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Outline

I This class:
1. Linear algebra review

I Notation
I Vectors
I Matrices
I Tensors

I Next class
1. Review of probability theory
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Recommended reading material

I Zico Kolter and Chuong Do, Linear Algebra Review and Reference
http://cs229.stanford.edu/section/cs229-linalg.pdf, 2012.

I KC Border, Quick Review of Matrix and Real Linear Algebra
http://www.hss.caltech.edu/~kcb/Notes/LinearAlgebra.pdf, 2013.

I Simon Foucart and Holger Rauhut, A mathematical introduction to compressive
sensing (Appendix A: Matrix Analysis), Springer, 2013.

I Joel A Tropp, Column subset selection, matrix factorization, and eigenvalue
optimization, In Proc. of the 20th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp 978–986, SIAM, 2009.
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Motivation

Motivation
I This lecture is intended to help you follow mathematical discussions in data
sciences, which rely heavily on basic linear algebra concepts.
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Notation

I Scalars are denoted by lowercase letters (e.g. k)
I Vectors by lowercase boldface letters (e.g., x)
I Matrices by uppercase boldface letters (e.g. A)
I Component of a vector x, matrix A as xi, aij & Ai,j,k,... respectively.
I Sets by uppercase calligraphic letters (e.g. S) .
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Vector spaces

Note:
We focus on the field of real numbers (R) but most of the results can be generalized
to the field of complex numbers (C).

A vector space or linear space (over the field R) consists of
(a) a set of vectors V
(b) an addition operation: V × V → V
(c) a scalar multiplication operation: R× V → V
(d) a distinguished element 0 ∈ V
and satisfies the following properties:
1. x + y = y + x, ∀x,y ∈ V commutative under addition
2. (x + y) + z = x + (y + z), ∀x,y, z ∈ V associative under addition
3. 0 + x = x, ∀x ∈ V 0 being additive identity
4. ∀x ∈ V ∃ (−x) ∈ V such that x + (−x) = 0 −x being additive inverse
5. (αβ)x = α(βx), ∀α, β ∈ R ∀x ∈ V associative under scalar multiplication
6. α(x + y) = αx + αy, ∀α ∈ R ∀x,y ∈ V distributive
7. 1x = x, ∀x ∈ V 1 being multiplicative identity
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Vector spaces contd.

Example (Vector space)

1. V1 = {0} for 0 ∈ Rp

2. V2 = Rp

3. V3 =
∑k

i=1 αixi for αi ∈ R and xi ∈ Rp

It is straight forward to show that V1, V2, and V3 satisfy properties 1–7 above.

Definition (Subspace)
A subspace is a vector space that is a subset of another vector space.

Example (Subspace)
V1, V2, and V3 in the example above are subspaces of Rp
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Vector spaces contd.

Definition (Span)
The span of a set of vectors, {x1,x2, . . . ,xk}, is the set of all possible linear
combinations of these vectors; i.e.,

span {x1,x2, . . . ,xk} = {α1x1 + α2x2 + · · ·+ αkxk | α1, α2, . . . , αk ∈ R} .

Definition (Linear independence)
A set of vectors, {x1,x2, . . . ,xk}, is linearly independent if

α1x1 + α2x2 + · · ·+ αkxk = 0 ⇒ α1 = α2 = . . . = αk = 0.

Definition (Basis)
The basis of a vector space, V, is a set of vectors {x1,x2, . . . ,xk} that satisfy
(a) V = span {x1,x2, . . . ,xk} , (b) {x1,x2, . . . ,xk} are linearly independent.

Definition (Dimension∗)
The dimension of a vector space, V, (denoted dim(V)) is the number of vectors in
the basis of V.
∗We will generalize the concept of affine dimension to the statistical dimension of convex objects.
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Vector Norms

Definition (Vector norm)
A norm of a vector in Rp is a function ‖ · ‖ : Rp → R such that for all vectors
x,y ∈ Rp and scalar λ ∈ R
(a) ‖x‖ ≥ 0 for all x ∈ Rp nonnegativity
(b) ‖x‖ = 0 if and only if x = 0 definitiveness
(c) ‖λx‖ = |λ|‖x‖ homogeniety
(d) ‖x + y‖ ≤ ‖x‖+ ‖y‖ triangle inequality

I There is a family of `q-norms parameterized by q ∈ [1,∞];

I For x ∈ Rp, the `q-norm is defined as ‖x‖q :=
(∑p

i=1 |xi|q
)1/q .

Example

(1) `2-norm: ‖x‖2 :=
√∑p

i=1 x
2
i (Euclidean norm)

(2) `1-norm: ‖x‖1 :=
∑p

i=1 |xi| (Manhattan norm)

(3) `∞-norm: ‖x‖∞ := max
i=1,...,p

|xi| (Chebyshev norm)
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Vector norms contd.

Definition (Quasi-norm)
A quasi-norm satisfies all the norm properties except (d) triangle inequality, which is
replaced by ‖x + y‖ ≤ c (‖x‖+ ‖y‖) for a constant c ≥ 1.

Definition (Semi(pseudo)-norm)
A semi(pseudo)-norm satisfies all the norm properties except (b) definiteness.

Example
I The `q-norm is in fact a quasi norm when q ∈ (0, 1), with c = 21/q − 1.
I The total variation norm (TV-norm) defined (in 1D):
‖x‖TV :=

∑p−1
i=1 |xi+1 − xi| is a semi-norm since it fails to satisfy (b);

e.g. any x = c(1, 1, . . . , 1)T for c , 0 will have ‖x‖TV = 0 even though x , 0.

Definition (`0-“norm”)
‖x‖0 = limq→0‖x‖q

q = |{i : xi , 0}|

The `0-norm counts the non-zero components of x. It is not a norm – it does not
satisfy the property (c) ⇒ it is also neither a quasi- nor a semi-norm.
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Vector norms contd.
Problem (s-sparse approximation)
Find arg min

x∈Rp
‖x− y‖2 subject to: ‖x‖0 ≤ s.
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Vector norms contd.
Problem (s-sparse approximation)
Find arg min

x∈Rp
‖x− y‖2 subject to: ‖x‖0 ≤ s.

Solution
Define ŷ ∈ arg min

x∈Rp:‖x‖0≤s

‖x− y‖2
2 and let Ŝ = supp

(
ŷ
)
.

We now consider an optimization over sets

Ŝ ∈ arg min
S:|S|≤s

‖yS − y‖2
2.

∈ arg max
S:|S|≤s

{
‖y‖2

2 − ‖yS − y‖2
2
}

∈ arg max
S:|S|≤s

{
‖yS‖2

2
}

= arg max
S:|S|≤s

∑
i∈S

‖yi‖2 (≡ modular approximation problem).

Thus, the best s-sparse approximation of a vector is a vector with the s largest
components of the vector in magnitude.
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Vector norms contd.

Norm balls
Radius r ball in `q-norm: Bq(r) = {x ∈ Rp : ‖x‖q ≤ r}

‖x‖0 ≤ 2 `0.5-quasi norm ball `1-norm ball

`2-norm ball `∞-norm ball TV-semi norm ball

Table: Example norm balls in R3
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Inner products

Definition (Inner product)
The inner product of any two vectors x,y ∈ Rp (denoted by 〈·, ·〉) is defined as
〈x,y〉 = xT y =

∑p

i
xiyi.

The inner product satisfies the following properties:
1. 〈x,y〉 = 〈y,x〉,∀x,y ∈ Rp symmetry
2. 〈(αx + βy), z〉 = 〈αx, z〉+ 〈βy, z〉,∀α, β ∈ R, ∀x,y, z ∈ Rp linearity
3. 〈x,x〉 ≥ 0,∀x ∈ Rp positive definiteness

Important relations involving the inner product:
I Hölder’s inequality: |〈x,y〉| ≤ ‖x‖q‖y‖r, where r > 1 and 1

q
+ 1

r
= 1

I Cauchy-Schwarz is a special case of Hölder’s inequality (q = r = 2)

Definition (Inner product space)
An inner product space is a vector space endowed with an inner product.
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Vector norms contd.

Definition (Dual norm)
Let ‖ · ‖ be a norm in Rp, then the dual norm denoted by ‖ · ‖∗ is defined:

‖x‖∗ = sup
‖y‖≤1

xT y, for all x,y ∈ Rp

I The dual of the dual norm is the original (primal) norm, i.e., ‖x‖∗∗ = ‖x‖.
I Hölder’s inequality ⇒ ‖ · ‖q is a dual norm of ‖ · ‖r when 1

q
+ 1

r
= 1.

Example 1
i) ‖ · ‖2 is dual of ‖ · ‖2 (i.e. ‖ · ‖2 is self-dual): sup{zT x | ‖x‖2 ≤ 1} = ‖z‖2.
ii) ‖ · ‖1 is dual of ‖ · ‖∞, (and vice versa): sup{zT x | ‖x‖∞ ≤ 1} = ‖z‖1.

Example 2
What is the dual norm of ‖ · ‖q for q = 1 + 1/ log(p)?

Solution
By Hölder’s inequality, ‖ · ‖r is the dual norm of ‖ · ‖q if 1

q
+ 1

r
= 1. Therefore,

r = 1 + log(p) for q = 1 + 1/ log(p).
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Vector norms contd.

Definition (Dual norm)
Let ‖ · ‖ be a norm in Rp, then the dual norm denoted by ‖ · ‖∗ is defined:

‖x‖∗ = sup
‖y‖≤1

xT y, for all x,y ∈ Rp

I The dual of the dual norm is the original (primal) norm, i.e., ‖x‖∗∗ = ‖x‖.
I Hölder’s inequality ⇒ ‖ · ‖q is a dual norm of ‖ · ‖r when 1

q
+ 1

r
= 1.

Example 1
i) ‖ · ‖2 is dual of ‖ · ‖2 (i.e. ‖ · ‖2 is self-dual): sup{zT x | ‖x‖2 ≤ 1} = ‖z‖2.
ii) ‖ · ‖1 is dual of ‖ · ‖∞, (and vice versa): sup{zT x | ‖x‖∞ ≤ 1} = ‖z‖1.

Example 2
What is the dual norm of ‖ · ‖q for q = 1 + 1/ log(p)?

Solution
By Hölder’s inequality, ‖ · ‖r is the dual norm of ‖ · ‖q if 1

q
+ 1

r
= 1. Therefore,

r = 1 + log(p) for q = 1 + 1/ log(p).

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 15/ 40



Metrics

I A metric on a set is a function that satisfies the minimal properties of a distance.

Definition (Metric)
Let X be a set, then a function d(·, ·) : X × X → R is a metric if ∀x,y ∈ X :

(a) d(x, y) ≥ 0 for all x and y (nonnegativity)
(b) d(x, y) = 0 if and only if x = y (definiteness)
(c) d(x, y) = d(y, x) (symmetry)
(d) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

I A pseudo-metric satisfies (a), (c) and (d) but not necessarily (b)
I A metric space (X , d) is a set X with a metric d defined on X
I Norms induce metrics while pseudo-norms induce pseudo-metrics

Example

I Euclidean distance: dE(x,y) = ‖x− y‖2
I Bregman distance: dB(·, ·) ...more on this later!
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Basic matrix definitions

Definition (Nullspace of a matrix)
The nullspace of a matrix, A ∈ Rn×p, (denoted by null(A)) is defined as

null(A) = {x ∈ Rp | Ax = 0}

I null(A) is the set of vectors mapped to zero by A.
I null(A) is the set of vectors orthogonal to the rows of A.

Definition (Range of a matrix)
The range of a matrix, A ∈ Rn×p, (denoted by range(A)) is defined as

range(A) = {Ax | x ∈ Rp} ⊆ Rn

I range(A) is the span of the columns (or the column space) of A.

Definition (Rank of a matrix)
The rank of a matrix, A ∈ Rn×p, (denoted by rank(A)) is defined as

rank(A) = dim (range(A))

I rank(A) is the maximum number of independent columns (or rows) of A,
⇒ rank(A) ≤ min(n, p).

I rank(A) = rank(AT ); and rank(A) + dim (null(A)) = n.
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Matrix definitions contd.

Definition (Eigenvalues & Eigenvectors)
The vector x is an eigenvector of a square matrix A ∈ Rn×n if Ax = λx where
λ ∈ R is called an eigenvalue of A.
I A scales its eigenvectors by it eigenvalues.

Definition (Singular values & singular vectors)
For A ∈ Rn×p and unit vectors u ∈ Rn and v ∈ Rp if

Av = σu and AT u = σv
then σ ∈ R (σ ≥ 0) is a singular value of A; v and u are the right singular vector
and the left singular vector respectively of A.

Definition (Symmetric matrix)
A matrix A ∈ Rn×n is symmetric if A = AT .

Lemma
The eigenvalues of a symmetric A are real.

Proof.
Assume Ax = λx, x ∈ Cp,x , 0, then xT Ax = xT (Ax) = xT (λx) = λ

∑n

i=1 |xi|2

but xT Ax = (Ax)
T

x = (λx)
T

x = λ
∑n

i=1 |xi|2 ⇒ λ = λ i.e. λ ∈ R �

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 18/ 40



Matrix definitions contd.

Definition (Positive semidefinite & positive definite matrices)
A symmetric matrix A ∈ Rn×n is positive semidefinite (denoted A � 0) if
xT Ax ≥ 0 for all x , 0; while it is positive definite (denoted A � 0) if xT Ax > 0

I A � 0 iff all its eigenvalues are nonnegative i.e. λmin(A) ≥ 0.
I Similarly, A � 0 iff all its eigenvalues are positive i.e. λmin(A) > 0.
I A is negative semidefinite if −A � 0; while A is negative definite if −A � 0.
I Semidefinite ordering of two symmetric matrices, A and B: A � B if A−B � 0.

Example (Matrix inequalities)
1. If A � 0 and B � 0, then A + B � 0
2. If A � B and C � D, then A + C � B + D
3. If B � 0 then A + B � A
4. If A � 0 and α ≥ 0, then αA � 0
5. If A � 0, then A2 � 0
6. If A � 0, then A−1 � 0
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Matrix decompositions

Definition (Eigenvalue decomposition)
The eigenvalue decomposition of a square matrix, A ∈ Rn×n, is given by:

A = XΛX−1

I the columns of X ∈ Rn×n, i.e. xi, are eigenvectors of A
I Λ = diag (λ1, λ2, . . . , λn) where λi (also denoted λi(A)) are eigenvalues of A
I A matrix that admits this decomposition is therefore called diagonalizable matrix

Eigendecomposition of symmetric matrices
If A ∈ Rn×n is symmetric, the decomposition becomes A = UΛUT

where U ∈ Rn×n is unitary (or orthonormal), i.e. UT U = I and λi are real

If we order λ1 ≥ λ2 ≥ · · · ≥ λn, λi(A) becomes the ith largest eigenvalue of A:
I λn(A) = λmin(A) is the minimum eigenvalue of A
I λ1(A) = λmax(A) is the maximum eigenvalue of A
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Matrix decompositions contd

Definition (Determinant of a matrix)
The determinant of a square matrix A ∈ Rp×p, denoted by det(A), is given by:

det(A) = Πp
i=1λi

where λi are eigenvalues of A.
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Matrix decompositions contd

Definition (Singular value decomposition)
The singular value decomposition (SVD) of a matrix, A ∈ Rn×p, is given by:

A = UΣVT =
r∑

i=1

σiuivT
i

I rank(A) = r ≤ min(n, p) and σi is the ith singular value of A
I ui and vi are the ith left and right singular vectors of A respectively
I U ∈ Rn×r and V ∈ Rp×r are unitary matrices (i.e. UT U = I)
I Σ = diag (σ1, σ2, . . . , σr) where σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0

I vi are eigenvectors of AT A; σi =
√
λi (AT A) (and λi

(
AT A

)
= 0 for i > r)

since AT A =
(
UΣVT

)T (
UΣVT

)
=
(
VΣ2VT

)
I ui are eigenvectors of AAT ; σi =

√
λi (AAT ) (and λi

(
AAT

)
= 0 for i > r)

since AAT =
(
UΣVT

) (
UΣVT

)T
=
(
UΣ2UT

)
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Matrix decompositions contd

Definition (LU)
The LU factorization of a nonsingular square matrix, A ∈ Rp×p, is given by:

A = PLU

where P is a permutation matrix1, L is lower triangular and U is upper triangular.

Definition (QR)
The QR factorization of any matrix, A ∈ Rn×p, is given by:

A = QR

where Q ∈ Rn×n is an orthonormal matrix, i.e. QT Q = I, and R ∈ Rn×p is upper
triangular.

Definition (Cholesky)
The Cholesky factorization of a positive definite and symmetric matrix, A ∈ Rp×p, is
given by:

A = LLT

where L is a lower triangular matrix with positive entries on the diagonal.

1 A matrix P ∈ Rp×p is permutation if it has only one 1 in each row and each column.
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Complexity of matrix operations

Complexity of matrix operations
The complexity or cost of an algorithm is expressed in terms of floating-point
operations (flops) as a function of the problem dimension.

Definition (floating-point operation)
A floating-point operation (flop) is one addition, subtraction, multiplication, or
division of two floating-point numbers.
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Complexity of matrix operations contd

Table: Complexity examples: vector are in Rp, matrices in Rn×p or Rp×m for square matrices

Operation Complexity Remarks
vector addition p flops
vector inner product 2p− 1 flops or ≈ 2p for p large
matrix-vector product n(2p− 1) flops or ≈ 2np for p large

2m if A is sparse with m nonzeros
matrix-matrix product mn(2p− 1) flops or ≈ 2mnp for p large

much less if A is sparse1

LU decomposition 2
3p

3 + 2p2 flops or 2
3p

3 for p large
much less if A is sparse1

Cholesky decomposition 1
3p

3 + 2p2 flops or 1
3p

3 for p large
much less if A is sparse1

SVD C1n2p+ C2p3 flops C1 = 4, C2 = 22 for R-SVD algo.
Determinant complexity of SVD

1 Complexity depends on p, no. of nonzeros in A and the sparsity pattern.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 25/ 40



Matrix norms

Similar to vector norms, matrix norms are a metric over matrices:

Definition (Matrix norm)
A norm of an n× p matrix is a map ‖ · ‖ : Rn×p → R such that for all matrices
A,B ∈ Rn×p and scalar λ ∈ R
(a) ‖A‖ ≥ 0 for all A ∈ Rn×p nonnegativity
(b) ‖A‖ = 0 if and only if A = 0 definitiveness
(c) ‖λA‖ = |λ|‖A‖ homogeniety
(d) ‖A + B‖ ≤ ‖A‖+ ‖B‖ triangle inequality

Definition (Matrix inner product)
Matrix inner product is defined as follows

〈A,B〉 = trace
(
ABT

)
.
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Linear operators

I Matrices are often given in an implicit form.
I It is convenient to think of them as linear operators.

Proposition (Linear operators & matrices)
Any linear operator in finite dimensional spaces can be represented as a matrix.

Example
Given matrices A,B and X with compatible dimensions and the linear operator
M : Rn×p → Rnp, a linear operator can define the following implicit mapping

M(X) B
(
BT ⊗A

)
vec(X) = vec(AXB),

where ⊗ is the Kronecker product and vec : Rn×p → Rnp is yet another linear
operator that vectorizes its entries.
Note: Clearly, it is more efficient to compute vec(AXB) than to perform the matrix
multiplication

(
BT ⊗A

)
vec(X).
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Matrix norms contd.
Definition (Operator norm)
The operator norm between `q and `r (1 ≤ q, r ≤ ∞) of a matrix A is defined as

‖A‖q→r = sup
‖x‖q≤1

‖Ax‖r

Problem
Show that ‖A‖2→2 = ‖A‖ i.e., `2 to `2 operator norm is the spectral norm.

Solution

‖A‖2→2 = sup
‖x‖2≤1

‖Ax‖2 = sup
‖x‖2≤1

‖UΣVT x‖2 (using SVD of A)

= sup
‖x‖2≤1

‖ΣVT x‖2 (rotational invariance of ‖ · ‖2)

= sup
‖z‖2≤1

‖Σz‖2 (letting VT x = z)

= sup
‖z‖2≤1

√√√√min(n,p)∑
i=1

σ2
i z

2
i = σmax = ‖A‖ �
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Matrix norms contd.

Other examples

I The ‖A‖∞→∞ (norm induced by `∞-norm) also denoted ‖A‖∞, is the
max-row-sum norm:

‖A‖∞→∞ := sup{‖Ax‖∞ | ‖x‖∞ ≤ 1} = max
i=1,...,n

p∑
j=1

|aij |.

I The ‖A‖1→1 (norm induced by `1-norm) also denoted ‖A‖1, is the
max-column-sum norm:

‖A‖1→1 := sup{‖Ax‖1 | ‖x‖1 ≤ 1} = max
i=1,...,p

n∑
j=1

|aij |.
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Matrix norms contd.

Useful relation for operator norms
The following identity holds

‖A‖q→r := max
‖z‖r≤1,‖x‖q=1

〈z,Ax〉 = max
‖x‖q′≤1,‖z‖r′=1

〈AT z,x〉 =: ‖AT ‖q′→r′

whenever 1/q + 1/q′ = 1 = 1/r + 1/r′.

Example

1. ‖A‖∞→1 = ‖AT ‖1→∞.
2. ‖A‖2→1 = ‖AT ‖2→∞.
3. ‖A‖∞→2 = ‖AT ‖1→2.
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?Matrix norms contd.

Computation of operator norms
I The computation of some operator norms is NP-hard∗ [3]; these include:

1. ‖A‖∞→1
2. ‖A‖2→1
3. ‖A‖∞→2

I But some of them are approximable [5]; these include
1. ‖A‖∞→1 (via Gronthendieck factorization)
2. ‖A‖∞→2 (via Pietzs factorization)

∗: See Lecture 3.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 31/ 40



Matrix norms contd.

I Similar to vector `p-norms, we have Schatten q-norms for matrices.

Definition (Schatten q-norms)
‖A‖q :=

(∑p

i=1 (σ(A)i)q
)1/q , where σ(A)i is the ith singular value of A.

Example (with r = min{n, p} and σi = σ(A)i)

‖A‖1 = ‖A‖∗ :=
r∑

i=1

σi ≡ trace
(√

AT A
)

(Nuclear/trace)

‖A‖2 = ‖A‖F :=

√√√√ r∑
i=1

(σi)2 ≡

√√√√ n∑
i=1

p∑
j=1

|aij |2 (Frobenius)

‖A‖∞ = ‖A‖ := max
i=1,...,r

{σi} ≡ max
x,0

‖Ax‖
‖x‖

(Spectral/matrix)
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Matrix norms contd.

Problem (Rank-r approximation)
Find arg min

X
‖X−Y‖F subject to: rank(X) ≤ r.

Solution (Eckart–Young–Mirsky Theorem)

arg min
X:rank(X)≤r

‖X−Y‖F = arg min
X:rank(X)≤r

‖X−UΣYVT ‖F , (SVD)

= arg min
X:rank(X)≤r

‖UT XV−ΣY‖F , (unit. invar. of ‖ · ‖F )

= U

(
arg min

X:rank(X)≤r

‖X−ΣY‖F

)
VT , (sparse approx.)

= UHr (ΣY) VT , (r-sparse approx. of the diagonal entries)

Singular value hard thresholding operator Hr performs the best rank-r approximation
of a matrix via sparse approximation: We keep the r largest singular values of the
matrix and set the rest to zero.
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?Matrix norms contd.
I The last step of the above solution makes use of the Mirsky inequality.

Theorem (Mirsky inequality)
If A,B are p× p matrices with singular values

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, τ1 ≥ τ2 ≥ · · · ≥ τp ≥ 0

respectively. Let σ = (σ1, . . . , σp)T and τ = (τ1, . . . , τp)T , then

‖A−B‖F ≥ ‖σ − τ‖2.

I Mirsky theorem is proved using the following simplified version of von Neumann
trace inequality.

Theorem (von Neumann trace inequality)
If A,B are p× p matrices with singular values

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, τ1 ≥ τ2 ≥ · · · ≥ τp ≥ 0

respectively. Let σ = (σ1, . . . , σp)T and τ = (τ1, . . . , τp)T , then

〈A,B〉 ≤ 〈σ, τ 〉
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Matrix norms contd.

Matrix & vector norm analogy

Vectors ‖x‖1 ‖x‖2 ‖x‖∞
Matrices ‖X‖∗ ‖X‖F ‖X‖

Definition (Dual of a matrix)
The dual norm of A ∈ Rn×p is defined as

‖A‖∗ = sup
{

trace
(
AT X

)
| ‖X‖ ≤ 1

}
.

Matrix & vector dual norm analogy

Vector primal norm ‖x‖1 ‖x‖2 ‖x‖∞
Vector dual norm ‖x‖∞ ‖x‖2 ‖x‖1

Matrix primal norm ‖X‖∗ ‖X‖F ‖X‖
Matrix dual norm ‖X‖ ‖X‖F ‖X‖∗
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Matrix norms contd.

Definition (Nuclear norm computation)

‖A‖∗ := ‖σ(A)‖1 where σ(A) is a vector of singular values of A

= min
U,V:A=UVH

‖U‖F ‖V‖F = min
U,V:A=UVH

1
2
(
‖U‖2

F + ‖V‖2
F

)
Additional useful properties are below:
I Nuclear vs. Frobenius: ‖A‖F ≤ ‖A‖∗ ≤

√
rank(A) · ‖A‖F

I Hölder for matrices: |〈A,B〉| ≤ ‖A‖p‖B‖q , when 1
p

+ 1
q

= 1
I We have

1. ‖A‖2→2 ≤ ‖A‖F

2. ‖A‖2
2→2 ≤ ‖A‖1→1‖A‖∞→∞

3. ‖A‖2
2→2 ≤ ‖A‖1→1 when A is self-adjoint.
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?Matrix perturbation inequalities
I In the theorems below A,B ∈ Rp×p are symmetric matrices with spectra
{λi(A)}p

i=1 and {λi(B)}p
i=1 where λ1 ≥ λ2 ≥ · · · ≥ λp.

Theorem (Lidskii inequality)

λi1 (A + B) + · · ·+ λin (A + B) ≤ λi1 (A) + · · ·λin (A) + λi1 (B) + · · ·+ λin (B) ,

for any 1 ≤ i1 ≤ · · · ≤ in ≤ p.

Theorem (Weyl inequality)

λi+j−1 (A + B) ≤ λi (A) + λj (B) , for any i, j ≥ 1 and i+ j − 1 ≤ p.

Theorem (Interlacing property)
Let An = A(1 : n, 1 : n), then

λn+1 (An+1) ≤ λn (An) + λn (An+1) for n = 1, . . . , p.

I These inequalities hold in the more general setting when λi are replaced by σi.
I The list goes on to include Wedins bounds, Wielandt-Hoffman bounds and so on.
I More on such inequalities can be found in Terry Tao’s blog (254A, Notes 3a).
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?Tensors

I Tensors provide a natural and concise mathematical represention of data.

Definition (Tensor)
An mth-rank tensor in p-dimensional space is a mathematical object that has p
indices and pm components and obeys certain transformation rules.

I In the literature, order is used interchangeably with rank, i.e., kth-rank tensor is
also referred to as an order-k tensor.

I Tensors are multidimensional arrays and are a generalization of:
1. scalars - tensors with no indices; i.e., zeroth-rank tensor.
2. vectors - tensors with exactly one index; i.e., first-rank tensor.
3. matrices - tensors with exactly two indices; i.e., second-rank tensor.

I Think of the third-order Taylor series expansion
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?Tensors contd.

Caveat!
Not much is known about tensors and the generalizability of matrix notions to tensors:

I The notion of tensor (symmetric) rank is considerably more delicate than matrix
(symmetric) rank. For instance:
1. Not clear a priori that the symmetric rank should even be finite [2].
2. Removal of the best rank-1 approximation of a general tensor may increase the tensor

rank of the residual [4].
I It is NP-hard to compute the rank of a tensor in general; only approximations of
(super) symmetric tensors possible [1].
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