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Outline

I This class: Linear algebra review
1. Notation
2. Vectors
3. Matrices
4. Tensors

I Next class
1. Learning and convexity
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Recommended reading material

I Z Kolter and C Do, Linear Algebra Review and Reference
http://cs229.stanford.edu/section/cs229-linalg.pdf, 2012.

I KC Border, Quick Review of Matrix and Real Linear Algebra
http://www.hss.caltech.edu/~kcb/Notes/LinearAlgebra.pdf, 2013.

I KB Petersen and MS Pedersen, The matrix cookbook
http://orion.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf, 2012.

I S Foucart and H Rauhut, A mathematical introduction to compressive sensing
(Appendix A: Matrix Analysis), Springer, 2013.

I JA Tropp, Column subset selection, matrix factorization, and eigenvalue
optimization, In Proc. of the 20th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp 978–986, SIAM, 2009.
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Motivation

Motivation
This review is intended to help you follow mathematical discussions in data sciences,
which rely heavily on basic linear algebra concepts:
I Data and unknown parameters are usually represented in the form of finite
dimensional linear algebra objects like vectors, matrices, or tensors.

I Computation revolving around these objects invariably requires numerical linear
algebra routines.
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Notation

I Scalars are denoted by lowercase letters (e.g. k)
I Vectors by lowercase boldface letter (e.g., x)
I Matrices and tensors by uppercase boldface letter (e.g. A)
I Component of a vector x, matrix A & tensor A as xi , aij & Ai,j,k,... respectively.
I Sets by uppercase calligraphic letters (e.g. S)
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Vectors

1. Vector spaces
2. Vector norms
3. Inner products
4. Dual norms
5. ?Extensions to Banach spaces

?: advanced
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Vector spaces

Note:
We focus on the field of real numbers (R) but most of the results can be generalized
to the field of complex numbers (C) in a straightforward fashion.

A vector space or linear space (over the field R) consists of
(a) a set of vectors V
(b) an addition operation: V × V → V
(c) a scalar multiplication operation: R× V → V
(d) a distinguished element 0 ∈ V
and satisfies the following properties:
1. x + y = y + x, ∀x,y ∈ V (commutative under addition)
2. (x + y) + z = x + (y + z), ∀x,y, z ∈ V (associative under addition)
3. 0 + x = x, ∀x ∈ V (0 being additive identity)
4. ∀x ∈ V ∃ (−x) such that x + (−x) = 0 (−x being additive inverse)
5. (αβ)x = α(βx), ∀α, β ∈ R ∀x ∈ V (associative under scalar multiplication)
6. α(x + y) = αx + αy, ∀α ∈ R ∀x,y ∈ V (distributive)
7. 1x = x, ∀x ∈ V (1 being multiplicative identity)
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Vector spaces contd.

Example (Vector space)

I V1 = {0} for 0 ∈ Rp

I V2 = Rp

I V3 =
∑k

i=1 αixi for αi ∈ R, k < p, and xi ∈ Rp

It is straight forward to show that V1, V2, and V3 satisfy properties 1–7 above.

Definition (Subspace)
A subspace is a vector space that is a subset of another vector space.

Example (Subspace)
V3 (and actually V1 as well as V2) in the example above is subspace of Rp.
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Vector spaces contd.

Definition (Span)
The span of a set of vectors, {x1,x2, . . . ,xk}, is the set of all possible linear
combinations of these vectors; i.e.,

span {x1,x2, . . . ,xk} = {α1x1 + α2x2 + · · ·+ αkxk | α1, α2, . . . , αk ∈ R} .

Definition (Linear independence)
A set of vectors, {x1,x2, . . . ,xk}, is linearly independent if

α1x1 + α2x2 + · · ·+ αkxk = 0 ⇒ α1 = α2 = . . . = αk = 0.

Definition (Basis)
The basis of a vector space, V, is a set of vectors {x1,x2, . . . ,xk} that satisfy
(a) V = span {x1,x2, . . . ,xk} , (b) {x1,x2, . . . ,xk} are linearly independent.

Definition (Dimension∗)
The dimension of a vector space, V, (denoted dim(V)) is the number of vectors in
the basis of V.
∗We will generalize the concept of affine dimension to the statistical dimension of convex objects.
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Vector Norms

Definition (Vector norm)
The norm of a vector in Rp is a function ‖ · ‖ : Rp → R such that for all vectors
x,y ∈ Rp and scalar λ ∈ R

(a) ‖x‖ ≥ 0 for all x ∈ Rp (nonnegativity)
(b) ‖x‖ = 0 if and only if x = 0 (definitiveness)
(c) ‖λx‖ = |λ|‖x‖ (homogeniety)
(d) ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

I There are an important family of `q-norms parameterized by q ∈ [1,∞].

I For x ∈ Rp, the `q-norm is defined as ‖x‖q :=
(∑p

i=1 |xi |q
)1/q .

Example

(1) `2-norm: ‖x‖2 :=
√∑p

i=1 x2
i (Euclidean norm)

(2) `1-norm: ‖x‖1 :=
∑p

i=1 |xi | (Manhattan norm)

(3) `∞-norm: ‖x‖∞ := max
i=1,...,p

|xi | (Chebyshev norm)
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Vector norms contd.

Definition (Quasi-norm)
A quasi-norm satisfies all the norm properties except (d) triangle inequality, which is
replaced by ‖x + y‖ ≤ c (‖x‖+ ‖y‖) for a constant c ≥ 1.

Definition (Semi(pseudo)-norm)
A semi(pseudo)-norm satisfies all the norm properties except (b) definiteness.

Example
I The `q-norm becomes a quasi-norm when q ∈ (0, 1) with c = 21/q − 1.
I The total variation norm (TV-norm) defined (in 1D):
‖x‖TV :=

∑p−1
i=1 |xi+1 − xi | is a semi-norm since it fails to satisfy (b);

e.g., x = (1, 1, . . . , 1)T has ‖x‖TV = 0 even though x , 0.

Definition (`0-“norm”)
‖x‖0 = limq→0‖x‖q

q = |{i : xi , 0}|

The `0-“norm” counts the non-zero components of x. It is not a norm – it does not
satisfy norm properties (c) and (d) ⇒ it is also neither a quasi- nor a semi-norm.
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Vector norms contd.
Problem (s-sparse approximation)
Find arg min

x∈Rp
‖x− y‖2 subject to: ‖x‖0 ≤ s.
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Vector norms contd.
Problem (s-sparse approximation)
Find arg min

x∈Rp
‖x− y‖2 subject to: ‖x‖0 ≤ s.

Notation for the solution
I Ground set is denoted by N := {1, . . . , p}
I Base set S defined as S ⊆ 2N (a subset of the power set of N )
I Sc denotes the complement of S, i.e., Sc ≡ N \ S
I |S| denotes the cardinality of a set S

I xS for the restriction of x onto S, i.e. (xS)i =
{

xi if i ∈ S
0 otherwise

I x|S maps the indices S of x into another vector in R|S|
for the restriction of x onto S, i.e. (xS)i is the entry of x corresponding to the
i-th index in S

I Support supp of a vector x is index set of its non-zero coefficients, i.e.,
supp(x) B {S|xS , 0}
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Vector norms contd.
Problem (s-sparse approximation)
Find arg min

x∈Rp
‖x− y‖2 subject to: ‖x‖0 ≤ s.

Solution
Let ŷ ∈ arg minx∈Rp{‖x− y‖2

2 : ‖x‖0 ≤ s} and Ŝ = supp
(

ŷ
)
. Assume we know Ŝ a

priori. Then ŷ
Ŝc = 0 and ŷ

|Ŝ
= arg min

x∈Rs
‖x− y

|Ŝ
‖2 = y

|Ŝ
.

Therefore, the underlying difficulty in the s-sparse approximation problem boils down
to finding Ŝ:

Ŝ ∈ arg min
S:|S|≤s

‖yS − y‖2
2.

∈ arg max
S:|S|≤s

{
‖y‖2

2 − ‖yS − y‖2
2
}

∈ arg max
S:|S|≤s

{
‖yS‖2

2
}

= arg max
S:|S|≤s

∑
i∈S

‖yi‖2 (≡ modular approximation problem).

Thus, the best s-sparse approximation of a vector is a vector with the s largest
components of the vector in magnitude.
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Vector norms contd.

Norm and “Norm” balls
Radius r ball in `q-norm: Bq(r) = {x ∈ Rp : ‖x‖q ≤ r}

‖x‖0 ≤ 2 `0.5-quasi-norm ball `1-norm ball

`2-norm ball `∞-norm ball TV-semi norm ball

Example `q-(quasi) and TV-(semi) norm balls along with the set of 2-sparse vectors in
R3
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Inner products

Definition (Inner product)
The inner product of any two vectors x,y ∈ Rp (denoted by 〈·, ·〉) is defined as
〈x,y〉 = xT y =

∑p
i xiyi .

The inner product satisfies the following properties:
1. 〈x,y〉 = 〈y,x〉, ∀x,y ∈ Rp (symmetry)
2. 〈(αx + βy), z〉 = α〈x, z〉+ β〈y, z〉, ∀α, β ∈ R ∀x,y, z ∈ Rp (linearity)
3. 〈x,x〉 ≥ 0 ∀x ∈ Rp (positive definiteness)

Important relations involving the inner product:
I Hölder’s inequality: |〈x,y〉| ≤ ‖x‖q‖y‖r , where r > 1 and 1

q + 1
r = 1

I Cauchy-Schwarz is a special case of Hölder’s inequality (q = r = 2)
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Inner products contd.

Definition (Inner product space)
An inner product space is a vector space endowed with an inner product.

Example
A Hilbert space (denoted H) is an inner product space.

A vector space endowed with a norm is known as a normed vector space. For
example, H is a normed vector space equipped with the `2-norm.
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Vector norms contd.

Definition (Dual norm)
Let ‖ · ‖ be a norm in Rp, then the dual norm denoted by ‖ · ‖∗ is defined:

‖x‖∗ = sup
‖y‖≤1

xT y, for all x,y ∈ Rp

I The dual of the dual norm is the original (primal) norm, i.e., ‖x‖∗∗ = ‖x‖.
I Hölder’s inequality ⇒ ‖ · ‖q is a dual norm of ‖ · ‖r when 1

q + 1
r = 1.

Example 1
i) ‖ · ‖2 is dual of ‖ · ‖2 (i.e., ‖ · ‖2 is self-dual): sup{zT x | ‖x‖2 ≤ 1} = ‖z‖2.
ii) ‖ · ‖1 is dual of ‖ · ‖∞, (and vice versa): sup{zT x | ‖x‖∞ ≤ 1} = ‖z‖1.

Example 2
What is the dual norm of ‖ · ‖q for q = 1 + 1/ log(p)?

Solution
By Hölder’s inequality, ‖ · ‖r is the dual norm of ‖ · ‖q if 1

q + 1
r = 1. Therefore,

r = 1 + log(p) for q = 1 + 1/ log(p).
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Vector norms contd.

Definition (Dual norm)
Let ‖ · ‖ be a norm in Rp, then the dual norm denoted by ‖ · ‖∗ is defined:

‖x‖∗ = sup
‖y‖≤1

xT y, for all x,y ∈ Rp

I The dual of the dual norm is the original (primal) norm, i.e., ‖x‖∗∗ = ‖x‖.
I Hölder’s inequality ⇒ ‖ · ‖q is a dual norm of ‖ · ‖r when 1

q + 1
r = 1.

Example 1
i) ‖ · ‖2 is dual of ‖ · ‖2 (i.e., ‖ · ‖2 is self-dual): sup{zT x | ‖x‖2 ≤ 1} = ‖z‖2.
ii) ‖ · ‖1 is dual of ‖ · ‖∞, (and vice versa): sup{zT x | ‖x‖∞ ≤ 1} = ‖z‖1.

Example 2
What is the dual norm of ‖ · ‖q for q = 1 + 1/ log(p)?

Solution
By Hölder’s inequality, ‖ · ‖r is the dual norm of ‖ · ‖q if 1

q + 1
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r = 1 + log(p) for q = 1 + 1/ log(p).
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Metrics

I A metric on a set is a function that satisfies the minimal properties of a distance.

Definition (Metric)
Let X be some Hilbert space, then a metric d(·, ·) : X × X → R if ∀x,y ∈ X :

(a) d(x,y) ≥ 0 for all x and y (nonnegativity)
(b) d(x,y) = 0 if and only if x = y (definiteness)
(c) d(x,y) = d(y,x) (symmetry)
(d) d(x,y) ≤ d(x, z) + d(z,y) (triangle inequality)

I A pseudo-metric satisfies (a), (c) and (d) but not necessarily (b)
I A metric space (X , d) is a set X with a metric d defined on X
I Norms induce metrics while pseudo-norms induce pseudo-metrics

Example

I Euclidean distance: dE(x,y) = ‖x− y‖2
2

I q-distances: dE(x,y) = ‖x− y‖q
q for q ∈ (0, 1)

I ?Bregman distances dB(·, ·) (more on this in Lecture 3)
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?Banach spaces on Rp

We only work with Banach spaces on Rp in this course. In general, a Banach space
can be infinite-dimensional.

Proposition
The space Rp with any norm is a Banach space.

Example
Any Hilbert space on Rp is a Banach space.

A Banach space is not necessarily an inner product space.

Example
The space Rp with the `q-norm, q ∈ [1,∞), is a Banach space. But it is an inner
product space only when q = 2.
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?Banach spaces on Rp

Theorem (Representer)
For every linear function f : Rp → R, we can always find a vector xf ∈ Rp such that〈

xf ,x
〉
B
∑p

i=1 xi(xf )i = f (x) for all x ∈ Rp.

Definition (Dual space)
The dual space of a Banach space E on Rp with a norm ‖·‖ is the space E∗ of all
linear functions f : Rp → R with the dual norm ‖·‖∗.
Thus E∗ is equivalent to Rp with the dual norm ‖·‖∗, since for each f ∈ E∗, we can
always find the corresponding xf ∈ Rn , and vice versa.

Definition (Dual pairing)
Let E be a Banach space and E∗ be the dual space. For each x ∈ E and f ∈ E∗, we
denote by 〈f ,x〉 the value of the linear function f at x.
Thus for each f ∈ E∗ and its corresponding xf ∈ Rp, we have 〈f ,x〉 =

〈
xf ,x

〉
.

Note that 〈f ,x〉 denotes a dual pairing, and
〈

xf ,x
〉
corresponds to the inner product

with respect to the `2-norm.
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Matrices

1. Special matrix types
2. Basic matrix definitions
3. Matrix decompositions
4. Complexity of matrix operations
5. Matrix norms
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Matrices
I A matrix is a rectangular array of numbers arranged by rows and columns.
I We first describe a set of special matrices to get started.

Definition (Identity matrix)
The identity matrix (denoted I ∈ Rp×p) is a square matrix of zero entries except on
the main diagonal, which has ones on it. For compatible matrices A and B, it satisfies:

IA = A and BI = B.

Definition (Orthogonal (or Unitary) matrix)
A matrix A ∈ Rp×p is orthogonal or unitary if AT A = AAT = I.

Definition (Triangular matrix)
A matrix A ∈ Rp×p is lower triangular if all its entries above the main diagonal are
zero, i.e., aij = 0 for j > i; while it is upper triangular if AT is lower triangular.

Definition (Permutation matrix)
A matrix P ∈ Rn×p is permutation if it has only one 1 in each row and each column
and satisfies PPT = I.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 1: Objects in Space

Special matrices

Definition (Incidence matrix)
An incidence matrix shows the relationship between two sets X and Y. The i-th row
corresponding to entry xi ∈ X and the j-th column corresponding to entry yj ∈ Y of
an incidence matrix is 1 if xi and xj are related and 0 if they are not.

Definition (Adjacency matrix)
An adjacency matrix is a symmetric square matrix with {0, 1} entries where 1 or 0 at
the (i, j)-th location indicates the i-th and the j-th vertices of a graph are adjacent
(i.e., share an edge) or not.
I The diagonal entries of adjacency matrices take different values depending on different conventions.

Definition (Stochastic matrix)
A matrix P ∈ Rn×p is stochastic (also know as transition or probability) matrix if∑

j pij = 1 for 0 ≤ pij ≤ 1; while A is doubly stochastic if
∑

i pij =
∑

j pij = 1.

Definition (Gaussian matrix)
A matrix A ∈ Rp×p is Gaussian if its entries alk ∼ N

(
µ, σ2

)
for l, k ∈ [p]. That

is, its entries are independent and identically distributed (i.i.d.) with mean µ &
variance σ2 according to the Gaussian distribution.
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Special matrices contd.

Definition (Fourier matrix)
A matrix F ∈ Cp×p is Fourier matrix if its entries

flk =
1
√p

ei2πlk/p, for l, k ∈ [p], i =
√
−1.

Definition (Discrete Cosine Transform matrix)
A matrix A ∈ Rp×p is Discrete Cosine Transform (DCT) matrix if its entries

alk =

√
2
p

cos
(
π

p
(l − 1)

(
k −

1
2

))
; 1 ≤ l ≤ p, 1 ≤ k ≤ p.

I The Fourier and DCT matrices are both orthogonal, i.e., FH F = FFH = I,
where FH = complex-conjugate(FT ).

I Both matrices are rarely stored since they have an implicit fast matrix-vector
multiplication algorithm.
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Special matrices contd.

Definition (Hadamard matrix [4])

Let the indices l, k ∈ [2n ] be defined as l =
n∑

j=1

lj2j−1 + 1, k =
n∑

j=1

kj2j−1 + 1.

A matrix H = Hn ∈ R2n×2n is a Hadamard matrix (or Hadamard transform) if

hlk =
1

2n/2 (−1)
∑n

j=1
kj lj
.

I The Hadamard matrix is orthogonal and self-adjoint, i.e., Hn = HT
n .

I The Hadamard matrix is rarely stored since it has a fast matrix-vector
multiplication algorithm that uses the recursive identity:

Hn =
1
√

2

(
Hn−1 Hn−1
Hn−1 −Hn−1

)
, H0 = 1.
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Special matrices contd.

Definition (Toeplitz matrix [2])
Let a t = (t1, t2, . . . , t2p−1) be fixed or drawn from a probability distribution P(t).
Then T ∈ Rp×p is Toeplitz matrix if

T =


t1 t2 t3 · · · tp−1 tp

tp+1 t1 t2 · · · tp−2 tp−1
tp+2 tp+1 t1 · · · tp−3 tp−2
...

...
...

. . .
. . .

...
t2p−2 t2p−3 · · · · · · t1 t2
t2p−1 t2p−2 t2p−3 · · · tp+1 t1

 .

Definition (Circulant matrix [7])
Let a c = (c1, c2, . . . , cp) be fixed or drawn from a probability distribution P(c), then
C ∈ Rp×p is Circulant matrix if

C =


c1 cp · · · c3 c2
c2 c1 · · · c4 c3
...

...
. . .

. . .
...

cp cp−1 · · · c2 c1

 .

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 1: Objects in Space

Special matrices contd.

Partial Fourier, Partial Toeplitz, Partial Circulant, ...
A partial Fourier, Toeplitz or Circulant matrix refers to a matrix consisting of a subset
of the rows of a Fourier, Toeplitz or Circulant matrix, respectively.

I Fourier, Hadamard, Toeplitz and Circulant matrices are structured matrices. In
addition, Toeplitz and Circulant matrices are banded.

I These matrices also have lower degrees-of-freedom as compared to a general
matrix in Rp×p. Hence, computations revolving around these matrices are
typically cheaper than the computation we need for a general matrix.

I Incident and adjacency matrices are often used in graph theory. They have
important decompositional and computational properties, which we will revisit in
Lecture 11.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 1: Objects in Space

Basics of matrix definitions

Definition (Nullspace of a matrix)
The nullspace of a matrix, A ∈ Rn×p, (denoted by null(A)) is defined as

null(A) = {x ∈ Rp | Ax = 0}

I null(A) is the set of vectors mapped to zero by A.
I null(A) is the set of vectors orthogonal to the rows of A.

Definition (Range of a matrix)
The range of a matrix, A ∈ Rn×p, (denoted by range(A)) is defined as

range(A) = {Ax | x ∈ Rp} ⊆ Rn

I range(A) is the span of the columns (or the column space) of A.
I range(A) is the set of vectors y = Ax for which the system has a solution.

Definition (Rank of a matrix)
The rank of a matrix, A ∈ Rn×p, (denoted by rank(A)) is defined as

rank(A) = dim (range(A))

I rank(A) is the maximum number of independent columns (or rows) of A,
⇒ rank(A) ≤ min(n, p). We also have rank(A) = rank(AT ); and
rank(A) + dim (null(A)) = p.
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Matrix definitions contd.
Definition (Eigenvalues & Eigenvectors)
The vector x is an eigenvector of a square matrix A ∈ Rp×p if Ax = λx where λ ∈ R
is called an eigenvalue of A.

Definition (Singular values & singular vectors)
For A ∈ Rn×p and unit vectors u ∈ Rn and v ∈ Rp if

Av = σu and AT u = σv
then σ ∈ R (σ ≥ 0) is a singular value of A; v and u are the right singular vector
and the left singular vector respectively of A.

Definition (Symmetric matrix)
A matrix A ∈ Rp×p is symmetric if A = AT .

Definition (Matrix inverse)
The inverse of a square matrix A ∈ Rp×p (denoted by A−1), if it exists, satisfies:

A−1A = AA−1 = I, where I is the identity matrix.

I If A−1 exists we say A is invertible. We also refer to it as nonsingular or
nondegenerate.

I If A is unitary, then A−1 = AT .
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Matrix decompositions

Definition (Singular value decomposition)
The singular value decomposition (SVD) of a matrix, A ∈ Rn×p, is given by:

A = UΣVT =
r∑

i=1

σiuivT
i

I rank(A) = r ≤ min(n, p) and σi is the ith singular value of A
I ui and vi are the ith left and right singular vectors of A respectively
I U ∈ Rn×r and V ∈ Rp×r are unitary matrices (i.e., UT U = I)
I Σ = diag (σ1, σ2, . . . , σr ) where σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0

I vi are eigenvectors of AT A; σi =
√
λi (AT A) (and λi

(
AT A

)
= 0 for i > r)

since AT A =
(

UΣVT
)T (

UΣVT
)

=
(

VΣ2VT
)

I ui are eigenvectors of AAT ; σi =
√
λi (AAT ) (and λi

(
AAT

)
= 0 for i > r)

since AAT =
(

UΣVT
) (

UΣVT
)T

=
(

UΣ2UT
)
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Matrix decompositions contd

Definition (Eigenvalue decomposition)
The eigenvalue decomposition of a square matrix, A ∈ Rp×p, is given by:

A = XΛX−1

I the columns of X ∈ Rp×p, i.e., xi , are eigenvectors of A
I Λ = diag (λ1, λ2, . . . , λp) where λi (also denoted λi(A)) are eigenvalues of A
I Note that not all matrices are diagonalizable. This happens if at least one
eigenvalue has multiplicity m > 1 and if there are less than m linearly
independent eigenvectors associated with that eigenvalue.

Eigendecomposition of symmetric matrices
If A ∈ Rp×p is symmetric, the decomposition becomes A = UΛUT where
U ∈ Rp×p is unitary (or orthonormal), i.e., UT U = UUT = I and λi are real.

If we order λ1 ≥ λ2 ≥ · · · ≥ λp, λi(A) becomes the ith largest eigenvalue of A:
I λp(A) = λmin(A) is the minimum eigenvalue of A
I λ1(A) = λmax(A) is the maximum eigenvalue of A
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Matrix decompositions contd

Definition (LU)
The LU factorization of a nonsingular square matrix, A ∈ Rp×p, is given by:

A = LU

where the matrix L is lower triangular and the matrix U is upper triangular.

Definition (QR)
The QR factorization of any matrix, A ∈ Rn×p, is given by:

A = QR

where Q ∈ Rn×n is an orthogonal matrix, i.e., QT Q = I, and R ∈ Rn×p is upper
triangular.

Definition (Cholesky)
The Cholesky factorization of a positive definite matrix, A ∈ Rp×p, is given by:

A = LLT

where L is a lower triangular matrix with positive entries on the diagonal.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 1: Objects in Space

Matrix definitions contd.
Definition (Moore–Penrose pseudoinverse)
The Moore–Penrose pseudoinverse of a matrix A ∈ Rn×p (denoted by A†) can be
constructed using its singular value decomposition A = UΣVT as follows:

A† = VΣ†UT ,

where the operation † preserves the zero entries of the diagonal matrix Σ, reciprocates
the non-zero entries, and then transposes the matrix.

Definition (Determinant of a matrix)
The determinant of a square matrix A ∈ Rp×p, denoted by det(A), is given by:

det(A) = Πp
i=1λi

where λi are eigenvalues of A.

Definition (Trace of a matrix)
The trace of a square matrix A ∈ Rp×p, denoted by trace(A), is given by:

trace(A) =
p∑

i=1

aii =
p∑

i=1

λi

where aii are the elements of the main diagonal of A and λi are eigenvalues of A.
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Matrix definitions contd.

Definition (Positive semidefinite & positive definite matrices)
A symmetric matrix A ∈ Rn×n is positive semidefinite (denoted A � 0) if
xT Ax ≥ 0; while it is positive definite (denoted A � 0) if xT Ax > 0

I A � 0 iff all its eigenvalues are nonnegative, i.e., λmin(A) ≥ 0.
I Similarly, A � 0 iff all its eigenvalues are positive, i.e., λmin(A) > 0.
I A is negative semidefinite if −A � 0; while A is negative definite if −A � 0.
I Semidefinite ordering of two symmetric matrices, A and B: A � B if A−B � 0.

Example (Matrix inequalities)
1. If A � 0 and B � 0, then A + B � 0
2. If A � B and C � D, then A + C � B + D
3. If B � 0 then A + B � A
4. If A � 0 and α ≥ 0, then αA � 0
5. If A � 0, then A2 � 0
6. If A � 0, then A−1 � 0
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Complexity of matrix operations

Complexity of an algorithm
The complexity or cost of an algorithm is expressed in terms of floating-point
operations (flops) as a function of the problem dimension.

Definition (floating-point operation)
A floating-point operation (flop) is one addition, subtraction, multiplication, or
division of two floating-point numbers.

I In computing, flops, i.e., the plural form of flop, also stands for FLoating-point
Operations Per Second, which measures the rate. We can disambiguate
depending on the context.
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Complexity of matrix operations

Table: Complexity illustrations. Vector are in Rp. Matrices are in Rm×n or Rn×p or Rp×p.

Operation Complexity Remarks
vector addition p flops
vector inner product 2p− 1 flops or ≈ 2p for p large
matrix-vector product n(2p− 1) flops or ≈ 2np for p large

2m if A is sparse with m nonzeros
matrix-matrix product mn(2p− 1) flops or ≈ 2mnp for p large (naïve method)

much less if the matrices are sparse1,2

LU decomposition 2
3 p3 + 2p2 flops or ≈ 2

3 p3 for p large
much less if the matrix is sparse1

Cholesky decomposition 1
3 p3 + 2p2 flops or ≈ 1

3 p3 for p large
much less if the matrix is sparse1

Matrix SVD C1n2p + C2p3 flops C1 = 4, C2 = 22 for R-SVD algo.
Matrix determinant complexity of SVD+p flops much less for sparse A using Cholesky
Matrix inverse Cplog2 7 flops, 4 < C < 5 using Strassen algorithm

1 Computational complexity depends on the number of nonzeros in the matrices.
2 For multiplying p× p matrices, the best computational complexity result is currently O(p2.373).
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Matrix norms

Similar to vector norms, matrix norms are a metric over matrices:

Definition (Matrix norm)
The norm of an n × p matrix is a map ‖ · ‖ : Rn×p → R such that for all matrices
A,B ∈ Rn×p and scalar λ ∈ R

(a) ‖A‖ ≥ 0 for all A ∈ Rn×p (nonnegativity)
(b) ‖A‖ = 0 if and only if A = 0 (definitiveness)
(c) ‖λA‖ = |λ|‖A‖ (homogeniety)
(d) ‖A + B‖ ≤ ‖A‖+ ‖B‖ (triangle inequality)

Definition (Matrix inner product)
Matrix inner product is defined as follows

〈A,B〉 = trace
(

ABT
)
.

For complex matrices, we replace the transpose operation with the conjugate
transpose (i.e., Hermitian).
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Matrix norms contd.

I Similar to vector `p-norms we have Schatten q-norms for matrices.

Definition (Schatten q-norms)
‖A‖Sq :=

(∑p
i=1 (σ(A)i)q)1/q , where σ(A)i is the ith singular value of A.

Example (with r = min{n, p} and σi = σ(A)i)

‖A‖S1 = ‖A‖∗ :=
r∑

i=1

σi ≡ trace
(√

AT A
)

(Nuclear/trace)

‖A‖S2 = ‖A‖F :=

√√√√ r∑
i=1

(σi)2 ≡

√√√√ n∑
i=1

p∑
j=1

|aij |2 (Frobenius)

‖A‖S∞ = ‖A‖ := max
i=1,...,r

{σi} ≡ max
x,0

‖Ax‖
‖x‖

(Spectral/matrix)
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Matrix norms contd.

Problem (Rank-r approximation)
Find arg min

X
‖X−Y‖F subject to: rank(X) ≤ r .

Solution (Eckart–Young–Mirsky Theorem)

arg min
X:rank(X)≤r

‖X−Y‖F = arg min
X:rank(X)≤r

‖X−UΣYVT‖F , (SVD)

= arg min
X:rank(X)≤r

‖UT XV−ΣY‖F , (unitary invariance of ‖ · ‖F)

= U

(
arg min

M:rank(M)≤r
‖M−ΣY‖F

)
VT , (sparse approx.)

= UHr (ΣY) VT , (r-sparse approx. of the diagonal entries)

Singular value hard thresholding operator Hr performs the best rank-r approximation
of a matrix via sparse approximation: We keep the r largest singular values of the
matrix and set the rest to zero.
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Matrix norms contd.
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Matrix norms contd.
I The last step of the above solution makes use of the Mirsky inequality.

Theorem (Mirsky inequality)
If A,B are p × p matrices with singular values

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, τ1 ≥ τ2 ≥ · · · ≥ τp ≥ 0

respectively. Let σ = (σ1, . . . , σp)T and τ = (τ1, . . . , τp)T , then

‖A−B‖F ≥ ‖σ − τ‖2.

I Mirsky theorem is proved using the following simplified version of von Neumann
trace inequality.

Theorem (von Neumann trace inequality)
If A,B are p × p matrices with singular values

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, τ1 ≥ τ2 ≥ · · · ≥ τp ≥ 0

respectively. Let σ = (σ1, . . . , σp)T and τ = (τ1, . . . , τp)T , then

〈A,B〉 ≤ 〈σ, τ 〉
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Matrix norms contd.

Matrix & vector norm analogy

Vectors ‖x‖1 ‖x‖2 ‖x‖∞
Matrices ‖X‖∗ ‖X‖F ‖X‖

Definition (Dual norm for matrices)
The dual norm of A ∈ Rn×p is defined as

‖A‖∗ = sup
X
{〈X,A〉 | ‖X‖ ≤ 1} .

Matrix & vector dual norm analogy

Vector primal norm ‖x‖1 ‖x‖2 ‖x‖∞
Vector dual norm ‖x‖∞ ‖x‖2 ‖x‖1

Matrix primal norm ‖X‖∗ ‖X‖F ‖X‖
Matrix dual norm ‖X‖ ‖X‖F ‖X‖∗
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Linear operators
I Matrices are often given in an implicit form (e.g., partial Fourier, DCT, and
Hadamard matrices). It is convenient to think of them as linear operators.

Proposition (Linear operators & matrices)
Any linear operator in finite dimensional spaces can be represented as a matrix.

Example
Given matrices A,B and X with compatible dimensions and the linear operator
M : Rn×p → Rnp, we can define an implicit mapping through the linear operator

M(X) B
(

BT ⊗A
)

vec(X) = vec(AXB),

where ⊗ is the Kronecker product and vec : Rn×p → Rnp is yet another linear
operator that vectorizes its entries.
Note: Clearly, it is more efficient to compute vec(AXB) than to perform the matrix
multiplication

(
BT ⊗A

)
vec(X).

Example
Define a partial Hadamard matrix H̄n as H̄n = ĪHn where Ī be a partial identity matrix. While
we can store H̄n and use standard matrix multiplication techniques, it is often more efficient (both
space and computation-wise) to apply the fast Hadamard transform algorithm and then apply Ī.
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Matrix norms contd.
Definition (Operator norm)
The operator norm between `q and `r (1 ≤ q, r ≤ ∞) of a matrix A is defined as

‖A‖q→r = sup
‖x‖q≤1

‖Ax‖r

Problem
Show that ‖A‖2→2 = ‖A‖, i.e., `2-to-`2 operator norm is the spectral norm.

Solution

‖A‖2→2 = sup
‖x‖2≤1

‖Ax‖2 = sup
‖x‖2≤1

‖UΣVT x‖2 (using SVD of A)

= sup
‖x‖2≤1

‖ΣVT x‖2 (unitary invariance of ‖ · ‖2)

= sup
‖z‖2≤1

‖Σz‖2 (letting VT x = z)

= sup
‖z‖2≤1

√√√√min(n,p)∑
i=1

σ2
i z2

i = σmax = ‖A‖ �
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Matrix norms contd.
Definition (Operator norm)
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Matrix norms contd.

Other examples

I The ‖A‖∞→∞ (norm induced by `∞-norm) also denoted ‖A‖∞, is the
max-row-sum norm:

‖A‖∞→∞ := sup
x
{‖Ax‖∞ | ‖x‖∞ ≤ 1} = max

i=1,...,n

p∑
j=1

|aij |.

I The ‖A‖1→1 (norm induced by `1-norm) also denoted ‖A‖1, is the
max-column-sum norm:

‖A‖1→1 := sup
x
{‖Ax‖1 | ‖x‖1 ≤ 1} = max

j=1,...,p

n∑
i=1

|aij |.
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Matrix norms contd.

Useful relation for operator norms
The following identity holds

‖A‖q→r = ‖AT‖r′→q′

whenever 1/q + 1/q′ = 1 = 1/r + 1/r ′.

Example

1. ‖A‖∞→1 = ‖AT‖∞→1.
2. ‖A‖2→1 = ‖AT‖∞→2.
3. ‖A‖1→1 = ‖AT‖∞→∞.
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Matrix norms contd.

Computation of operator norms
I The computation of some operator norms is NP-hard [4]; these include:

1. ‖A‖∞→1
2. ‖A‖2→1
3. ‖A‖∞→2

I But some of them are approximable [9]; these include:
1. ‖A‖∞→1 (using Gronthendieck factorization)
2. ‖A‖∞→2 (using Pietzs factorization)
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Matrix norms contd.

Definition (Nuclear norm computation)

‖A‖∗ := ‖σ(A)‖1 where σ(A) is a vector of singular values of A

= min
U,V:A=UVH

‖U‖F‖V‖F = min
U,V:A=UVH

1
2
(
‖U‖2

F + ‖V‖2
F
)

Additional useful properties are below:
I Nuclear vs. Frobenius: ‖A‖F ≤ ‖A‖∗ ≤

√
rank(A) · ‖A‖F

I Hölder for matrices: |〈A,B〉| ≤ ‖A‖p‖B‖q , when 1
p + 1

q = 1
I We have

1. ‖A‖2→2 ≤ ‖A‖F
2. ‖A‖2

2→2 ≤ ‖A‖1→1‖A‖∞→∞
3. ‖A‖2→2 ≤ ‖A‖1→1 when A is self-adjoint.
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Matrix perturbation inequalities
I In the theorems below A,B ∈ Rp×p are symmetric positive semi-definite matrices
with spectra {λi(A)}p

i=1 and {λi(B)}p
i=1 where λ1 ≥ λ2 ≥ · · · ≥ λp.

Theorem (Lidskii inequality)

λi1 (A + B) + · · ·+ λin (A + B) ≤ λi1 (A) + · · ·λin (A) + λi1 (B) + · · ·+ λin (B) ,

for any 1 ≤ i1 ≤ · · · ≤ in ≤ p.

Theorem (Weyl inequality)

λi+j−1 (A + B) ≤ λi (A) + λj (B) , for any i, j ≥ 1 and i + j − 1 ≤ p.

Theorem (Interlacing property)
Let An = A(1 : n, 1 : n), then

λn+1 (An+1) ≤ λn (An) + λn (An+1) for n = 1, . . . , p.

I These inequalities hold in the more general setting when λi are replaced by σi .
I The list goes on to include Wedin bounds, Wielandt-Hoffman bounds and so on.
I More on such inequalities can be found in Terry Tao’s blog (254A, Notes 3a).
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Tensors

1. Basic tensor definitions
2. Notation and preliminaries
3. Tensors decompositions
4. Tensor rank
5. Advanced material
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Basic definitions

I Tensors provide natural and concise mathematical representations of data.

Definition (Tensor)
An order m tensor in p-dimensional space is a mathematical object that has p indices
and pm components and obeys certain transformation rules.

I In the literature, rank is used interchangeably with order, i.e., an order-k tensor is
also referred to as kth-rank tensor.

I In this course, we will use order instead of rank so that it is not confused with the
rank of a tensor.

I Furthermore, mode or way is also used to refer to the order of a tensor.

I Tensors are multidimensional arrays and are a generalization of:
1. scalars - tensors with no indices; i.e., order zero tensor.
2. vectors - tensors with exactly one index; i.e., order one tensor.
3. matrices - tensors with exactly two indices; i.e., order two tensor.

I A third-order tensor has exactly three indices.
I A higher-order tensor has greater than two indices; i.e., a tensor of order ≥ 2.
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Notation & preliminaries

Notation & preliminaries

I The notation conforms to [6] which is the main reference for this material.
I Higher-order tensors are denoted by boldface Euler script letters, e.g. A.

I Element (i, j, k, . . .) of a tensor A are denoted by aijk...

I The mth element in a sequence is denoted by a superscript in parentheses,
e.g. A(m) denotes the mth matrix in a sequence.

I Subarrays of a tensor are formed when a subset of the indices of the elements of
a tensor are fixed.

I Fibers are the higher-order analogue of matrix rows and columns, defined by
fixing every index but one.

I Slices are 2-dimensional sections of a tensor, defined by fixing all but 2 indices.
For instance, the horizontal, lateral, and frontal slices of a third-order tensor A are
denoted by Ai::, A:j:, & A::k (or more compactly Ai , Aj , & Ak) respectively.

Curse of dimensionality
Storage of an order-m tensor with mode sizes p requires pm elements.
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Notation & preliminaries contd.

I Tensors are linear vector spaces.

Definition (Norm)
The norm of a tensor A ∈ Rp1×p2×···×pk is given by

‖A‖ =

√√√√ p1∑
i1=1

p2∑
i2=1

· · ·
pk∑

ik=1

a2
i1i2...ik

I This is the analogue to the matrix Frobenius norm.

Definition (Inner product)
The inner product of two same-sized tensors X ,Y ∈ Rp1×p2×···×pk is given by

〈X ,Y〉 =
p1∑

i1=1

p2∑
i2=1

· · ·
pk∑

ik=1

xi1i2...ik yi1i2...ik

I It follows immediately that 〈A,A〉 = ‖A‖.
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Notation & preliminaries contd.

Rank-one tensors
A k-way tensor A ∈ Rp1×p2×···×pk is rank-one if it can be written as the outer
product of k vectors, i.e.

A = v(1) ◦ v(2) ◦ · · · ◦ v(k)

where “◦” represents the vector outer product.

I Each element of the tensor is the product of the corresponding vector elements:

xi1i2···ik = v(1)
i1

v(2)
i2
· · · v(k)

ik
∀1 ≤ in ≤ pn .

Definition (Cubical tensors)
A tensor A ∈ Rp1×···×pk is cubical if every mode is same size, i.e. p1 = · · · = pk = p;
as a shorthand an order-k cubical tensors is denoted as A ∈ ⊗kRp.

Definition (Symmetric tensors)
A cubical tensor A ∈ ⊗kRp is symmetric (also referred to as super-symmetric) if its
k-way representations are invariant to permutations of the array indices: i.e. for all
indices ii , i2, . . . , ik ∈ [p] and any permutation π on k:

ai1i2...ik = aiπ(1)iπ(2)...iπ(k) .
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Notation & preliminaries contd.

Rank-one tensors
A k-way tensor A ∈ Rp1×p2×···×pk is rank-one if it can be written as the outer
product of k vectors, i.e.

A = v(1) ◦ v(2) ◦ · · · ◦ v(k)

where “◦” represents the vector outer product.

I Each element of the tensor is the product of the corresponding vector elements:

xi1i2···ik = v(1)
i1

v(2)
i2
· · · v(k)

ik
∀1 ≤ in ≤ pn .

Definition (Cubical tensors)
A tensor A ∈ Rp1×···×pk is cubical if every mode is same size, i.e. p1 = · · · = pk = p;
as a shorthand an order-k cubical tensors is denoted as A ∈ ⊗kRp.

Definition (Symmetric tensors)
A cubical tensor A ∈ ⊗kRp is symmetric (also referred to as super-symmetric) if its
k-way representations are invariant to permutations of the array indices: i.e. for all
indices ii , i2, . . . , ik ∈ [p] and any permutation π on k:

ai1i2...ik = aiπ(1)iπ(2)...iπ(k) .
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Notation & preliminaries contd.

Why tensors are important?
Multivariate functions are related to multidimensional arrays or tensors:
Take a function f (x1, . . . ,xp); take a tensor-product grid and get a tensor, i.e.

ai1i2...ip = f (x1(i1), . . . ,xp(ip))

Where does tensors come from?
I n-th derivative of a multivariate function f (x1, . . . , xp), i.e. ∇nf (x1, . . . , xp)
I p-dimensional PDE: ∆u = f , u = u (x1, . . . ,xp)
I Data (images, video, hyperspectral images, etc)
I Latent variable models, joint probability distributions
I Many others
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Tensor decomposition

Definition (Tensor decomposition [6])
Tensor decomposition refers to the factorization of a tensor into a finite sum of
component rank-one tensors.

I This is the analogue of the SVD for matrices and is also known as parallel factors
and canonical decompositions.

Example
Given a order-3 tensor A ∈ Rp1×p2×p3 , it’s decomposition attempts to express it as

A ≈
R∑

r=1

xr ◦ yr ◦ zr ,

where R > 0 is integer and for r = 1, . . . ,R, xr ∈ Rp1 , yr ∈ Rp2 , and zr ∈ Rp3 .
Elementwise, this decomposition can be written as

aijk ≈
R∑

r=1

xir yjr zkr for i = 1, . . . , p1, j = 1, . . . , p2, k = 1, . . . , p3.
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Tensor decomposition contd.

Definition (Factor matrices)
Given a decomposition A ≈

∑R
r=1 xr ◦ yr ◦ zr , the factor matrices refers to the

combination of the vectors from the rank-one components, i.e. X = [x1 x2 · · · xR]
and similarly for Y and Z.

I Thus tensor decomposition can be concisely written as

A ≈ [[X,Y,Z]] ≡
R∑

r=1

xr ◦ yr ◦ zr .

I If we assume that the columns of X,Y, and Z are normalized with the weights
absorbed in a vector λ, then the tensor decomposition can further be expressed as

A = [[λ; X,Y,Z]] ≡
R∑

r=1

λr xr ◦ yr ◦ zr .
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Tensor rank

Definition (Tensor rank)
The rank of a tensor A denoted rank(A) is the smallest number of rank-one tensors
that generate A as their sum.

I This is the smallest number of components in an exact tensor decomposition
where “exact” means the decomposition holds with equality:

A = [[X,Y,Z]] ≡
R∑

r=1

xr ◦ yr ◦ zr .

I An exact tensor decomposition with R = rank(A) is called rank decomposition.
I This is the exact analogue of the definition of a matrix rank but the properties of
a matrix and a tensor ranks are quite different.
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Tensors rank contd.

Tensor rank approximation: caveat!
Not much is known about the generalizability of matrix notions to tensors particularly
rank approximation.

I The equivalence of the Eckart-Young-Mirsky theorem for rank-k approximation of
matrices does not exist for tensors.
1. For instance, summing k of the factors of a third-order tensor of rank R does not

necessarily yield a best rank-k approximation.

2. Kolda [5] gave an example where the best rank-k approximation of a tensor is not a
factor in the best rank-2 approximation.

I The notion of tensor (symmetric) rank is considerably more delicate than matrix
(symmetric) rank. For instance:
1. Not clear a priori that the symmetric rank should even be finite [3].

2. Removal of the best rank-1 approximation of a general tensor may increase the tensor
rank of the residual [8].

I It is NP-hard to compute the rank of a tensor in general; only approximations of
(super) symmetric tensors possible [1].
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? Tensors as multilinear maps
I Just as a matrix can be pre- & post-multiplied by a pair of matrices, an order-k
tensor can be multiplied on k-sides by k-matrices.

Definition (Multilinear maps with tensors)
For a set of matrices

{
Xi ∈ Rp×mi | i ∈ [k]

}
, the (i1, i2, . . . , ik)-th entry of a k-way

array representation of A (X1, . . . ,Xk) ∈ Rm1×···×mk is

[A (X1, . . . ,Xk)]i1...ik
:=

∑
j1,...,jk∈[p]

aj1j2...jk [X1]j1i1
[X2]j2i2

. . . [Xk ]jk ik
,

where [Xi ]jk is the (j, k) entry of a matrix Xi .

Example
1. If A is a matrix (k = 2), then

A (X1, X2) = XT
1 AX2

2. For a matrix A and a vector x ∈ Rp, we can express Ax as
A (I, x) = Ax

3. With the canonical basis
{

ei1 , ei2 , . . . , eik

}
we have

A
(

ei1 , ei2 , . . . , eik

)
= Ai1,i2,...,ik

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 1: Objects in Space

? Tensor compression and Tucker decomposition

I The Tucker decomposition is a form of higher-order PCA.
I It also goes by many other names, see [6].

Definition (Tucker decomposition [6])
The Tucker decomposition decomposes a tensor into a core tensor multiplied (or
transformed) by a matrix along each mode.

Example

I In the case of a third-order tensor A ∈ Rp1×p2×p3 , we have

A =
R1∑

r1=1

R2∑
r2=1

R3∑
r1=3

gr1r2r3 xr1 ◦ yr2 ◦ zr3 = [[G; X,Y,Z]].

I The matrices X ∈ Rp1×R1 , Y ∈ Rp2×R2 , and Z ∈ Rp3×R3 are the factor
matrices and are the principal components in each mode.

I The tensor G ∈ RR1×R2×R3 is the core tensor and its entries show the level of
interaction between different components.
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? Banach’s results for tensors

I Banach proved that the maximal overlap between a symmetric tensor and a
rank-1 tensor is attained at a symmetric rank-1 tensor.

I Unfortunately, this–seemingly trivial result—is not obvious. That is, if
U ∈ Symk(Cp) is a k-index totally symmetric vector with d dimensions per index,
then

max argX=x1◦...◦xk ,‖xi‖2=1 |〈X,U〉|2

fulfills x1 = . . . = xn .
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