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Exercise 1. `1-minimization approximation guarantees

Let u = Φx∗ + n be a set of observations where u ∈ R
m and Φ ∈ R

m×n, (m < n). Here,
x∗ ∈ R

n is the signal of interest: it can be exactly k-sparse (k < m) or compressible, i.e. we
can well-approximate x∗ by keeping the k largest (in magnitude) coefficients and (yet) have
a good approximation of x∗. We denote the best k-sparse approximation of x∗ as xk.
One way to efficiently reconstruct x∗ is by using `1-minimization schemes, according to
which we try to solve the following optimization problem:

min
x:x∈Rn

‖x‖1 subject to ‖u− Φx‖2 ≤ ε. (1)

We reserve x̃ ∈ R
n to denote the sparse solution of (1). In this exercise, we prove the

following approximation guarantees for the `1-minimization problem:

Theorem 1 Assume Φ ∈ R
m×n satisfies the RIP for δ2k <

√
2−1 and let ‖n‖2 ≤ ε. Given

positive constants C1, C2, the solution x̃ satisfies the following approximation guarantees:

‖x̃− x∗‖2 ≤ C1√
k
‖xk − x∗‖1 + C2ε. (2)

To prove Theorem 1, we prove a series of steps that lead to the desired result. An important
“ingredient” in the proof is described next:

Lemma 1 For all x1, x2 ∈ R
n with disjoint support sets T1, T2 ⊆ N (respectively) such that

|T1| ≤ k1 and |T2| ≤ k2, the following inequality holds:

|〈Φx1,Φx2〉| ≤ δk1+k2
‖x1‖2‖x2‖2. (3)

To set-up notation, the index set of n-dimensional vectors is denoted as N = {1, 2, . . . , n}.
For S ⊆ N , we define the complement set Sc = N \ S. Moreover, given a set S ⊆ N and a
vector x ∈ R

n, (x)S ∈ R
n denotes a vector with nonzero coefficients at the positions indexed

by S.

1. [3 points] Let α := x̃ − x∗ ∈ R
n. We define the following index sets: Γi ⊆ N , i =

1, 2, . . . , where Γ0 contains the indices of the k largest (in magnitude) elements of x∗,
Γ1 contains the indices of the next k largest elements in α outside Γ0, Γ2 contains the
indices of the next k largest elements in α outside Γ0 ∪ Γ1 etc. Thus,

Γi ∩ Γj = {∅}, ∀i 6= j and α =
∑

i

(α)Γi
.

Given the above:

• Justify the following set of inequalities for i ≥ 2:

‖(α)Γi
‖2 ≤

√
k‖(α)Γi

‖∞ ≤ ‖(α)Γi−1
‖1√

k
, (4)



and prove:

‖(α)(Γ0∪Γ1)c‖2 ≤ ‖(α)Γc
0
‖1√

k
. (5)

Hint: Find the connection between ‖(α)(Γ0∪Γ1)c‖2 and
∑

i≥2 ‖(α)Γi
‖2 and then use

(4) to prove (5).

2. [1 point] Given that x̃ is a feasible solution, i.e., satisfies (1), prove:

‖Φx̃− Φx∗‖2 ≤ 2ε. (6)

3. Since:

‖α‖2 ≤ ‖(α)Γ0∪Γ1
‖2 + ‖(α)(Γ0∪Γ1)c‖2, (7)

we want to bound the quantities ‖(α)Γ0∪Γ1
‖2 and ‖(α)(Γ0∪Γ1)c‖2.

• [2 points] Prove:

‖(α)(Γ0∪Γ1)c‖2 ≤ ‖(α)Γ0
‖2 +

2√
k
‖xk − x∗‖1. (8)

Hint: Use the fact that ‖x∗‖1 ≥ ‖x̃‖1 and inequality (5).

• [3 points] Prove:

‖(α)Γ0∪Γ1
‖2 ≤ 2ε

√
1 + δ2k

1− δ2k
+

√
2δ2k

1− δ2k

‖(α)Γc
0
‖1√

k
, (9)

using the following steps:

(a) Using Φ(α)Γ0∪Γ1
= Φα−∑

i≥2 Φ(α)Γi
, prove:

‖Φ(α)Γ0∪Γ1
‖22 = 〈Φ(α)Γ0∪Γ1

,Φα〉 − 〈Φ(α)Γ0∪Γ1
,
∑

i≥2

Φ(α)Γi
〉. (10)

(b) Prove |〈Φ(α)Γ0∪Γ1
,Φα〉| ≤ 2ε

√
1 + δ2k‖(α)Γ0∪Γ1

‖2.
(c) Using Lemma 1, verify that |〈Φ(α)Γi

,Φ(α)Γj
〉| ≤ δ2k‖(α)Γi

‖2‖(α)Γj
‖2.

(d) Given that ‖(α)Γ0
‖2 + ‖(α)Γ1

‖2 ≤
√
2‖(α)Γ0∪Γ1

‖2, prove (9).
Hint: Use the definition of RIP on (α)Γ0∪Γ1

.

4. [1 point] Given the derivations above, complete the proof of Theorem 1 using (7) and
give the restricted isometry constant constraints in terms of δ2k.

Exercise 2. Proving RIP for Random matrices

In this exercise we will provide a simple proof of a fundamental CS construct namely the
Restricted Isometry property (RIP). Let Φ denote a n × N matrix where n < N . We say
that Φ satisfies the RIP of order k if there exists δk ∈ (0, 1) such that

(1 − δk) ‖xT ‖22 ≤ ‖ΦTxT ‖22 ≤ (1 + δk) ‖xT ‖22
holds for all sets T ⊂ {1, . . . , N} with |T | ≤ k where T denotes the set of column indices.
ΦT is the n × |T | matrix composed of those columns. xT denotes the vector obtained by
retaining only the entries of x corresponding to the column indices T . Denote by XT the set
of all vectors in R

N that are zero outside of T . Assume that the matrix Φ has i.i.d entries
with

E[φi,j ] = 0 and E[φ2
i,j ] =

1

n
.

1. [2 points] Show that E[‖Φx‖22] = ‖x‖22 for any given x ∈ R
N .
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Now for any x ∈ R
N the random variable ‖Φx‖22 is strongly concentrated around

its mean i.e. for any 0 < ε < 1 we have

P(
∣

∣

∣
‖Φx‖22 − ‖x‖22

∣

∣

∣
≥ ε ‖x‖22) ≤ 2e−nc0(ε) (11)

where c0(ε) is a constant depending only on ε and such that c0(ε) > 0 for all ε ∈ (0, 1).
We make use of this inequality in the following parts.

2. [4 points] As Φ is linear we can assume that ‖x‖2 = 1 for all x ∈ XT . Assume
|T | = k. Now it is known from covering numbers that there exists QT ⊆ XT with
|QT | ≤ (12δ )

k where δ ∈ (0, 1) and ‖q‖2 = 1 for all q ∈ QT so that

min
q∈QT

‖x− q‖2 ≤ δ

4
(12)

holds for any x ∈ XT . Use (12) along with the concentration result in (11) to show
that for any given T with |T | = k,

(1− δ) ‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δ) ‖x‖2

holds ∀x ∈ XT with probability at least 1− 2
(

12
δ

)k

e−c0(δ/2)n.

3. [4 points] Use the result from previous part to show that for a given 0 < δ < 1, n,
N , there exist constants c1, c2 > 0 depending only on δ such that for all sets T with
|T | = k,

(1− δ) ‖xT ‖2 ≤ ‖ΦTxT ‖2 ≤ (1 + δ) ‖xT ‖2
holds for the prescribed δ and any k ≤ c1n

log(N/k)
with probability at least 1− 2e−c2n.

Conclude that Φ satisfies the RIP of order k with high probability. (Hint: Use
(

N
k

)

≤
( eNk )k.)
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