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Abstract

Here is the proof of [4] in the notation of our lecture. For full generality, have a look
at their paper and at [3].

A factor graph induces the distribution

P (x1, . . . , xn) = Z−1
J∏
j=1

Φj(xCj ),

where Cj ⊂ {1, . . . , n}. For simplicity, all potentials are positive functions here. For the
general case, see [4]. Loopy belief propagation (LBP) defines messages (positive functions
over variables), which are initially all uniform, and iterates the following equations in some
ordering until convergence.

Mi→j(xi) ∝
∏

j′∈Ni\j

Mj′→i(xi), Mj→i(xi) ∝
∑
xCj\i

Φj(xCj )
∏

i′∈Cj\i

Mi′→j(xi′). (1)

Recall that Ni = {j | i ∈ Cj}: the neighbouring factor nodes of variable node i. In case this
convergences, marginals are approximated by

µi(xi) ∝
∏
j∈Ni

Mj→i(xi), µj(xCj ) ∝ Φj(xCj )
∏
i∈Cj

Mi→j(xi). (2)

I will use i as general index over variables, j over factors. If ranges of sums or products are
not given, they run over all permitted values.

In general, LBP may not converge. If it does, µi(xi) may not be close to the true marginal
P (xi). In fact, the set of pseudomarginals µ may not even be realizable, in the sense that
they are not legal marginals of any joint distribution. For a general graph, even this test is
hard.

The hope is, of course, that convergence occurs to good marginal approximations. Because
this algorithm tends to perform amazingly well on many problems, there is an ever growing
literature on convergence analyses, computable error bounds, modifications such as con-
vexification, different convergent algorithms, and so on. The online article [2] gives a wide
current overview.

The Bethe free energy is

FBethe =
∑
j

Eµj [− log Φj(xCj )]−
∑
j

H[µj(xCj )] +
∑
i

(ni − 1)H[µi(xi)], ni = |Ni|. (3)



The constraint set for µ is the local marginalization polytope Mlocal, defined by

µj(xCj ) ≥ 0, µi(xi) ≥ 0,
∑
xi

µi(xi) = 1,
∑
xCj\i

µj(xCj ) = µi(xi), (4)

with all-quantification over all variables not summed over. The claim is that a fixed point
of LBP, where no message update (1) leads to changes anymore, is a stationary (saddle)
point of FBethe, subject to µ ∈Mlocal.

To show that, I use Lagrange duality theory. If you don’t know what that is, you better read
about it, say in [1]. It is a cornerstone of convex programming, and of relaxations to non-
convex problems, and can be used to characterize saddle points (as I do here). I’ll be lazy
and dualize equality constraints only, leaving the nonnegativity constraints “un-dualized”.
Under the assumption of positive potentials, this goes through (see [2, Remark 4.1]). I need
one multiplier λi for each

∑
xi
µi(xi) = 1, and multipliers λi→j(xi) for each j, i ∈ Cj , and xi

(for
∑
xCj\i

µj(xCj ) = µi(xi)). Recall from the lecture that “(xi)” is nothing more than an

index into a vector. I could also write λi,j,xi or λi,j,k, but the functional notation is simpler.
To make things simpler, I dualize the implied constraints

∑
xCj

µj(xCj ) = 1 as well, using

multipliers λj . The Lagrangian is

L =
∑
j

Eµj [− log Φj(xCj )]−
∑
j

H[µj(xCj )] +
∑
i

(ni − 1)H[µi(xi)]

−
∑
i

∑
j∈Ni

∑
xi

λi→j(xi)

(∑
xCj\i

µj(xCj )− µi(xi)
)
−
∑
i

λi

(
1−

∑
xi
µi(xi)

)
−
∑
j

λj

(
1−

∑
xCj

µj(xCj )

)
.

It is a function of µ (which in the Lagrange dual problem does not have to follow the
equality constraints) and λ, and the dual problem is minµ maxλ L, subject to µ � 0. A
saddle point is a pair µ∗, λ∗ such that ∇µ∗L = 0 and ∇λ∗L = 0.

I have to show that at a fixed point of LBP, these stationary equations are met. First, as
always with Langrange duals, ∇λL = 0 is equivalent to µ ∈ Mlocal (recall that µ � 0 is
always true). Also, since the Lagrangian is linear in λ, I can reparameterize these multiplier
variables linearly, without modifying their key property (namely, that ∇λL = 0 implies
µ ∈ Mlocal). I’ll now play around with ∇µL = 0 and see where I get at, always ensuring
µ ∈ Mlocal. Of course, if everything works out, I will arrive at the message passing and
pseudomarginal equations, but in order to not get confused, forget about them at the
moment.

Since dH[P (x)] = −d
∑

x P (x) logP (x) = −(logP (x) + 1)(dP (x)), we have

∂L
∂µj(xCj )

= − log Φj(xCj ) + µj(xCj ) + 1−
∑
i∈Cj

λi→j(xi) + λj = 0.

Here, I used that
∑

i

∑
j∈Ni

=
∑

i,j I{j∈Ni} =
∑

j,i I{i∈Cj}, in general a good way to deal with

such sums. Lumping constants into λj , then defining Mi→j(xi) := eλi→j(xi), this becomes

µj(xCj ) = e−λjΦj(xCj )
∏
i∈Cj

Mi→j(xi). (5)



Next, for i with ni > 1,

∂L
∂µi(xi)

= −(ni − 1)(µi(xi) + 1) +
∑
j∈Ni

λi→j(xi) + λi = 0. (6)

I define some auxiliary variables λ̃j→i(xi) by λi→j(xi) =
∑

j′∈Ni\j λ̃j′→i(xi), moreover

Mj→i(xi) := eλ̃j→i(xi). This means that

Mi→j(xi) =
∏

j′∈Ni\j

Mj′→i(xi) (7)

Moreover, ∑
j∈Ni

λi→j(xi) =
∑

j,j′∈Ni

I{j 6=j′}λ̃j′→i(xi) = (ni − 1)
∑
j∈Ni

λ̃j→i(xi),

and after suitable linear transformation of λi, (6) becomes

µi(xi) = e−λi
∏
j∈Ni

Mj→i(xi), ni > 1. (8)

Now, we need to enforce µ ∈Mlocal. The normalization constraints are dealt with by setting
λi and λj accordingly. Let us plug (5) and (8) into the consistency constraints (for i with
ni > 1):

e−λj
∑
xCj\i

Φj(xCj )
∏
i′∈Cj

Mi′→j(xi′) = e−λi
∏
j′∈Ni

Mj′→i(xi) = e−λiMj→i(xi)Mi→j(xi),

where I used (7). Dividing both sides by Mi→j(xi), we have

eλi−λj
∑
xCj\i

Φj(xCj )
∏

i′∈Cj\i

Mi′→j(xi′) = Mj→i(xi). (9)

Summing up, I have shown that if (5), (7), (8), and (9) hold, then µ ∈Mlocal and ∇µL = 0.
Together, they form a sufficient condition for a stationary point of the Lagrangian, therefore
for a saddle point of the constrained Bethe problem. Obviously, at a fixed point of LBP,
these conditions all hold (because message passing does not lead to any changes). You might
object, because messages are defined only up to normalization, while (9) seems to demand
a particular normalization. But at a LBP fixed point, you can just renormalize all messages
at will, and you will stay there. At this point, the constraint µ ∈ Mlocal prescribes the
normalization of (9).
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