for µ ∈ MG,

H[µ] ≤ H[µG̃]. (1)

Make sure to understand what H[µG̃] means (from the lecture): there is a unique distribution

on the graph G̃ (not on G!) whose moments are µG̃, and H[µG̃] is its entropy. So, (1) is

really about two distributions, one on G (with moments µ) and one on G̃ (with moments
µG̃). You know a special case of this: if Ẽ = ∅, then H[µG̃] =

∑

s∈V H[µs] ≥ H[µ].

1. [4 points] G is not a tree, but since it is connected, it contains spanning trees (sub-
graphs over all nodes V that are trees). Most graphs with many cycles have very many
embedded spanning trees. Let F = {F} be a set of spanning trees F embedded in
G (need not be all of them, but F 6= ∅), and ρ(F ) a distribution over F : ρ(F ) ≥ 0
and

∑

F∈F ρ(F ) = 1. Show that for any µ ∈ M: H[µ] ≤
∑

F∈F ρ(F )H[µF ], and that
µ 7→

∑

F∈F ρ(F )H[µF ] is concave.
Hint: Recall that if µ ∈ MG, then µF ∈ MF . Use (1). Be careful when arguing
why the upper bound is concave. Use the following statements (but prove that they
hold before using them): (a) if µF 7→ f(µF ) is concave, then µ 7→ f(µF ) is con-
cave as well. (b) if H[µF ] are concave for all F ∈ F and ρ(F ) is a distribution, then
∑

F∈F ρ(F )H[µF ] is concave as well. (c) µF 7→ H[µF ] is concave (what graph does
this situation correspond to?).

2. [5 points] You know how H[µF ] looks like, if F is a tree (embedded in G). Write the
upper bound

∑

F∈F ρ(F )H[µF ] in terms of single node entropies H[µs], double node
entropies H[µst], and so-called edge appearance probabilities ρst = PrF∼ρ[(s, t) ∈ EF ],
where F = (V,EF ) (so EF is the edge set of F ). Draw a graph with cycles, state some
distribution ρ(F ) over embedded spanning trees (draw them as well), and work out
these numbers ρst.
Make sure you understand that this cannot be done in general with H[µ], and that it
is the fact that we can write the upper bound like this (a simple function of the local
marginals) that makes it tractable.
Hint: Pull the expectation over ρ(F ) inside. It is simpler if, for every tree F , you group
together expressions H[µst]−H[µs]−H[µt] (you may recognize them, from the lecture,
as local negative mutual information terms), this leaves you with an expression that
does not depend on counting numbers ns.

3. [5 points] At this point, we have a relaxation which, if we could solve it, would give
us an upper bound to logZ. But we are still stuck with M = MG. Show that if
µ ∈ Mlocal (the local marginalization polytope from the lecture), then for every tree
F ∈ F : µF ∈ MF . Argue why this implies that the entropy upper bound derived
above is defined on Mlocal (while H[µ] itself is defined on M only). Therefore, if we
relax µ ∈ M to µ ∈ Mlocal, we have a tractable convex relaxation. Show that solving
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this relaxation leads to an upper bound to logZ.
Hint: Please do this carefully, for your own benefit of understanding. What are the
contraints of MF for a tree F , how do they relate to Mlocal? For the upper bound
on logZ, go step by step, and explain each inequality: first, upper bound on H[µ], for
µ ∈ M; second, outer bound Mlocal.
Note: For the meticulous. You may be worried that if H[µ] is not defined on Mlocal,
whether we can really do this second step. Couldn’t it be that H[τ ] >

∑

F∈F ρ(F )H[τF ]
for some τ ∈ Mlocal \M, whatever H[τ ] may be defined as? In fact, Wainwright and
Jordan show that H[τ ] = −∞ for τ 6∈ M, so the upper bound is valid everywhere.
But this argument is not even necessary, because the relaxation works in two steps.
In the first, H[µ] is eliminated, in the second, M is extended. Both are relaxations
(lead to inequalities), however

∑

F∈F ρ(F )H[τF ] is defined outside of M. Of course,
we would like to have it being concave also on Mlocal (which it is), but this is just to
obtain a convex relaxation.

4. [2 points] Compare the resulting convex variational problem with the Bethe varia-
tional problem. For which values ρst are they the same? Argue that this can happen
only if G is a tree in the first place.

5. [optional; 5 bonus points] Prove (1).
Hint: µG̃ is a valid moment vector, so is realized by some model on G̃ with potentials

eθst(xs,xt) on (st) ∈ Ẽ. But this distribution is also consistent with G: just add further
potentials eθst(xs,xt), (st) ∈ E \ Ẽ, with θst ≡ 0, giving rise to a model on G with
potential parameters θ. Write down the variational problem for this model, renaming
the optimization variables to τ (to distinguish them from the fixed value µ). Compare
θ
T
τ for τ = µ and the maximizer τ = τ ∗. Relate τ ∗ to µG̃.

This convex problems differs from the Bethe problem “only” by reweighting of entropy terms.
Since LBP corresponds to the Bethe problem (at least as far as fixed points are concerned),
there is an equivalent reweighted sum-product algorithm for solving the relaxation here. Its
equations can be deduced just like LBP from the Bethe approximation (recall the handout).
Interestingly, all this does not really depend on the set F or the distribution ρ(F ), but only
on the vector ρ = (ρst). What then are all valid assignments to this vector? You can find
details in the original paper, or the Wainwright and Jordan monograph. The set of all valid
ρ vectors is called the spanning tree polytope, and has been analyzed in combinatorics.
Are these the only reweightings of LBP that lead to convex relaxations? No, there are many
others. We will learn about others in the next lecture. Just as well, there are other convex
relaxations of variational inference that do not lead to reweighted LBP algorithms. And
the question when to use which relaxation for best results, is pretty much an open problem.
This is an ongoing, active part of Bayesian machine learning.
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