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Inference for Tree-structured Models

Loopy Belief Propagation

Remember belief propagation? Exact inference for tree-structured
graphical models in O(n) (dynamic programming)
Many graphs in practice have cycles. What to do then?
Serious Statistician (Lauritzen): Convert graph to junction tree,

run BP there (exact inference)
Computer Scientist (Pearl, . . . ):

Loopy belief propagation (LBP): Run BP iteratively, cross fingers
that it will converge. Wacky, but enormously successful!
So it converges . . .

When? Not always (why not?)
To what? Always to the same?
Corrections that are still feasible?

None of these questions could seriously be approached before
one thing became known: What is LBP doing at all?
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Inference for Tree-structured Models

Variational Inference

log Z = supµ∈M

{
θTµ + H[µ]

}
M =

{
(µj)

∣∣∣µj = EQ[f j(xCj )] for some Q(x )
}

M can be hard to fence in
θ ↔ µ can be hard to compute
H[µ] can be hard to compute
Variational mean field: Non-convex inner bound toM
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Inference for Tree-structured Models

The Marginal Polytope

M =
{

(µj)
∣∣∣µj = EQ[f j(xCj )] for some Q(x )

}
Multinomial on graph. Minimal representation.
M convex polytope: Described by finite number
inequalities.
Complexity ofM: Number of inequalities

Complexity ofM→ complexity of exact inference
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Inference for Tree-structured Models

Local Consistency

M =
{

(µj)
∣∣∣µj = EQ[f j(xCj )] for some Q(x )

}
Multinomial MRF. Pairwise and single node potentials (|Cj | ≤ 2)

Cutting away to fence inM. (L)BP steps are local:
What can we do with local computations? F2

Clique marginals are distributions

µij(x ij) ≥ 0, µi(xi) ≥ 0,
∑

xi
µi(xi) = 1

Consistency with neighbours∑
xj
µij(x ij) = µi(xi)

Local consistency polytopeMlocal:
Outer approximation,M⊂Mlocal
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Inference for Tree-structured Models

Variational Inference

log Z = supµ∈M

{
θTµ + H[µ]

}
M =

{
(µj)

∣∣∣µj = EQ[f j(xCj )] for some Q(x )
}

M can be hard to fence in
θ ↔ µ can be hard to compute
H[µ] can be hard to compute
Local consistency polytopeMlocal: Convex outer bound toM.
What about entropy term?

Why should I care?
This will show us what loopy belief propagation is doing!
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Inference for Tree-structured Models

Variational Inference on a Tree

log Z = supµ∈M

{
θTµ + H[µ]

}
M =

{
(µj)

∣∣∣µj = EQ[f j(xCj )] for some Q(x )
}

How does that look like for a tree graph G? F3

Multinomial MRF, overcomplete representation by indicators.
Marginals µj(xCj ) on cliques (factor nodes), µi(xi) on variables

Tree reparameterization. If the factor graph G is a tree:

P(x ) =

∏
j µj(xCj )∏

i µi(xi)ni−1 , ni = |{j | i ∈ Cj}|

(EPFL) Graphical Models 28/10/2011 8 / 19



Inference for Tree-structured Models

Variational Inference on a Tree

log Z = supµ∈M

{
θTµ + H[µ]

}
M =

{
(µj)

∣∣∣µj = EQ[f j(xCj )] for some Q(x )
}

How does that look like for a tree graph G?
Multinomial MRF, overcomplete representation by indicators.
Marginals µj(xCj ) on cliques (factor nodes), µi(xi) on variables
Tree reparameterization. If the factor graph G is a tree: F3b

P(x ) =

∏
j µj(xCj )∏

i µi(xi)ni−1 , ni = |{j | i ∈ Cj}|

(EPFL) Graphical Models 28/10/2011 8 / 19



Inference for Tree-structured Models

Variational Inference on a Tree

log Z = supµ∈M

{
θTµ + H[µ]

}
M =

{
(µj)

∣∣∣µj = EQ[f j(xCj )] for some Q(x )
}

P(x ) =

∏
j µj(xCj )∏

i µi(xi)ni−1 , ni = |{j | i ∈ Cj}|

What does that mean?
Marginal polytopeM for tree graph: F4

Entropy term H[µ]:

(EPFL) Graphical Models 28/10/2011 9 / 19



Inference for Tree-structured Models

Variational Inference on a Tree

log Z = supµ∈M

{
θTµ + H[µ]

}
M =

{
(µj)

∣∣∣µj = EQ[f j(xCj )] for some Q(x )
}

P(x ) =

∏
j µj(xCj )∏

i µi(xi)ni−1 , ni = |{j | i ∈ Cj}|

What does that mean?
Marginal polytopeM for tree graph:
Identical to local marginalization polytope: M =Mlocal

Entropy term H[µ]: F4b

(EPFL) Graphical Models 28/10/2011 9 / 19



Inference for Tree-structured Models

Variational Inference on a Tree

log Z = supµ∈M

{
θTµ + H[µ]

}
M =

{
(µj)

∣∣∣µj = EQ[f j(xCj )] for some Q(x )
}

P(x ) =

∏
j µj(xCj )∏

i µi(xi)ni−1 , ni = |{j | i ∈ Cj}|

What does that mean?
Marginal polytopeM for tree graph:
Identical to local marginalization polytope: M =Mlocal

Entropy term H[µ]:

H[µ] =
∑

j
H[µj(xCj )]−

∑
i
(ni − 1)H[µi(xi)]

Simple function of µ ∈Mlocal
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Inference for Tree-structured Models

Variational Inference on a Tree

log Z = supµ∈M

{
θTµ + H[µ]

}
M =

{
(µj)

∣∣∣µj = EQ[f j(xCj )] for some Q(x )
}

P(x ) =

∏
j µj(xCj )∏

i µi(xi)ni−1 , ni = |{j | i ∈ Cj}|

For tree graph:
1 M =Mlocal [simple, just O(n) inequalities]
2 H[µ] =

∑
j H[µj(xCj )]−

∑
i(ni − 1)H[µi(xi)] [direct from µ ∈Mlocal]

3 Exact inference
⇒Wow, inference simple for a tree!
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Inference for Tree-structured Models

Variational Inference on a Tree

log Z = supµ∈M

{
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}
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}
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3 Exact inference
⇒Wow, inference simple for a tree!
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Inference for Tree-structured Models

Variational Inference on a Tree

log Z = supµ∈M

{
θTµ + H[µ]

}
M =

{
(µj)

∣∣∣µj = EQ[f j(xCj )] for some Q(x )
}

P(x ) =

∏
j µj(xCj )∏

i µi(xi)ni−1 , ni = |{j | i ∈ Cj}|

For any graph:
1 M⊂Mlocal [simple, just O(n) inequalities]
2 H[µ] ≈

∑
j H[µj(xCj )]−

∑
i(ni − 1)H[µi(xi)] [direct from µ ∈Mlocal]

3 Approximate inference (by loopy belief propagation)
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Loopy Belief Propagation for Discrete Models

The Bethe Approximation Nobel Prize Winners affect Machine Learning F5

− log Z ≈ −θTµ −
∑

j
H[µj(xCj )] +

∑
i
(ni − 1)H[µi(xi)]︸ ︷︷ ︸

Bethe free energy

Variational Foundation of Loopy BP

Fixed point of loopy belief propagation [Yedidia, Freeman, Weiss,
NIPS 13 (01)]

⇒ Saddle point of Bethe free energy, subj. to µ ∈Mlocal
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Loopy Belief Propagation for Discrete Models

The Bethe Approximation Nobel Prize Winners affect Machine Learning

− log Z ≈ −θTµ −
∑

j
H[µj(xCj )] +

∑
i
(ni − 1)H[µi(xi)]︸ ︷︷ ︸

Bethe free energy

Variational Foundation of Loopy BP

Fixed point of loopy belief propagation [Yedidia, Freeman, Weiss,
NIPS 13 (01)]

⇒ Saddle point of Bethe free energy, subj. to µ ∈Mlocal

Make sure you understand: In general,
µ ∈Mlocal not realizable marginals (µ 6∈ M),
not even at fixed point (call them pseudomarginals)

∑
j H[µj(xCj )]−

∑
i(ni − 1)H[µi(xi)] 6= H[µ], not an entropy

(can be negative, even for µ ∈M)
∝ (
∏

j µj(xCj ))/(
∏

i µi(xi)
ni−1) is distribution (of course),

but not with marginals µj(xCj ) [For tree: Remove not]
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Loopy Belief Propagation for Discrete Models

Messages are Lagrange Multipliers

FBethe = −θTµ −
∑

j
H[µj(xCj )] +

∑
i
(ni − 1)H[µi(xi)], µ ∈Mlocal

Local consistency: µ ∈Mlocal means that µ � 0 and∑
xCj\i

µj(xCj ) = µi(xi), i ∈ Cj ,
∑

xi
µi(xi) = 1, i = 1, . . . ,n

Messages©→ �, �→© [recall exercises]

Mi→j(xi) ∝
∏

j ′∈Ni\j
Mj ′→i(xi),

Mj→i(xi) ∝
∑

xCj\i
Φj(xCj )

∏
i ′∈Cj\i

Mi ′→j(xi ′),

µi(xi) ∝
∏

j∈Ni
Mj→i(xi), µj(xCj ) ∝ Φj(xCj )

∏
i∈Cj

Mi→j(xi)

Proof [handout – study it!]:
Construct Lagrangian
Rewrite stationary equations. Log messages turn out to be
Lagrange multipliers at fixed point
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Loopy Belief Propagation for Discrete Models

The Bethe Approximation

P(x ) =
µ14µ25µ36µ45µ56µ58µ69µ78

µ4µ
3
5µ

2
6µ8

,

µ ∈Mlocal =M

(EPFL) Graphical Models 28/10/2011 12 / 19



Loopy Belief Propagation for Discrete Models

The Bethe Approximation

P(x )≈ µ14µ25µ36µ45µ56µ58µ69µ78

µ4µ
3
5µ

2
6µ8

× µ12µ23µ47µ89

µ1µ
2
2µ3µ4µ7µ8µ9

,

µ ∈Mlocal⊃M
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Loopy Belief Propagation for Discrete Models

Remarks

Stable fixed point of LBP
⇒ Local minimum of FBethe, subj. to µ ∈Mlocal [Heskes, NIPS 15 (03)]

Bethe neg-entropy not convex⇒ Bethe problem not convex

Double loop algorithms guarantee convergence, slower than LBP
Bethe neg-entropy convex in special cases (your sheet!)

Generalized belief propagation:
UseMlocal and Bethe (approximate) entropy on cluster graphs
(aka. region graphs): cliques larger than Cj , smaller than in
junction tree

Big improvement for regular 2D grids
Often worse in terms of convergence behaviour
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Loopy Belief Propagation for Discrete Models

Theory about LBP. Extensions

A certainly incomplete list:
Convergence analyses

Studying computation tree
Contraction arguments (unique fixed point!)
Convexity of Bethe neg-entropy

Error bounds on marginals
Tree reparameterizations
Bound propagation

Higher-order loop corrections
Convexifications. Reweighted LBP
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Loopy Belief Propagation for Discrete Models

Loopy Belief Propagation in Practice

Coding / Information Theory F10

LDPC codes and LBP
decoding revolutionized this
field (resurrection of Gallager
codes)
Used from deep space
communication (Mars rovers)
over satellite transmission to
CD players / hard drives
Theoretical guarantees by
density propagation (with high
probability over random LDPC
graphs)

H =
Courtesy MacKay: Information Theory . . . (2003)
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Loopy Belief Propagation for Discrete Models

Loopy Belief Propagation in Practice

Computer Vision:
Markov Random Fields F10b

Denoising, super-resolution,
restoration (early work by
Besag)
Depth / reconstruction from
stereo, matching,
correspondences
Segmentation, matting,
blending, stitching, impainting,
. . .

Courtesy MSR
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Loopy Belief Propagation for Gaussian Models

Why LBP for Gaussian Models?

G-MRFs heavily used in spatial statistics (remote sensing, . . . )
and in low-level computer vision
Isn’t Gaussian inference tractable? O(n3) is poly(n).
⇒ If n = 107, O(n3) is intractable

Can’t I just use conjugate gradients?
For means you can (and you should), but not for variances.
⇒ Convergent LBP is used to precondition CG
What if my signal is just not Gaussian (say: image)?
Approximate inference for non-Gaussian continuous MRFs needs
G-MRFs as major computational backbone
Advantage of continuous MRFs (based on G-MRFs) over discrete:
Global covariances can be extracted. They are what (often) drives
experimental design
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Loopy Belief Propagation for Gaussian Models

LBP for Gaussian Models
LBP: Gaussian versus multinomial models

Similar

Families closed under sum /
product
LBP, Bethe relaxation: Exactly
same form

Different

Inference “just” O(n3) for
Gaussian models
G-LBP can break down
(negative variances) for valid
G-MRF
G-LBP: More known about
convergence / correctness
(where errors come from)
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LBP for Gaussian Models
LBP: Gaussian versus multinomial models

Similar

Families closed under sum /
product
LBP, Bethe relaxation: Exactly
same form

Different

Inference “just” O(n3) for
Gaussian models
G-LBP can break down
(negative variances) for valid
G-MRF
G-LBP: More known about
convergence / correctness
(where errors come from)

Also: G-LBP seed of ideas to tackle general LBP
Computation tree analysis [Weiss et.al., NCOMP 01]

Tree-based reparameterizations [Wainwright et.al., NIPS 13 (01)]
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Loopy Belief Propagation for Gaussian Models

Results for G-MRF LBP

Whenever LBP converges, the means are exact. [Weiss et.al., NCOMP 01]

Variances not correct in general (except trees)
LBP converges for walk-summable models. [Malioutov et.al., JMLR 06]

P(x ) ∝
∏
(ij)∈E

Φij(x ij)︸ ︷︷ ︸
Proper Gaussian

LBP variance estimates properly characterized
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Loopy Belief Propagation for Gaussian Models

Wrap-Up

Loopy belief propagation: Non-convex variational relaxation.
Pretend graph is a tree
Convergence / approximation error: “How wrong” is that
conception?
Bethe variational problem: Characterization of LBP.
Leads to other relaxations [next lecture]
Gaussian LBP: O(n) approximate inference in Gaussian MRFs.
Better characterized than discrete LBP
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