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Announcement

@ No assignment this week

@ Deadline programming assignment: June 18 (next lecture)
bayesml09lecture@googlemail.com
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0 Structured Mean Field (Variational Bayes)

© Moment Parameters. Variational Relaxations
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Structured Mean Field (Variational Bayes)

Variational Mean Field

log Z > supqeo {Eo[V(X)] +H[Q(x)]}
@ Q: Tractable subset of all distributions (factorization constraints)

Q= {Q(X) = Hk Qk(Xsk)} , Sk disjoint

Tractable? For any k,
Nk: Factor nodes j connected to any i € Sk (Sx N C; # 0)

Qk(xs) oxexp (D> Bopg, o) Vi(Xc)]
JENK j\Sk

tractable to handle F1
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Structured Mean Field (Variational Bayes)

Variational Mean Field

log Z > supqeo {Eo[V(X)] +H[Q(x)]}
@ Q: Tractable subset of all distributions (factorization constraints)
Q= {Q(X) = Hk Qk(Xsk)} , Sk disjoint

Tractable? For any k,
Nk: Factor nodes j connected to any i € Sk (Sx N C; # 0)

Qk(xs) oxexp (D> Bopg, o) Vi(Xc)]
JENK j\Sk

tractable to handle

@ Q(x) completely factorized? Naive mean field
Anything more elaborate?  Structured mean field
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Structured Mean Field (Variational Bayes)

Factorial Hidden Markov Model

(EPFL) Graphical Models 24/10/2011 5/15



Structured Mean Field (Variational Bayes)

Factorial Hidden Markov Model

©O00O0O0
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Structured Mean Field (Variational Bayes)

Factorial Hidden Markov Model

@ S; = uppermost chain. Update? F3
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Structured Mean Field (Variational Bayes)

Factorial Hidden Markov Model

%m

@ S; = uppermost chain. Update?
@ Q(xs,): Markov chain (variable single node potentials)

e Double node (transition) potentials of Q(xs,)? Fixed up front!

e Forward-backward for single node marginals to update Q(xs,).
Implementation reduces to single HMM code, called with changing
evidence potentials

@ Not magic, but as expected:
If this does not happen, you made a mistake
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Structured Mean Field (Variational Bayes)

Variational Bayes

@ Another instance of re-naming game:
Nothing else than structured mean field

@ Often applied to P(x,0|y)
(y observed, x latent nuisance, 6 latent parameters)
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Structured Mean Field (Variational Bayes)

Variational Bayes

@ Another instance of re-naming game:
Nothing else than structured mean field

@ Often applied to P(x,0|y)
(y observed, x latent nuisance, 6 latent parameters)

Expectation maximization Variational Bayes
maxg log / P(y.x|0)dx log / P(y.x|0)dxde

> maXG,Q(x){EO[IOQ P(y,x|0)] > maXo(e),o(x){Eo[log P(y.x|6)]
+ H[Q(x)]} + H[Q(x)] + H[Q(B)]}

Factorization assumption: Q(x,0) = Q(x)Q(0)
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Structured Mean Field (Variational Bayes)

Variational Bayes

@ Another instance of re-naming game:
Nothing else than structured mean field

@ Often applied to P(x,0|y)
(y observed, x latent nuisance, 6 latent parameters)

Expectation maximization Variational Bayes
maxg log / P(y.x|0)dx log / P(y.x|0)dxde

> maXG,Q(x){EQ[IOQ P(y,x|0)] > maXo(e),o(x){Eo[log P(y.x|6)]
+ H[Q(x)]} + H[Q(x)] + H[Q(B)]}

Factorization assumption: Q(x,0) = Q(x)Q(0)
@ Easy to write generic code (bit like MCMC Gibbs sampling)

@ Good approximation?
Can do better today for almost any well-studied model
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Moment Parameters. Variational Relaxations

Moment Parameters

log Z = supq {Eq[W(x)] + H[Q(x)]}
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Moment Parameters. Variational Relaxations

Moment Parameters

log Z > supqe o {Eo[V ()] + H[Q(X)]}

@ Q: Tractable subset of all distributions (factorization constraints)
= Seems whole story. What else could there be?
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Moment Parameters. Variational Relaxations

Moment Parameters

log Z > supqeo {EolV ()] + H[Q(X)]}

@ Q: Tractable subset of all distributions (factorization constraints)
= Seems whole story. What else could there be?
@ Consider log-linear models: Wj(xc,) = Oj.Tfj(xcj), 0 = (9)) F5

Eq[V(x)] = Z 1y m=Eqlfi(xg)], n= ()
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Moment Parameters. Variational Relaxations

Moment Parameters

log Z > supqe o {Eo[V ()] + H[Q(X)]}

@ Q: Tractable subset of all distributions (factorization constraints)
= Seems whole story. What else could there be?

@ Consider log-linear models: Wj(xc,) = Oijj(xcj), 0 = (9))

Eq[V(x)] = Z 1y m=Eqlfi(xg)], n = (k)

@ Moment parameters: Under mild assumptions on f;(x¢,):
Just another way (instead of 8) of parameterizing P(x )
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Moment Parameters. Variational Relaxations

Moment Parameters: Examples

(7] Natural parameters
P(x;0) = Z e f) f(x) Statistics, representation
© = Eg[f(x)] Moment parameters

Representation minimal: For every z # 0, there is x:
zT(fx)T1)T #£0
Otherwise: Representation overcomplete F6
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Moment Parameters. Variational Relaxations

Moment Parameters: Examples

(7] Natural parameters
P(x;0) = Z e f) f(x) Statistics, representation
© = Eg[f(x)] Moment parameters

Representation minimal: For every z # 0, there is x:

2" (f(x)71)7 #0

Otherwise: Representation overcomplete

@ Multinomial on graph with cliques C; Féb

Convenient overcomplete representation: Components of f(x):
Indicators on cliques C;, indicators on intersections of cliques,
indicators on intersections of cliques, intersections, ...
Equality constraints for pu:

e Consistency on nonempty intersections
@ Sum to one on smallest intersections

(EPFL) Graphical Models 24/10/2011 10/15



Moment Parameters. Variational Relaxations

Moment Parameters: Examples

(7] Natural parameters
P(x;0)=2" e?’f(x) f(x) Statistics, representation
© = Eg[f(x)] Moment parameters
Representation minimal: For every z # 0, there is x:
2" (f(x)71)7 #0
Otherwise: Representation overcomplete

© Gaussian MRF
Overcomplete representation: Féc

f(x)= ( Vec(—))((XT/z) > , 0= ( vecr(A) )

Not minimal: A symmetric. {ijj} ¢ E — a; = a; = 0.
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Moment Parameters. Variational Relaxations

Variational Formulation of Bayesian Inference

logZ = supq {0 Eqlf(x)] + HIQMX)I},  £(x) = [f;(xc)]

@ Transform to moment parameters
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Moment Parameters. Variational Relaxations

Variational Formulation of Bayesian Inference

l0gZ = sup,,eps {07 +HIQMX)I}, 1y = Ealfj(xg)]
@ Transform to moment parameters

M = { ()| 1y = Ealfj(xg)] for some Q(x) }

= Marginal polytope F7
@ What about the entropy?

(EPFL) Graphical Models 24/10/2011 11/15



Moment Parameters. Variational Relaxations

Variational Formulation of Bayesian Inference

log Z = sup,,c {OTu + H[u]}
@ Transform to moment parameters
M= { () ] j = Eqlfj(Xg)] for some Q(x) }

= Marginal polytope
@ What about the entropy?
p € M <+ Q(x) unique: Entropy is function of

@ Point of this exercise: M convex set of vectors, more useful
relaxation target than set of distributions
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Moment Parameters. Variational Relaxations

Variational Formulation of Bayesian Inference

log Z = sup,,c {OTu + H[u]}
@ Transform to moment parameters

M = { ()| 1y = Ealfj(xg)] for some Q(x) }

= Marginal polytope

@ What about the entropy?
p € M <+ Q(x) unique: Entropy is function of

@ Point of this exercise: M convex set of vectors, more useful
relaxation target than set of distributions

@ Close now: Exponential families, Fenchel duality, maximum
entropy. Full story:

Wainwright, Jordan: Graphical Models, Exponential Families, and Variational Inference
Foundations and Trends in Machine Learning, 1(1-2), pp. 1-305
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Moment Parameters. Variational Relaxations

Bayesian Inference is Convex Optimization

log Z = supueM{GTu + H[u]}

@ Marginal polytope M: Convex set F8
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Moment Parameters. Variational Relaxations

Bayesian Inference is Convex Optimization

log Z = sup,,c o« {GTu + H[u]}
N——
M convex
@ Marginal polytope M: Convex set
@ Entropy p — H[u]: Concave function on M F8b
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Moment Parameters. Variational Relaxations

Bayesian Inference is Convex Optimization

log Z = sup,,c {OTu + H[u]}
D e -
M convex concave
@ Marginal polytope M: Convex set
@ Entropy p — H[p]: Concave function on M
@ Posterior: Unique solution to convex optimization problem
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Moment Parameters. Variational Relaxations

Bayesian Inference is Convex Optimization

log Z = sup,,c {OTu + H[u]}
D e -
M convex Concave
@ Marginal polytope M: Convex set
@ Entropy p — H[p]: Concave function on M
@ Posterior: Unique solution to convex optimization problem
@ Convex optimization can be intractable Fec

M can be hard to fence in
6 + p can be hard to compute
H[p] can be hard to compute
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Moment Parameters. Variational Relaxations

Bayesian Inference is Convex Optimization

log Z = sup,,c {OTu + H[u]}
D e -

M convex Concave

@ Marginal polytope M: Convex set

@ Entropy u — H[u]: Concave function on M

@ Posterior: Unique solution to convex optimization problem
@ Convex optimization can be intractable

M can be hard to fence in
6 + p can be hard to compute
H[p] can be hard to compute

@ Took some steps. But worth it:
Rich literature on relaxations of hard convex problems
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Moment Parameters. Variational Relaxations

Variational Mean Field Revisited

log Z = supueM{GTu + H[u]}

@ Have to approximate M, H[u]. One way you already know . ..
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Moment Parameters. Variational Relaxations

Variational Mean Field Revisited

log Z = supueM{GTu + H[u]}
@ Have to approximate M, H[u]. One way you already know . ..
M D MNMF = {N ‘ :qu(XCj) = Zxc <Hi€Cj Q(XI)> f/(ij)}
j

Inner approximation, induced by factorized distributions
@ Entropy decomposes just as distribution: H[u] = >, H[p]

logZ > supueMNMF{OT“ T ZfH[“"]}
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Moment Parameters. Variational Relaxations

Variational Mean Field Revisited

log Z = supueM{GTu + H[u]}
@ Have to approximate M, H[u]. One way you already know . ..
M D MNMF = {N ‘ :qu(XCj) = Zxc <Hi€Cj Q(XI)> f/(ij)}
j

Inner approximation, induced by factorized distributions
@ Entropy decomposes just as distribution: H[u] = >, H[p]

logZ > supueMNMF{OT“ T ZfH[“"]}

@ Non-convex relaxation: Mymg not convex Fo
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Moment Parameters. Variational Relaxations

The Marginal Polytope

M = {(w) | i = Eqlf(xc)] for some Q(x) }

Multinomial on graph. Minimal representation.

@ M convex polytope: Described by finite number
inequalities.
Complexity of M: Number of inequalities F10
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Moment Parameters. Variational Relaxations

The Marginal Polytope

M = {(w) | i = Eqlf(xc)] for some Q(x) }

Multinomial on graph. Minimal representation.

@ M convex polytope: Described by finite number
inequalities.
Complexity of M: Number of inequalities

@ Complexity of M — complexity of exact inference [we’ll see why]
@ G tree: M described by O(n) inequalities [next lecture]
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Moment Parameters. Variational Relaxations

The Marginal Polytope

M = {(w) | i = Eqlf(xc)] for some Q(x) }

Multinomial on graph. Minimal representation.

@ M convex polytope: Described by finite number
inequalities.
Complexity of M: Number of inequalities

@ Complexity of M — complexity of exact inference [we’ll see why]
@ G tree: M described by O(n) inequalities [next lecture]

@ Many graphs G with cycles: M polytope description provably hard
(poly(n) inequalities would imply P=NP)
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Moment Parameters. Variational Relaxations

The Marginal Polytope

M = {(w) | i = Eqlf(xc)] for some Q(x) }

Gaussian MRF. Minimal representation (upper triangle of A).

@ M exactly characterizedby = = A~ - 0.
Convex cone (not polytope): Tractable to describe F10b

@ G tree: M described by O(n) inequalities

@ General sparse G: Approximate inference still of interest, if exact
cost O(n®) too high

(EPFL) Graphical Models 24/10/2011 14/15



Moment Parameters. Variational Relaxations

Wrap-Up

@ Structured Mean Field: Q(x) product of tractable, disjoint factors

@ Variational Bayes: Another name for structured mean field

@ Bayesian (marginal) inference is a convex optimization problem

@ Variational approximations: Inner / outer bounds to marginal
polytope
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