Probabilistic Graphical Models

Lecture 4: Essential Numerical Mathematics. Vector Calculus

Volkan Cevher, Matthias Seeger
Ecole Polytechnique Fédérale de Lausanne

10/10/2011

(P

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

(EPFL) Graphical Models 10/10/2011 1/24

0 Matrix Factorizations
e Conjugate Gradients Algorithm

e Vector Calculus

(EPFL) Graphical Models 10/10/2011 2/24

Matrix Factorizations

Why Numerical Mathematics?

@ Great new idea? Have to run it on an imperfect machine!
e Continuous variables: Messages are vectors / matrices,
manipulated large number of times
e Without care, errors (roundoff, cancellation, ...) accumulate
o Greatest idea worth nothing if not numerically stable

(EPFL) Graphical Models 10/10/2011 3/24

Matrix Factorizations

Why Numerical Mathematics?

@ Great new idea? Have to run it on an imperfect machine!
e Continuous variables: Messages are vectors / matrices,
manipulated large number of times
e Without care, errors (roundoff, cancellation, ...) accumulate
o Greatest idea worth nothing if not numerically stable
© Thousands / millions of variables? Need iterative approximations
e Backbone of about any continuous inference approximation:
Iterative solvers from numerical mathematics
e They are bottlenecks: Need to understand their properties

(EPFL) Graphical Models 10/10/2011 3/24

Matrix Factorizations

Positive Definite Matrices

Positive definite A (symmetric positive definite)

AT=A, v Av>o0forallv+0

Equivalent to:
@ All eigenvalues positive F2
@ A= XX, X full rank

(EPFL) Graphical Models 10/10/2011 4/24

Matrix Factorizations

Positive Definite Matrices

Positive definite A (symmetric positive definite)

AT=A, v Av>o0forallv+0

Equivalent to: | o
@ All eigenvalues positive s —2%)
@ A= XX, X full rank y))Y
A pos. def. < Covariance matrix of Gaussian - ' g% 7;00 :
F2(2) s

(EPFL) Graphical Models 10/10/2011 4/24

Matrix Factorizations

Positive Definite Matrices

Positive definite A (symmetric positive definite)

AT=A, v Av>o0forallv+0

Equivalent to: [o
@ All eigenvalues positive : '
o A=XX", X full rank)

A pos. def. < Covariance matrix of Gaussian -/, g

Numbers | Matrices

C any square
R symmetric (hermitian)
>0 positive definite

= Pos. def. simplifies many methods

(EPFL) Graphical Models 10/10/2011 4/24

Matrix Factorizations

Positive Definite Matrices

Positive definite A (symmetric positive definite)

AT=A, v Av>o0forallv+0

Equivalent to: | _—
@ All eigenvalues positive t —25)
o A= XXT, X full rank)
A pos. def. < Covariance matrix of Gaussian - ' g% 7;00 :
Positive semidefinite A: “>” instead of “>” — e

o A=XXT any X

(EPFL) Graphical Models 10/10/2011 4/24

Matrix Factorizations

Positive Definite Matrices

Positive definite A (symmetric positive definite)

AT=A, v Av>o0forallv+0

Equivalent to: | o
@ All eigenvalues positive 1 -
@ A= XXT, X full rank s A

A pos. def. < Covariance matrix of Gaussian /| - . :

Positive semidefinite A: “>” instead of “>” t —

o A=XXT any X

A pos. semidef. & Covariance matrix of degenerate Gaussian
[variance 0 along some directions]

[More about matrices? Horn, Johnson: Matrix Analysis (1985)]

(EPFL) Graphical Models 10/10/2011 4/24

Matrix Factorizations
Cholesky Decomposition

What is a matrix decomposition? The right way to use A~

Rule 1 for Matrix Computations

Do not invert a matrix. Decompose it
[Rule 2: Do not code it yourself. Use BLAS / LAPACK]

(EPFL) Graphical Models 10/10/2011 5/24

Matrix Factorizations
Cholesky Decomposition

What is a matrix decomposition? The right way to use A~

Rule 1 for Matrix Computations

Do not invert a matrix. Decompose it
[Rule 2: Do not code it yourself. Use BLAS / LAPACK]

Positive definite A: Cholesky decomposition

A = XX". Can | use lower triangular L = X?
= Yes, exactly one: Cholesky factor of A F3

(EPFL) Graphical Models 10/10/2011 5/24

Matrix Factorizations
Cholesky Decomposition

What is a matrix decomposition? The right way to use A~

Rule 1 for Matrix Computations

Do not invert a matrix. Decompose it
[Rule 2: Do not code it yourself. Use BLAS / LAPACK]

Positive definite A: Cholesky decomposition

A = XX". Can | use lower triangular L = X?
= Yes, exactly one: Cholesky factor of A
Remarkable facts:

@ Maybe the only algorithm in numerical mathematics that is so
simple. If it fails, A is not (numerically) pos. def.

@ In-place algorithm: L can overwrite A. [;; >0
e Complexity O(n3) [A € R™"

(EPFL) Graphical Models 10/10/2011 5/24

Matrix Factorizations

Working with Cholesky Factors

Suppose: A = LL™ € R™", L lower triangular
@ Solving linear system: Ax = LL'x = b

[M]: Lv=b, [2]: L'x=v

Two backsubstitutions, at O(n?) F4

[Beware: Some books distinguish between forward-, back-substitutions. | don’t: It's just the same algorithm]

(EPFL) Graphical Models 10/10/2011 6/24

Matrix Factorizations

Working with Cholesky Factors

Suppose: A = LL™ € R™", L lower triangular
@ Solving linear system: Ax = LL'x = b

[M]: Lv=b, [2]: L'x=v

Two backsubstitutions, at O(n?)

[Beware: Some books distinguish between forward-, back-substitutions. | don’t: It's just the same algorithm]

@ Log determinant:

n
log |A| = 2log |L| = 22/21 log /;;
@ Other expressions:

b"A'b=|v|? Lv=»b

(EPFL) Graphical Models 10/10/2011 6/24

Matrix Factorizations
Sequential Bayesian Updates

Example:
@ Robot unsure about location, velocity: P(u) = N(u,X), u € R”
@ Obtains noisy linear measurements: y = x"u + ¢, e ~ N(0, 0?)
@ Sequential update of belief state: P(u) — P(u|x,y), ...

(EPFL) Graphical Models 10/10/2011 7/24

Matrix Factorizations
Sequential Bayesian Updates

Example:
@ Robot unsure about location, velocity: P(u) = N(u,X), u € R”
@ Obtains noisy linear measurements: y = x"u + ¢, e ~ N(0, 0?)
@ Sequential update of belief state: P(u) — P(u|x,y), ...
Recall last lecture:
=2 -3x(?+x"2x)"'x"%,
W=p+Ex(0®+x"2x)(y —xTp)

State representation: Could simply maintain p, ¥

(EPFL) Graphical Models 10/10/2011 7/24

Matrix Factorizations
Sequential Bayesian Updates

Example:
@ Robot unsure about location, velocity: P(u) = N(u,X), u € R”
@ Obtains noisy linear measurements: y = x"u + ¢, e ~ N(0, 0?)
@ Sequential update of belief state: P(u) — P(u|x,y), ...

Recall last lecture:

=2 -3x(?+x"2x)"'x"%,
W=p+Ex(0®+x"2x)(y —xTp)

State representation: Could simply maintain p, ¥

Better: Use Cholesky representation: L, as.t. ¥ = LL", u = La
@ Slightly more efficient
@ Better numerical properties [details in exercise]

[Cholesky up-/downdates: TR at people.mmci.uni-saarland.de/~mseeger/papers/cholupdate.pdf
Code at people.mmci.uni-saarland.de/~mseeger/software.html]

(EPFL) Graphical Models 10/10/2011 7/24

Matrix Factorizations
Singular Value Decomposition

A=UAVT eR™" UTU=1I, V'V =1, Adiagonal,); >0

@ Singular values A € R9*? diagonal (d < min{m, n}):
A2 positive eigenvalues of AT A

@ A symmetric — U = VD, g; € {+1}: Eigenvectors of A

@ A positive definite — SVD = eigendecomposition

(EPFL) Graphical Models 10/10/2011 8/24

Matrix Factorizations
Singular Value Decomposition

A=UAVT eR™" UTU=1I, V'V =1, Adiagonal,); >0

@ Singular values A € R9*? diagonal (d < min{m, n}):
A2 positive eigenvalues of AT A

@ A symmetric — U = VD, d; € {+£1}: Eigenvectors of A

@ A positive definite — SVD = eigendecomposition

@ Can be computed robustly for about any matrix, in O(n®)

@ For pos. def. matrices: SVD more expensive than Cholesky
= Use latter if sufficient for your goal

(EPFL) Graphical Models 10/10/2011 8/24

Matrix Factorizations
Singular Value Decomposition

A=UAVT eR™" UTU=1I, V'V =1, Adiagonal,); >0

@ Singular values A € R9*? diagonal (d < min{m, n}):
A2 positive eigenvalues of AT A
@ A symmetric — U = VD, g; € {+1}: Eigenvectors of A
@ A positive definite — SVD = eigendecomposition
@ Can be computed robustly for about any matrix, in O(n®)
@ For pos. def. matrices: SVD more expensive than Cholesky
= Use latter if sufficient for your goal
@ Some applications in machine learning:
e Principal components analysis (PCA)
o Optimal low-rank matrix approximation (covariance explained)
= Basis for linear approximations
e Spectral clustering, manifold regularization, . . .:
Leading eigenvectors carry lot of information about A

(EPFL) Graphical Models 10/10/2011 8/24

Matrix Factorizations

Example: Design Optimization

You know / have learned: u ~ N(u,X) [but want to know more]
You can do: One more noisy linear measurement,
y ~N(xTu,0?), |[x|| =1

Which x do you choose? F7

(EPFL) Graphical Models 10/10/2011 9/24

Matrix Factorizations

Example: Design Optimization

You know / have learned: u ~ N(u,X) [but want to know more]
You can do: One more noisy linear measurement,
y ~N(xTu,0?), |[x|| =1

Which x do you choose?

x. =argmax{x'Zx | |x| =1} : Leading eigenvector >

Remember MRI sampling optimization [first lecture]?
= That’s (part of) how it works [stay on for rest]

(EPFL) Graphical Models 10/10/2011 9/24

Conjugate Gradients Algorithm
Why lterative Solvers?

@ Moderate-sized high-resolution image: n = 65536 pixels.
Storage: 32G (single matrix)
Time for Cholesky decomposition: = 3h (if enough memory)
= Bayesian methods over images, stacks of images, videos, ...?

(EPFL) Graphical Models 10/10/2011 10/24

Conjugate Gradients Algorithm
Why lterative Solvers?

@ Moderate-sized high-resolution image: n = 65536 pixels.

Storage: 32G (single matrix)
Time for Cholesky decomposition: = 3h (if enough memory)

= Bayesian methods over images, stacks of images, videos, ...?
@ And how about structure?

Eluly]= (XTo'X + 1) "(XT® 'y + b)

@ X sparse (most entries = 0) [e.g., consumer-product ratings]
e X structured (banded, Toeplitz, ...) [e.g., Markov grid structure]
o X fast operator (FFT) [e.g., MRI measurements]

Matrix decompositions do not make use of that

[Some do: sparse Cholesky factorization]

(EPFL) Graphical Models 10/10/2011 10/24

Conjugate Gradients Algorithm

Minimizing Quadratic Functions

For positive definite A: Fo

X. = argmin{q(x) = %XTAX -b'x} & Ax.=b

T T T T T T T
oo
- —O— 4
- o
L o i
o |
- o o
° |
L 5 e o J
o)
o]
o o 008 4
OO o)
o oOO % §©
0 Do <0 Q
o [&
L o 4 o 0 i
|
| o —©
o0 ©
= e © -
o °
e
— o
\ \ \ \ \ \ \

(EPFL) Graphical Models 10/10/2011 11/24

Conjugate Gradients Algorithm

Minimizing Quadratic Functions

q(x) = %XTAX —b'x, g(x)=Vqg(x)=Ax—b

Require: Operator A. Initial xg
fork=12,... do
Pick search direction di, basedon g, = g(Xx_1), d;, | < k
Line minimization:

Xk = Xi—1 +axdy, ox =argmin, g(Xx_1 + ad)

end for

(EPFL) Graphical Models 10/10/2011 12/24

Conjugate Gradients Algorithm

Conjugate Directions

@ Why, of course down as steep as possible

(X1 +dx) = g(Xk—1) + gi_4(dx) +O(|dx]?)
—

Smallest:dxx—g,_4

Steepest descent: dx = —g_1 F11

(EPFL) Graphical Models 10/10/2011 13/24

Conjugate Gradients Algorithm

Conjugate Directions

@ Why, of course down as steep as possible

(X1 +dx) = g(Xk—1) + gi_4(dx) +O(|dx]?)
—

Smallest:dxx—g_4

Steepest descent: dx = —g_1

@ Wrong: For steepest descent: d[Hdk =0 F112)
= Improvements from previous iterations rapidly tempered with

(EPFL) Graphical Models 10/10/2011 13/24

Conjugate Gradients Algorithm

Conjugate Directions

@ Why, of course down as steep as possible

(X1 +dx) = g(Xk—1) + gi_4(dx) +O(|dx]?)
—

Smallest:dxx—g_4

Steepest descent: dx = —g_1

@ Wrong: For steepest descent: d[Hdk =0
= Improvements from previous iterations rapidly tempered with

New gradients L old directions?
= Retains previous efforts: F11(3)
g[dk:0—>g[+1dk:0...

(EPFL) Graphical Models 10/10/2011 13/24

Conjugate Gradients Algorithm

Conjugate Directions

@ Why, of course down as steep as possible

(X1 +dx) = g(Xk—1) + gi_4(dx) +O(|dx]?)
—

Smallest:dxx—g_4

Steepest descent: dx = —g_1

@ Wrong: For steepest descent: d[Hdk =0
= Improvements from previous iterations rapidly tempered with

New gradients L old directions?
= Retains previous efforts:
g[dk:0—>g[+1dk:0...

Conjugate Directions

d/ Ad; for all j < k

(EPFL) Graphical Models 10/10/2011 13/24

jugate Gradients Algorithm

Towards Conjugate Gradients

Details: Handout people.mmci.uni-saarland.de/~mseeger/lectures/omli09/handout_lect4.pdf
@ Directions conjugate: Gradient g, L all previous directions:
g/di=0forallj<k

(EPFL) Graphical Models 10/10/2011 14 /24

Conjugate Gradients Algorithm

Towards Conjugate Gradients

Details: Handout people.mmei.uni-saarland.de/~mseeger/lectures/bmio9/handout_lect4.pdf
@ Directions conjugate: Gradient g, L all previous directions:
gldj=0forallj <k
@ After n steps we are done: g, =0
© Construct conjugate directions by recurrence:
dik = —gy_1 + Bk-1dk_1

(EPFL) Graphical Models 10/10/2011 14 /24

Conjugate Gradients Algorithm

Towards Conjugate Gradients

Details: Handout people.mmei.uni-saarland.de/~mseeger/lectures/bmio9/handout_lect4.pdf

@ Directions conjugate: Gradient g, L all previous directions:
gldj=0forallj <k

@ After n steps we are done: g, =0

© Construct conjugate directions by recurrence:
dik = —gy_1 + Bk-1dk_1

© All gradients are orthogonal: g[g/- =0,j<k
[Bit of misnomer: Directions are conjugate]

(EPFL) Graphical Models 10/10/2011 14/24

Conjugate Gradients Algorithm

Towards Conjugate Gradients

Details: Handout people.mmei.uni-saarland.de/~mseeger/lectures/bmio9/handout_lect4.pdf

@ Directions conjugate: Gradient g, L all previous directions:
gldj=0forallj <k

@ After n steps we are done: g, =0

© Construct conjugate directions by recurrence:
dik = —gy_1 + Bk-1dk_1

© All gradients are orthogonal: g[g/- =0,j<k
[Bit of misnomer: Directions are conjugate]

© What is ax? From line minimization:

o g l?
d/Ad,
© What is 8¢? The great synthesis!
1912
k=1 "5
19k-1112

(EPFL) Graphical Models 10/10/2011 14/24

Conjugate Gradients Algorithm

Conjugate Gradients (for reference)

Require: Operator A. Initial xo. go = Axo — b
fork =1,2,... (no more than n) do
pr—1 = |Gx_+1?

if Kk = 1 then

di =—go
else

Bk—1 = pk—1/pk—2; dx = —Gx_1 + Br—1dk_1
end if

qi = Ad; ax = pr—1/(di qy)

Xk = Xk—1 + akdi; Gk = Gx_1 + akqy

Check for convergence (say ||g«ll/||b]l < ¢)
end for

(EPFL) Graphical Models 10/10/2011 15/24

Conjugate Gradients Algorithm
Krylov Subspaces

Let Kx = xo + span{dy,...,dx}. Then, Fi4

gid;=0,j<k = x,=argmin,, q(x)

(EPFL) Graphical Models 10/10/2011 16/24

Conjugate Gradients Algorithm
Krylov Subspaces

Let Kx = xo + span{dy,...,dx}. Then,

gid;=0,j<k = x,=argmin,, q(x)

But Kx = xo + span{A g, |j < k}
= Optimal with k (A-) multiplications! F14(2)

@ Kk C Kkt C ..., X« € Ky (Cayley/Hamilton)

(EPFL) Graphical Models 10/10/2011 16/24

Conjugate Gradients Algorithm
Krylov Subspaces

Let Kx = xo + span{dy,...,dx}. Then,

gid;=0,j<k = x,=argmin,, q(x)

But Kx = xo + span{A/g, |j < k}
= Optimal with k (A-) multiplications!
@ Kk C Kkt C ..., X« € Ky (Cayley/Hamilton)
@ What about k < n for huge n? Depends on eigenspectrum of A.
Xx ~ X, in surprisingly many cases in practice
= Krylov subspace view key to convergence analysis [exercise]

(EPFL) Graphical Models 10/10/2011 16/24

Conjugate Gradients Algorithm
Krylov Subspaces

Let Kx = xo + span{dy,...,dx}. Then,
g;dj =0,j<k = Xxx= argminxek q(x)

But Kx = xo + span{A g, |j < k}
= Optimal with k (A-) multiplications!
@ Kk C Kkt C ..., X« € Ky (Cayley/Hamilton)
@ What about k < n for huge n? Depends on eigenspectrum of A.
Xx ~ X, in surprisingly many cases in practice
= Krylov subspace view key to convergence analysis [exercise]
@ Preconditioning: M = CC' ~ A, but easy to solve systems with

e Workon (C"TAC™ ") cx=C""b

= Better spectral properties — Faster convergence
e CG as before, with one (M~"-) per iteration
e Preconditioning: Art of iterative linear solvers

(EPFL) Graphical Models 10/10/2011 16/24

Vector Calculus
Why Vector Calculus?

@ Remember differentiation? A bunch of rules, no-brainer.
Do that in R": (9f;)/(0X;) = >_,(09i)/(9¥k) - (O¥k)/(0Xj), .. ?

(EPFL) Graphical Models 10/10/2011 17 /24

Vector Calculus
Why Vector Calculus?

@ Remember differentiation? A bunch of rules, no-brainer.

Do that in R™: (01;)/(0x;) = >_x(09:)/(9y«) - (9y«k)/(0x;), ... ?
@ No! Use bunch of rules on vectors, matrices.

No >, x, no 9;/0;: Waste of paper / your time
@ Vector calculus in machine learning:

e Vf(x) =0, solve for x (if you're lucky)
e Search directions always fed by gradient (steepest descent)
o Newton (second order) optimization: Hessian as well

Like with Gaussian: Experience with the rules pays off!

(EPFL) Graphical Models 10/10/2011 17 /24

Vector Calculus
Differential Notation

@ Trace of square matrix Fi6
trA = Za,,—Z)\,, spec(A) = {\,..., \n}

tr AB = tr BA, xTAx ZtrxTAx = tr Axx"

(EPFL) Graphical Models 10/10/2011 18/24

Vector Calculus
Differential Notation

@ Trace of square matrix
trA = Za,,—ZA,, spec(A) = {M,..., A\n}

tr AB = tr BA, xTAx ZtrxTAx = tr Axx"

@ Differential dx: Tiny vector, situated at x. F16(2)
af(x) = f(x + (dx)) — f(x) = (VF(x))"(dx) + O(||dx|]?), ...
= For vector calculus: dx special vector, obeying one more rule:
Term with dx > 2 times — Term = 0 (> 3 for Hessian)

[All I do here: Minka’s note, http://research.microsoft.com/en-us/um/people/minka/papers/matrix/]

(EPFL) Graphical Models 10/10/2011 18/24

Vector Calculus
Simple Rules

@ Constant. Linear

dA =0 [A constant]
d(aX +8Y)=a(dX)+3(dY), dirX =tr(dX)

@ Product rule
d(XY)=(dX)Y + X(dY) [alsofor®,o]
@ Permutation/extraction: (-)* reorders/extracts entries
d(X*) = (dX)*
Example: (-)7, diag™'(-), vectorization (reshape in Matlab)

Prove any of them: Ins = rhs + O(||dx||?)

(EPFL) Graphical Models 10/10/2011 19/24

Vector Calculus
More Interesting Rules

@ Matrix inverse F18

dX~ 1) =-X""(dXx)X!

(EPFL) Graphical Models 10/10/2011 20/24

Vector Calculus
More Interesting Rules

@ Matrix inverse

@ Log determinant F18(2)
dlog |X| =tr X~ '(dX)
And d|X| = d €°9XI = |X|(dlog |X])

(EPFL) Graphical Models 10/10/2011 20/24

The “Algorithm”

Given: Really messy f(x), f(x), f(X), F(x).
@ Inward: Write df(x) (or other forms). Use rules to push d(-)
inside, until dx only

(EPFL) Graphical Models 10/10/2011 21/24

The “Algorithm”

Given: Really messy f(x), f(x), f(X), F(x).
@ Inward: Write df(x) (or other forms). Use rules to push d(-)
inside, until dx only

© Outward: Use linear algebra rules (dx vector, dX matrix!) to pull
dx out, until:

df = a(dx) df = a(dx) | dF = A(dx)
df = a’(dx) | df = A(dx)
df =tr A7(dX)
Just read off derivative: a, a, A.
Empty cells? Don’t like tensors beyond matrices. Use vec(X)

(EPFL) Graphical Models 10/10/2011 21/24

The “Algorithm”

Given: Really messy f(x), f(x), f(X), F(x).
@ Inward: Write df(x) (or other forms). Use rules to push d(-)
inside, until dx only

@ Outward: Use linear algebra rules (dx vector, dX matrix!) to pull
dx out, until:

df = a(dx) df = a(dx) | dF = A(dx)
df = a’(dx) | df = A(dx)
df = tr AT(dX)
Just read off derivative: a, a, A.
Empty cells? Don'’t like tensors beyond matrices. Use vec(X)

Constraints on X? Inherited by dX, A F19

X symmetric = df = tr(sym A)(dX), symA=(A+ AT)/2
X diagonal = df = (diagdiag~'(A))(dX)

(EPFL) Graphical Models 10/10/2011 21/24

Vector Calculus
Example

Model: x ~ N(u,), x € RY
Data: Independent draws Xx1,...,Xn, N> d

Suppose p known. Maximum likelihood estimator for X? F20

(EPFL) Graphical Models 10/10/2011 22/24

Vector Calculus
Summary

A = (aj);. Then:

T = (a)j
A|
trA= Zi aji
(diagv) = (v,I{, 71}
symA=(A+A")/2
Ay = (@j)ictjey
I{/ }V =V

Transpose
Determinant [|/+ AB| = |l + BA|]
Trace [tr AB = tr BA]

Diagonal of matrix
Diagonal matrix
Symmetrization
Subselection (“/” for {i},
Subselection matrix

“.” for full range)

L.V = (2 k Iyj=iy vk); Distribution matrix (/ = {ix})

(EPFL)

Graphical Models 10/10/2011 23/24

Vector Calculus
Wrap-Up

@ Lots of stuff: Seems hard, tedious at first

@ As computer scientists, we are engineers (get things done):
These rules / basic algorithms are our toolbox

@ Better know your basic tools very well (with practice, you will)

(EPFL) Graphical Models 10/10/2011 24 /24

	Matrix Factorizations
	Conjugate Gradients Algorithm
	Vector Calculus

