Probabilistic Graphical Models

Lecture 10: Loopy Belief Propagation

Volkan Cevher, Matthias Seeger
Ecole Polytechnique Fédérale de Lausanne

28/10/2011

B (Pr

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

(EPFL) Graphical Models 28/10/2011 1/19



0 Inference for Tree-structured Models
9 Loopy Belief Propagation for Discrete Models

e Loopy Belief Propagation for Gaussian Models

(EPFL) Graphical Models 28/10/2011 2/19



Inference for Tree-structured Models
Loopy Belief Propagation

@ Remember belief propagation? Exact inference for tree-structured
graphical models in O(n) (dynamic programming)

@ Many graphs in practice have cycles. What to do then?

Serious Statistician (Lauritzen): Convert graph to junction tree,
run BP there (exact inference)
Computer Scientist (Pearl, .. .):
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Inference for Tree-structured Models
Loopy Belief Propagation

@ Remember belief propagation? Exact inference for tree-structured
graphical models in O(n) (dynamic programming)
@ Many graphs in practice have cycles. What to do then?

Serious Statistician (Lauritzen): Convert graph to junction tree,
run BP there (exact inference)
Computer Scientist (Pearl, ...): Run BP anyway, see what you get
(approximate inference)
@ Loopy belief propagation (LBP): Run BP iteratively, cross fingers
that it will converge. Wacky, but enormously successful!
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Inference for Tree-structured Models
Loopy Belief Propagation

@ Remember belief propagation? Exact inference for tree-structured
graphical models in O(n) (dynamic programming)
@ Many graphs in practice have cycles. What to do then?
Serious Statistician (Lauritzen): Convert graph to junction tree,
run BP there (exact inference)
Computer Scientist (Pearl, ...): Run BP anyway, see what you get
(approximate inference)
@ Loopy belief propagation (LBP): Run BP iteratively, cross fingers
that it will converge. Wacky, but enormously successful!
@ So it converges ...
o When? Not always (why not?)
e To what? Always to the same?
e Corrections that are still feasible?
None of these questions could seriously be approached before
one thing became known: What is LBP doing at all?
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Inference for Tree-structured Models
Variational Inference

l0gZ = sup,,c {07 + Hiul}
M= { ()| 1 = Eqlfy(x)] for some Q(x) }

oM can be hard to fence in
6 < p can be hard to compute
H[u] can be hard to compute

@ Variational mean field: Non-convex inner bound to M
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Inference for Tree-structured Models

The Marginal Polytope

M = { ()| 1 = Ealfj(xg)] for some Q(x) }

Multinomial on graph. Minimal representation.

@ M convex polytope: Described by finite number
inequalities.
Complexity of M: Number of inequalities

@ Complexity of M — complexity of exact inference
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Inference for Tree-structured Models
Local Consistency

M = {(w) | i = Eqlf(xc)] for some Q(x) }

Multinomial MRF. Pairwise and single node potentials (|C;| < 2)

@ Cutting away to fence in M. (L)BP steps are local:
What can we do with local computations? F2
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Inference for Tree-structured Models
Local Consistency

M = {(w) | i = Eqlf(xc)] for some Q(x) }

Multinomial MRF. Pairwise and single node potentials (|C;| < 2)

@ Cutting away to fence in M. (L)BP steps are local:
What can we do with local computations?

@ Cligue marginals are distributions
pi(Xp) 20, pi(xi) =0, Y pi(xi) =1
@ Consistency with neighbours

ij wif(Xip) = pi(X;)
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Inference for Tree-structured Models
Local Consistency

M = {(w) | i = Eqlf(xc)] for some Q(x) }

Multinomial MRF. Pairwise and single node potentials (|C;| < 2)

@ Cutting away to fence in M. (L)BP steps are local:
What can we do with local computations?

@ Cligue marginals are distributions
pi(Xp) 20, pi(xi) =0, Y pi(xi) =1
@ Consistency with neighbours

ij wif(Xip) = pi(X;)

@ Local consistency polytope Mgcar:
Outer approximation, M C Mgcal F2b
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Inference for Tree-structured Models
Variational Inference

log Z = supueM{OTp, + H[u]}

M ={ ()| 1 = Eqlfy(x)] for some Q(x) }

oM can be hard to fence in
6 < p can be hard to compute
H[p]  can be hard to compute

@ Local consistency polytope Mqcq: Convex outer bound to M.
What about entropy term?
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Inference for Tree-structured Models
Variational Inference

log Z = supueM{OTp, + H[u]}

M ={ ()| 1 = Eqlfy(x)] for some Q(x) }

oM can be hard to fence in
6 < p can be hard to compute
H[p]  can be hard to compute

@ Local consistency polytope Mqcq: Convex outer bound to M.
What about entropy term?

@ Why should | care?
This will show us what loopy belief propagation is doing!
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Inference for Tree-structured Models
Variational Inference on a Tree

log Z = supueM{OTp, + H[u]}

M ={ ()| 1 = Eqlfy(x)] for some Q(x) }

How does that look like for a tree graph G? F3

@ Multinomial MRF, overcomplete representation by indicators.
Marginals p(X¢;) on cliques (factor nodes), xi(x;) on variables
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Inference for Tree-structured Models
Variational Inference on a Tree

log Z = supueM{OTp, + H[u]}

M ={ ()| 1 = Eqlfy(x)] for some Q(x) }

How does that look like for a tree graph G?

@ Multinomial MRF, overcomplete representation by indicators.
Marginals p(X¢;) on cliques (factor nodes), xi(x;) on variables

@ Tree reparameterization. If the factor graph G is a tree: Fab

~ Ijmi(xg)

P00 T o

ni = [{jlie Gl
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Inference for Tree-structured Models
Variational Inference on a Tree

log Z = supueM{OTp, + H[u]}
M ={ ()| 1 = Eqlfy(x)] for some Q(x) }
T sx0)

P(x , ni={jlieC;
( ) H, ( ) 1 |{ ’ /}‘
What does that mean?
@ Marginal polytope M for tree graph: F4
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Inference for Tree-structured Models
Variational Inference on a Tree

I0gZ = sup,,c {671 + Hlul}
M ={ ()| 1 = Eqlfy(x)] for some Q(x) }
Px) Hn,u(,( )c,) |

What does that mean?

@ Marginal polytope M for tree graph:
Identical to local marginalization polytope: M = Mgcal

@ Entropy term H|pu]: Fab

ni={jlie Gl
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Inference for Tree-structured Models
Variational Inference on a Tree

I0gZ = sup,,c {671 + Hlul}
M ={ ()| 1 = Eqlfy(x)] for some Q(x) }
Px) Hn,u(,( )c,) |

What does that mean?

@ Marginal polytope M for tree graph:
Identical to local marginalization polytope: M = Mgcal

@ Entropy term H|pu]:

Hlu] = ZjH[Mj(XC,)] - Zi(ni — DH[ui(x)]

ni={jlie Gl

Simple function of p € Mgcal
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Inference for Tree-structured Models
Variational Inference on a Tree

I0gZ = sup,,c {671 + Hlul}
M ={ ()| 1 = Eqlfy(x)] for some Q(x) }

pixy - Tltilxe)

T o) ni={jlie Gl

For tree graph:
Q@ M = M,ueq [simple, just O(n) inequalities]
Q@ Hu] = > Hlu(xc)] = >2;(ni — 1)H[ui(x;)] [direct from p € Miocall
© Exact inference

= Wow, inference simple for a tree!
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Inference for Tree-structured Models
Variational Inference on a Tree

I0gZ = sup,,c {671 + Hlul}
M ={ ()| 1 = Eqlfy(x)] for some Q(x) }

Lm(xg) C,) m=l{lieC}

PO = T, ity

For tree graph:
Q@ M = M,ueq [simple, just O(n) inequalities]
Q Hlu] = > Hlp(xc)] = >2;(ni — 1)H[i(x;)] [direct from p € Miocal
© Exact inference

= Wow, inference simple for a tree!
Knew that before, it’s just BP. What'’s the point?
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Inference for Tree-structured Models
Variational Inference on a Tree

I0gZ = sup,,c {671 + Hlul}
M ={ ()| 1 = Eqlfy(x)] for some Q(x) }

pixy - Tltilxe)

T o) ni={jlie Gl

For any graph:
@ M C Mgeq [simple, just O(n) inequalities]
Q Hlu] ~ > Hlp(xc)] = >;(ni — 1)H[i(x;)] [direct from p € Migcal
© Approximate inference (by loopy belief propagation)
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Loopy Belief Propagation for Discrete Models

Th e Bet h e App rOX| m atIO n Nobel Prize Winners affect Machine Learning

—logZ ~—6"p — Z/.H[Mj(xc,)] + > (= H[ui(x)]

/

Bethe free energy
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Loopy Belief Propagation for Discrete Models

Th e Bet h e App rOX| m atIO n Nobel Prize Winners affect Machine Learning

—logZ ~—6"p — Z/.H[Mj(xc,)] + > (= DH[i(x)] |

/

Bethe free energy

Variational Foundation of Loopy BP

[Yedidia, Freeman, Weiss,

Fixed point of loopy belief propagation NIPS 13 (01)]
= Saddle point of Bethe free energy, subj. to . € Mgca
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Loopy Belief Propagation for Discrete Models

Th e Bet h e App rOX| m atIO n Nobel Prize Winners affect Machine Learning

—logZ ~—6"p — Z/.H[Mj(xc,)] + > (= H[ui(x)]

/

Bethe free energy

Variational Foundation of Loopy BP

[Yedidia, Freeman, Weiss,

Fixed point of loopy belief propagation NIPS 13 (01)]
= Saddle point of Bethe free energy, subj. to . € Mgca

Make sure you understand: In general,

@ 1 € Mgcg NOt realizable marginals (u ¢ M),
not even at fixed point (call them pseudomarginals)
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Loopy Belief Propagation for Discrete Models

Th e Bet h e App rOX| m atIO n Nobel Prize Winners affect Machine Learning

—logZ ~—6"p — Z/.H[Mj(xc,)] + > (= H[ui(x)]

/

Bethe free energy

Variational Foundation of Loopy BP

[Yedidia, Freeman, Weiss,

Fixed point of loopy belief propagation NIPS 13 (01)]
= Saddle point of Bethe free energy, subj. to . € Mgca

Make sure you understand: In general,

@ 1 € Mgcg NOt realizable marginals (u ¢ M),
not even at fixed point (call them pseudomarginals)

° Z,-H[Mj(xc,)] — > i(ni — V)H[pi(x;)] # H[p], not an entropy
(can be negative, even for u € M) F5b
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Loopy Belief Propagation for Discrete Models

Th e Bet h e App rOX| m atIO n Nobel Prize Winners affect Machine Learning

—logZ ~—6"p — Z/.H[Mj(xc,)] + > (= H[ui(x)]

/

Bethe free energy

Variational Foundation of Loopy BP

Fixed point of loopy belief propagation N e st
= Saddle point of Bethe free energy, subj. to . € Mgca

Make sure you understand: In general,
@ 11 € Mgcq Not realizable marginals (p & M),
not even at fixed point (call them pseudomarginals)

® > H[u(Xc)] — X2;(m — 1)Hui(x;)] # Hlu], not an entropy
(can be negative, even for u € M)

@ o< ([[;ni(xc))/(IL; wi(x))"~1) is distribution (of course),
but not with marginals Mj(Xc,-) [For tree: Remove not]
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Loopy Belief Propagation for Discrete Models

Messages are Lagrange Multipliers

FBethe = _OTN' - Z H[N/(XCJ ] + Z - 1 H[MI(XI)] © € Miocal
@ Local consistency: p € Mgcq means that u > 0 and
ZXCj\; IU’](XC]) = ,U,,'(Xj), I € Cj, ZX,' /J,,'(X,') = 1, | = 1,. .., N
@ Messages O — O, 0 — O [recall exercises]
Mi—)j(xi) X HIIEM\] IVI/'/_”'(X’.)’
IVI/'—H'(XI') X ZXC-\' q)/(xcj) Hi’ECj\i M",—U'(X/'/)’
j 1

i(xi) O<H Mji(xi), M/(Xc,-)0<¢/(xc,)l—[,€cj Mi;(xi)

@ Proof [handout — study it!]:
e Construct Lagrangian
o Rewrite stationary equations. Log messages turn out to be
Lagrange multipliers at fixed point
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Loopy Belief Propagation for Discrete Models

The Bethe Approximation

> O
O P(X) M14M25M36M45M56M58M69#78

papdpdis
€ Migca = M
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Loopy Belief Propagation for Discrete Models

The Bethe Approximation

@ @ @ P(x) ~ H14/251136H45/156 158/ 69 /178

Juapigpd e
HA12 423 [447 489
(4\ (5) ( 6) P HB a7 sl
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Loopy Belief Propagation for Discrete Models
Remarks

@ Stable fixed point of LBP
= Local minimum of Fgethe, SUDj. t0 1 € Miocal [Heskes, NIPS 15 (03)]
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Loopy Belief Propagation for Discrete Models
Remarks

@ Stable fixed point of LBP
= Local minimum of Fgethe, SUDj. t0 1 € Miocal [Heskes, NIPS 15 (03)]
@ Bethe neg-entropy not convex = Bethe problem not convex F8

e Double loop algorithms guarantee convergence, slower than LBP
o Bethe neg-entropy convex in special cases (your sheet!)
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Loopy Belief Propagation for Discrete Models
Remarks

@ Stable fixed point of LBP
= Local minimum of Fgethe, SUDj. t0 1 € Miocal [Heskes, NIPS 15 (03)]
@ Bethe neg-entropy not convex = Bethe problem not convex
e Double loop algorithms guarantee convergence, slower than LBP
o Bethe neg-entropy convex in special cases (your sheet!)

@ Generalized belief propagation:
Use M qcar and Bethe (approximate) entropy on cluster graphs
(aka. region graphs): cliques larger than C;, smaller than in
junction tree
e Big improvement for regular 2D grids
e Often worse in terms of convergence behaviour
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Loopy Belief Propagation for Discrete Models

Theory about LBP. Extensions

A certainly incomplete list:
@ Convergence analyses

e Studying computation tree
e Contraction arguments (unique fixed point!)
o Convexity of Bethe neg-entropy

@ Error bounds on marginals

o Tree reparameterizations
e Bound propagation

@ Higher-order loop corrections
@ Convexifications. Reweighted LBP
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Loopy Belief Propagation for Discrete Models

Loopy Belief Propagation in Practice

Coding / Information Theory F10 T 1
o LDPC codes and LBP SEETE SR
decoding revolutionized this T 11
field (resurrection of Gallager H= 1 1 oy
codes) 111 ! 111%11
@ Used from deep space 1 11 1

communication (Mars rovers)
over satellite transmission to
CD players / hard drives

@ Theoretical guarantees by
density propagation (with high
probability over random LDPC

graphs) Courtesy MacKay: Information Theory . . . (2003)
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Loopy Belief Propagation for Discrete Models

Loopy Belief Propagation in Practice

Computer Vision:
Markov Random Fields F10b

@ Denoising, super-resolution,
restoration (early work by
Besag)

@ Depth / reconstruction from
stereo, matching,
correspondences

@ Segmentation, matting, _
blending, stitching, impainting, Courtesy MSR
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Loopy Belief Propagation for Gaussian Models
Why LBP for Gaussian Models?

@ G-MRFs heavily used in spatial statistics (remote sensing, ...)
and in low-level computer vision

@ Isn't Gaussian inference tractable? O(n®) is poly(n).
= If n= 10", O(n®) is intractable
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Loopy Belief Propagation for Gaussian Models
Why LBP for Gaussian Models?

@ G-MRFs heavily used in spatial statistics (remote sensing, ...)
and in low-level computer vision
@ Isn't Gaussian inference tractable? O(n®) is poly(n).
= If n= 10", O(n®) is intractable
@ Can’t | just use conjugate gradients?
For means you can (and you should), but not for variances.
= Convergent LBP is used to precondition CG
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Loopy Belief Propagation for Gaussian Models
Why LBP for Gaussian Models?

@ G-MRFs heavily used in spatial statistics (remote sensing, ...)
and in low-level computer vision

@ Isn't Gaussian inference tractable? O(n®) is poly(n).
= If n= 10", O(n®) is intractable

@ Can’t | just use conjugate gradients?
For means you can (and you should), but not for variances.
= Convergent LBP is used to precondition CG

@ What if my signal is just not Gaussian (say: image)?
Approximate inference for non-Gaussian continuous MRFs needs
G-MRFs as major computational backbone
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Loopy Belief Propagation for Gaussian Models
Why LBP for Gaussian Models?

@ G-MRFs heavily used in spatial statistics (remote sensing, ...)
and in low-level computer vision

@ Isn't Gaussian inference tractable? O(n®) is poly(n).
= If n= 10", O(n®) is intractable

@ Can’t | just use conjugate gradients?
For means you can (and you should), but not for variances.
= Convergent LBP is used to precondition CG

@ What if my signal is just not Gaussian (say: image)?
Approximate inference for non-Gaussian continuous MRFs needs
G-MRFs as major computational backbone

@ Advantage of continuous MRFs (based on G-MRFs) over discrete:
Global covariances can be extracted. They are what (often) drives
experimental design
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Loopy Belief Propagation for Gaussian Models
LBP for Gaussian Models

LBP: Gaussian versus multinomial models

Similar Different
@ Families closed under sum / @ Inference “just” O(n®) for
product Gaussian models
@ LBP, Bethe relaxation: Exactly @ G-LBP can break down
same form (negative variances) for valid
G-MRF

@ G-LBP: More known about
convergence / correctness
(where errors come from)
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Loopy Belief Propagation for Gaussian Models
LBP for Gaussian Models

LBP: Gaussian versus multinomial models

Similar Different
@ Families closed under sum / @ Inference “just” O(n®) for
product Gaussian models
@ LBP, Bethe relaxation: Exactly @ G-LBP can break down
same form (negative variances) for valid
G-MRF

@ G-LBP: More known about
convergence / correctness
(where errors come from)
Also: G-LBP seed of ideas to tackle general LBP
@ Computation tree analysis [Weiss et.al., NCOMP 01]
@ Tree-based reparameterizations [Wainwright etl., NIPS 13 (01)]
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Loopy Belief Propagation for Gaussian Models

Results for G-MRF LBP

@ Whenever LBP converges, the means are exact. [Weiss et.al., NCOMP 01]
Variances not correct in general (except trees)

@ LBP converges for walk-summable models. [Malioutov et.al., JMLR 06]
Px)oc T  ®i(xp)
(hHee

Proper Gaussian

LBP variance estimates properly characterized

K e
‘ bbb
—®

(EPFL) Graphical Models 28/10/2011 18/19



Loopy Belief Propagation for Gaussian Models
Wrap-Up

@ Loopy belief propagation: Non-convex variational relaxation.
Pretend graph is a tree

@ Convergence / approximation error: “How wrong” is that
conception?

@ Bethe variational problem: Characterization of LBP.
Leads to other relaxations [next lecture]

@ Gaussian LBP: O(n) approximate inference in Gaussian MRFs.
Better characterized than discrete LBP
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