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Latent Variables

The Power of Latent Variables
Have Gaussian, don’t tell you mean / covariance. Aetsch-baetsch!
⇒ You are sooo boring. I just use ML estimation.
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Latent Variables

Latent Variables

Latent variables make models interesting, expressive
Latent nuisance variables:
Create complex, realistic distributions from simple ingredients
Latent query variables:
Find hidden causes, groupings, explanations in data
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Latent Variables

Latent Variables

Latent variables make models interesting, expressive
Latent nuisance variables:
Create complex, realistic distributions from simple ingredients
Latent query variables:
Find hidden causes, groupings, explanations in data

Latent variables need more than estimation. They really need proper
inference (marginalization).

Bayesian Handle
Condition on observed variables
Marginalize over latent nuisance variables
Make use of posterior over latent query variables
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Latent Variables

Vocabulary

Joint likelihood P(y ,x )
Typically decomposes (product) according to graph
structure
Marginal likelihood P(y )

P(y ) =

∫
P(y ,x ) dx

Typically does not decompose (marginalization creates
dependencies)
Hierarchical model F3

P(y ,x ,θ) = P(y |x ,θ)P(x |θ)P(θ)

Example: x parameter, θ hyperparameter
P(x |θ) prior, P(θ) hyperprior
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Latent Variables

KISS: Occam’s Razor

Almost everything can be made latent: Model structure (edges),
presence / type of variables (nodes), hierarchies ad infinitum
Each makes sense for special tasks. But some claim Bayesian
statistics should be like that in general.

Occam’s Razor
Plurality should not be posited without necessity.
Aka: Keep It Simple, Stupid!
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Latent Variables

KISS: Occam’s Razor

Almost everything can be made latent: Model structure (edges),
presence / type of variables (nodes), hierarchies ad infinitum
Each makes sense for special tasks. But some claim Bayesian
statistics should be like that in general. I don’t.

Occam’s Razor
Plurality should not be posited without necessity.
Aka: Keep It Simple, Stupid!

KISS if you can:
You should understand characteristics of your model
You should (roughly) understand how your inference
approximation method behaves. Nobody does that with
hyper-complicated models
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Mixture Models

Mixture Models
Humans group, create categories, classify, mostly without any “true
labels” existing (think about colours, species, . . . ).
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Humans group, create categories, classify, mostly without any “true
labels” existing (think about colours, species, . . . ).

Mixture model:
Discrete latent variable x ∈ {1, . . . ,K}

P(y |x): Class distribution / mixture component
P(x = k) = πk : Class prior

P(y ) =
∑K

k=1
πkP(y |x = k)
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Mixture Models
Humans group, create categories, classify, mostly without any “true
labels” existing (think about colours, species, . . . ).

Mixture model:
Discrete latent variable x ∈ {1, . . . ,K}

P(y |x): Class distribution / mixture component
P(x = k) = πk : Class prior

P(y ) =
∑K

k=1
πkP(y |x = k)

Gaussian mixture model:
P(y |x) = N(µx ,Σx )

Nuisance x : Used all over the place
(whenever Gaussians alone don’t work)
Query x : Clustering, segmentation,
classification
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Mixture Models

Clustering: K-Means
Gaussian mixture model: P(y |x) = N(µx , I), P(x = k) = 1/K

Observed data: y1, . . . ,yn ∈ Rd

Latent indicators: x1, . . . , xn ∈ {1, . . . ,K}

How to find cluster centers µk?
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Mixture Models

Clustering: K-Means
Gaussian mixture model: P(y |x) = N(µx , I), P(x = k) = 1/K

Observed data: y1, . . . ,yn ∈ Rd

Latent indicators: x1, . . . , xn ∈ {1, . . . ,K}

How to find cluster centers µk?

Simple Muenchhausen strategy: Iterate F6

1 Each datapoint to closest center F6b

xi ← argmink ‖y i − µk‖ = argmaxk P(xi = k |y i)

2 Each center: Average of its datapoints

µk ← (
∑

xi=k
1)−1

∑
xi=k

y i = argmax
∑

xi=k
log P(y i |xi = k)

Maximum likelihood if we knew the xi
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Mixture Models

The EM Algorithm
Gaussian mixture model: P(y |x) = N(µx , I), P(x = k) = 1/K

Observed data: y1, . . . ,yn ∈ Rd

Latent indicators: x1, . . . , xn ∈ {1, . . . ,K}

How to find cluster centers µk?

Fixing K-Means: Iterate
1 Expectation: Posterior distribution for each datapoint

Q(xi = k)← P(xi = k |y i)

2 Maximization: Posterior average of all datapoints

µk ← n−1
k

∑
i
Q(xi = k)y i = argmax

∑
i
Q(xi = k) log P(y i |xi = k),

nk =
∑

i Q(xi = k). Posterior weighted maximum likelihood
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Mixture Models

The EM Algorithm

EM in action
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The EM Algorithm

EM in action

(EPFL) Graphical Models 14/10/2011 10 / 21



Mixture Models

The EM Algorithm

For P(y |x) = N(µx ,Σx ):
No new idea, weighted ML update for Σk as well F8
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Mixture Models

Some Pointers

How do I choose K if nobody tells me?
Example of model selection.
Bayesian possibility: D = {y1, . . . ,yn} F9

Determine marginal likelihood “high up”

log P(D|K ) = log
∫ ∏

i

∑
k
πk (θK )P(y i |xi = k ,θK ) dθK

θK : Parameters for K -component model
Pick K∗ = argmaxK log P(D|K )

Problem: Hard to approximate. Workable approaches exist.
Note: Chop this down→ BIC, AIC, . . .

Do I have to choose K at all? Can’t it be nuisance latent?
Nonparametric Bayesian methods:

Prior ranging over mixture models of all component numbers K
Idea: Marginalize over K as well
Hard to do this right in practice, especially with Gaussian mixtures

(EPFL) Graphical Models 14/10/2011 11 / 21



Mixture Models

Some Pointers

How do I choose K if nobody tells me?
Example of model selection.
Bayesian possibility: D = {y1, . . . ,yn}

Determine marginal likelihood “high up”

log P(D|K ) = log
∫ ∏
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∑
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πk (θK )P(y i |xi = k ,θK ) dθK

θK : Parameters for K -component model
Pick K∗ = argmaxK log P(D|K )

Problem: Hard to approximate. Workable approaches exist.
Note: Chop this down→ BIC, AIC, . . .
Do I have to choose K at all? Can’t it be nuisance latent?
Nonparametric Bayesian methods: F9b

Prior ranging over mixture models of all component numbers K
Idea: Marginalize over K as well
Hard to do this right in practice, especially with Gaussian mixtures
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Factor Analysis. Principal Components

Problem with Gaussian Models

Gaussians: Too restrictive for real-world data
⇒ Gaussian mixture models, . . .

Gaussians: Too flexible for real-world data

In Rn: Covariance has ≈ n2/2 parameters
⇒ Cannot fit all from limited data [curse of dimensionality]
Even with enough data: Application might demand fast computation
Latent query: Want to discover stable causes
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Factor Analysis. Principal Components

Problem with Gaussian Models

Gaussians: Too restrictive for real-world data
⇒ Gaussian mixture models, . . .
Gaussians: Too flexible for real-world data

In Rn: Covariance has ≈ n2/2 parameters
⇒ Cannot fit all from limited data [curse of dimensionality]
Even with enough data: Application might demand fast computation
Latent query: Want to discover stable causes

⇒ “Pancake models”
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Factor Analysis. Principal Components

Pancake Models

Pancake model (aka. latent Gaussian model) F11

y = µ + W x + ε, x ∼ N(0, I), ε ∼ N(0,Ψ)

W ∈ Rd ,p Factor loadings (p � d)
x ∈ Rp Latent (Gaussian) factors (degrees of variation)

Probabilistic PCA

Ψ = σ2I

Maximum likelihood estimate:
PCA (as you know it)!

Tipping, Bishop, 99

Independent CA (done right)

xi independent, not Gaussian

We’ll come to a special case

Factor Analysis
Ψ diagonal

P-PCA is special case
Used heavily in
psychometrics, social
sciences, marketing “science”
Maximum likelihood estimate:
No closed form in general
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Factor Analysis. Principal Components

Probabilistic PCA

y = µ + W x + ε, x ∼ N(0, I), ε ∼ N(0, σ2I)

Y = [y1 − µ| . . . |yn − µ], Ŝ = n−1Y Y T

Tipping, Bishop (1999):
Maximum likelihood estimate of W : Leading eigenvectors of Ŝ
⇒ Just standard PCA! F12
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Factor Analysis. Principal Components

Factor Analysis

y = µ + W x + ε, x ∼ N(0, I), ε ∼ N(0,Ψ), Ψ diagonal

Maximum likelihood: No closed-form estimator known
⇒ Have to use EM algorithm (Muenchhausen with pancakes)

Expectation: Q(x i) = P(x i |y i) = N(x i |?)

Maximization: Posterior weighted average
W ←?, Ψ ←?

You’ll do that in the exercises.
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Factor Analysis. Principal Components

Density Estimation in High Dimensions

We learned about
1 Gaussian mixture models
2 Factor analysis / P-PCA
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Factor Analysis. Principal Components

Density Estimation in High Dimensions

We learned about
1 Gaussian mixture models
2 Factor analysis / P-PCA

Combine them: Mixture of Factor Analysers (sic):
One of most powerful general-purpose density models

Speech recognition (often, W x = 0)
Probabilistic robotics
Bio-Informatics (microarray data)
Hand-written digits (MLers love them, don’t ask why)

Good fitting not simple. But there are useful heuristic methods
available.
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Markov Random Fields

The Naming Game

What do Boltzmann Machines, Products of Experts, Conditional
Random Fields have in common?

They are all fancy names

They are all the same (more or less): Markov random fields

P(x ) = Z−1
∏

j

Φj(xCj ), Z =
∑

x

∏
j

Φj(xCj )

They come with different graph structure / potential
parameterization, so algorithms seem different.
Trust me: They are not.
Positive side:
New approximations, applications, cross-fertilization. New views
on old things
We’ll see how to learn MRFs in next lecture (related to EM)

(EPFL) Graphical Models 14/10/2011 17 / 21



Markov Random Fields

The Naming Game

What do Boltzmann Machines, Products of Experts, Conditional
Random Fields have in common?

They are all fancy names
They are all the same (more or less): Markov random fields

P(x ) = Z−1
∏

j

Φj(xCj ), Z =
∑

x

∏
j

Φj(xCj )

They come with different graph structure / potential
parameterization, so algorithms seem different.
Trust me: They are not.
Positive side:
New approximations, applications, cross-fertilization. New views
on old things
We’ll see how to learn MRFs in next lecture (related to EM)

(EPFL) Graphical Models 14/10/2011 17 / 21



Markov Random Fields

The Naming Game

What do Boltzmann Machines, Products of Experts, Conditional
Random Fields have in common?

They are all fancy names
They are all the same (more or less): Markov random fields

P(x ) = Z−1
∏

j

Φj(xCj ), Z =
∑

x

∏
j

Φj(xCj )

They come with different graph structure / potential
parameterization, so algorithms seem different.
Trust me: They are not.
Positive side:
New approximations, applications, cross-fertilization. New views
on old things

We’ll see how to learn MRFs in next lecture (related to EM)

(EPFL) Graphical Models 14/10/2011 17 / 21



Markov Random Fields

The Naming Game

What do Boltzmann Machines, Products of Experts, Conditional
Random Fields have in common?

They are all fancy names
They are all the same (more or less): Markov random fields

P(x ) = Z−1
∏

j

Φj(xCj ), Z =
∑

x

∏
j

Φj(xCj )

They come with different graph structure / potential
parameterization, so algorithms seem different.
Trust me: They are not.
Positive side:
New approximations, applications, cross-fertilization. New views
on old things
We’ll see how to learn MRFs in next lecture (related to EM)

(EPFL) Graphical Models 14/10/2011 17 / 21



Markov Random Fields

The Boltzmann Machine

P(x ) = Z−1e−E(x )/T , E(x ) =
1
2

xT W x − bT x

A Gaussian?
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Markov Random Fields

The Boltzmann Machine

P(x ) = Z−1e−E(x )/T , E(x ) =
1
2

xT W x − bT x

A Gaussian? No: xi ∈ {±1} (binary spins)

Boltzmann (1844-1906), founded stat. mechanics / thermodynamics
x State (of system)
E(x ) Energy
W Weight / coupling matrix, W T = W , diag−1(W ) = 0
T Temperature

⇒ Comes from Ising model, but emphasis on learning W .
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Markov Random Fields

The Boltzmann Machine

P(x ) = Z−1e−E(x )/T , E(x ) =
1
2

xT W x − bT x

A Gaussian? No: xi ∈ {±1} (binary spins)

Boltzmann (1844-1906), founded stat. mechanics / thermodynamics
x State (of system)
E(x ) Energy
W Weight / coupling matrix, W T = W , diag−1(W ) = 0
T Temperature

⇒ Comes from Ising model, but emphasis on learning W .

“Conversion” into MRF:

Cij = {i , j}, i < j , wij 6= 0, Ci = {i},
Φij(Cij) = e−wij xi xj/T , Φi(Ci) = ebi xi/T
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Markov Random Fields

Conditional Random Fields

Undirected cousin of Hidden Markov Model [all that: lecture +2]
Underlying graph: chain⇒ Inference, learning simple.
Can be done on very large datasets
Heavily used in applications for text, language, WWW information
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Markov Random Fields

Gaussian Markov Random Fields

Gaussian with sparse, structured inverse covariance matrix
A = Σ−1 (aka. precision matrix) [No edge (ij)⇔ aij = 0]
Used for spatial / spatiotemporal data, also for images
Posterior mean computations in O(n):
Conjugate gradients, loopy belief propagation [part II]
Modern approaches: Algorithms from numerical mathematics,
convergent belief propagation for preconditioning

Fundamentally different from Gaussian process models:
P(x I) does not have precision matrix AI
(but (A/A\I)−1, as we’ve learned)
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Markov Random Fields

Wrap-Up

Latent variables: Salt in modelling soup
Mixtures: Grouping, clustering, classification
Latent Gaussian “pancake” models:
Economical parameterization in high dimensions
Markov random fields come in many disguises
Next lecture: Inference and learning (why EM works)
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