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Outline

> This class:
1. Linear algebra review

> Notation

> Vectors

> Matrices

> Tensors
> Next class

1. Review of probability theory

-
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Recommended reading material

» Zico Kolter and Chuong Do, Linear Algebra Review and Reference
http://cs229.stanford.edu/section/cs229-1inalg.pdf, 2012.

» KC Border, Quick Review of Matrix and Real Linear Algebra
http://www.hss.caltech.edu/~kcb/Notes/LinearAlgebra.pdf, 2013.

» Simon Foucart and Holger Rauhut, A mathematical introduction to compressive
sensing (Appendix A: Matrix Analysis), Springer, 2013.

> Joel A Tropp, Column subset selection, matrix factorization, and eigenvalue
optimization, In Proc. of the 20th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp 978-986, SIAM, 2009.
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Motivation

Motivation

> This lecture is intended to help you follow mathematical discussions in data
sciences, which rely heavily on basic linear algebra concepts.
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Notation

> Scalars are denoted by lowercase letters (e.g. k)

> Vectors by lowercase boldface letters (e.g., x)

> Matrices by uppercase boldface letters (e.g. A)

> Component of a vector x, matrix A as x;, a;j & A; ; 1,... respectively.

» Sets by uppercase calligraphic letters (e.g. S) .
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Vector spaces

Note:

We focus on the field of real numbers (R) but most of the results can be generalized

to the field of complex numbers (C).

A vector space or linear space (over the field R) consists of

(a) a set of vectors V

(b) an addition operation: V x V — V

(c) a scalar multiplication operation: R x V — V

(d) a distinguished element 0 € V

and satisfies the following properties:
lLx4+y=y+x, Vx,yeV

(xty)tz=x+(y+2),Vx,y,z€V

.0+x=x,Vx€V

.Vx €V I (—x) € Vsuchthatx+ (—x) =0

(af)x = a(px), Va,BER VxEV

Laxt+y)=ax+ay, Va€R Vx,y€eV

Cx=x,Vx €V

~NOoO O~ WN
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commutative under addition
associative under addition

0 being additive identity

—x being additive inverse

associative under scalar multiplication
distributive

1 being multiplicative identity
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Vector spaces contd.

Example (Vector space)

1. V1 = {0} for 0 € RP
2. Vo =RP
3. V3 = Zle a;x; for a; € R and x; € RP

It is straight forward to show that Vi, V2, and V3 satisfy properties 1-7 above.

Definition (Subspace)

A subspace is a vector space that is a subset of another vector space.

Example (Subspace)

V1, V2, and V3 in the example above are subspaces of RP
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Vector spaces contd.

Definition (Span)

The span of a set of vectors, {x1,X2,...,Xg}, is the set of all possible linear
combinations of these vectors; i.e.,

span {x1,X2,...,Xg} = {@1x1 + asx2 + - - + apxg | a1,Q2,..., 0, €R}.

Definition (Linear independence)
A set of vectors, {x1,X2,...,Xg}, is linearly independent if

a1x] tasxo+ -+ apxe =0 = a; =az=...=a =0.

Definition (Basis)

The basis of a vector space, V, is a set of vectors {x1,xa2,...,Xy} that satisfy
(a) V =span{x1,x2,...,xk}, (b) {x1,x2,...,x} are linearly independent.

Definition (Dimension*)

The dimension of a vector space, V, (denoted dim())) is the number of vectors in
the basis of V.

*We will generalize the concept of affine dimension to the statistical dimension of convex objects.
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Vector Norms

Definition (Vector norm)

A norm of a vector in RP is a function || - || : RP — R such that for all vectors
X,y € RP and scalar A € R

(a) ||x]| > 0 for all x € RP nonnegativity

(b) [|x|| = 0if and only if x =0 definitiveness

(e) 1A = [AlIxl homogeniety

() lx+yl < Ix + lly triangle inequality

> There is a family of £;-norms parameterized by g € [1, oo];

1
> For x € RP, the {4-norm is defined as ||x||q := ( ?:1 |:1:2-|‘1) /e

Example
(1) £2-norm: [[x]|2 := Zle z2  (Euclidean norm)
(2) £1-norm: [[x]l1 == Zle || (Manhattan norm)
(8)  £oo-norm: [|%||oo := max |z;| (Chebyshev norm)
i=1,...,p

3 )|
e ail  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 40 L]




Vector norms contd.

Definition (Quasi-norm)

A quasi-norm satisfies all the norm properties except (d) triangle inequality, which is
replaced by ||x + y|| < ¢ (||x]| + ||y|l]) for a constant ¢ > 1.

Definition (Semi(pseudo)-norm)

A semi(pseudo)-norm satisfies all the norm properties except (b) definiteness.

Example

> The £4-norm is in fact a quasi norm when g € (0, 1), with ¢ = 2l/a — 1.
> The total variation norm (TV-norm) defined (in 1D):
|||y :== Ef:_ll |zit+1 — x;] is a semi-norm since it fails to satisfy (b);
e.g. any x = ¢(1,1,...,1)T for ¢ # 0 will have ||x||Tv = 0 even though x # 0.

Definition (£p-"norm”)
Ixllo = limg—ollxIg = [{i : @; # 0}|

The £p-norm counts the non-zero components of x. It is not a norm — it does not
satisfy the property (c) = it is also neither a quasi- nor a semi-norm.
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Vector norms contd.

Problem (s-sparse approximation)

Find argmin ||[x —yl||2 subject to: |[|x]jo < s.
XERP

|
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Vector norms contd.

Problem (s-sparse approximation)

Find argmin ||[x —yl||2 subject to: |[|x]jo < s.
XERP

Solution

Define y € argmin [x—y[2 and let S= supp (3’\)
x€ERP:||x[lo<s

We now consider an optimization over sets
~ . 9
S € argmin|lys — y/l3-
S:|S|<s

€ argmax { [lyl3 — llys — ¥}
S:|S|<s

€ argmax {||y5||%} = argmaXZ llyill> (= modular approximation problem).
S:|S|<s S:|S|<s ies

Thus, the best s-sparse approximation of a vector is a vector with the s largest
components of the vector in magnitude.
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Vector norms contd.

Norm balls
Radius r ball in £4-norm: Bg(r) ={x €RP : |x||qg <}

Ix]lo <2 £o.5-quasi norm ball ¢1-norm ball

f2-norm ball {so-norm ball TV-semi norm ball

Table: Example norm balls in R®
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Inner products

Definition (Inner product)

The inner product of any two vectors x,y € RP (denoted by (,-)) is defined as
(x,y) =xTy = Ef TiYi-

The inner product satisfies the following properties:

1. (x,y) = (y,%x),Vx,y € RP symmetry
2. ((ax + By),z) = (ax,z) + (By,z),Va, 8 € R,VX,y,z € RP linearity
3. (x,x) > 0,Vx € RP positive definiteness

Important relations involving the inner product:
> Hélder's inequality: |(x,y)| < |x|lq|l¥|l~, where r > 1 and % +1=1

» Cauchy-Schwarz is a special case of Holder's inequality (¢ = r = 2)

Definition (Inner product space)

An inner product space is a vector space endowed with an inner product.

L]
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Vector norms contd.

Definition (Dual norm)

Let || - || be a norm in RP, then the dual norm denoted by || - ||* is defined:
Ix|I* = sup xTy, forallx,y €RP
llyll<t
» The dual of the dual norm is the original (primal) norm, i.e., [|x|** = ||x]||.
> Hélder's inequality = || - || is a dual norm of || - ||, when % + % =1
Example 1
i) |- |l2 is dual of || - ||2 (i.e. || - ||2 is self-dual): sup{zTx | ||x|]2 < 1} = ||z||2.
ii) || - |l is dual of || - ||co, (and vice versa): sup{zTx | ||x|lcc <1} = ||z|1.
Example 2

What is the dual norm of || - |4 for ¢ =1+ 1/log(p)?
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Vector norms contd.

Definition (Dual norm)
Let || - || be a norm in RP, then the dual norm denoted by || - ||* is defined:

Ix|* = sup xTy, forall x,y € RP
lyll<1

» The dual of the dual norm is the original (primal) norm, i.e., [|x|** = ||x]||.
> Hélder's inequality = || - || is a dual norm of || - ||, when é + % =1
Example 1
i) |- |l2 is dual of || - ||2 (i.e. || - ||2 is self-dual): sup{zTx | ||x|]2 < 1} = ||z||2.
ii) || - |l is dual of || - ||co, (and vice versa): sup{zTx | ||x|lcc <1} = ||z|1.
Example 2
What is the dual norm of || - |4 for ¢ =1+ 1/log(p)?
Solution
By Hélder's inequality, || - || is the dual norm of || - ||4 if % + % = 1. Therefore,

r =1+ log(p) for g =1+ 1/log(p).

.
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Metrics

> A metric on a set is a function that satisfies the minimal properties of a distance.

Definition (Metric)
Let X be a set, then a function d(-,-) : X x X — R is a metric if Vx,y € X :

(a) d(x,y) >0 forall x and y (nonnegativity)

(b) d(x,y) =0 if and only if x =y (definiteness)
(©) d(x,y) = d(y,x)  (symmetry)

(d) d(x,y) < d(x,z) + d(z,y) (triangle inequality)

> A pseudo-metric satisfies (a), (c) and (d) but not necessarily (b)
> A metric space (X,d) is a set X with a metric d defined on X’

> Norms induce metrics while pseudo-norms induce pseudo-metrics

Example

» Euclidean distance: dg(x,y) = ||x — y|2

> Bregman distance: dg(-,-) ...more on this later!

. V
ILGHEI{]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 16/ 40 -ﬂ ﬂ-




Basic matrix definitions

Definition (Nullspace of a matrix)

The nullspace of a matrix, A € R"*P, (denoted by null(A)) is defined as
null(A) = {x e R | Ax = 0}

> null(A) is the set of vectors mapped to zero by A.
> null(A) is the set of vectors orthogonal to the rows of A.

Definition (Range of a matrix)
The range of a matrix, A € R"*P, (denoted by range(A)) is defined as

range(A) = {Ax | x e RP} CR"
» range(A) is the span of the columns (or the column space) of A.

Definition (Rank of a matrix)
The rank of a matrix, A € R"*P, (denoted by rank(A)) is defined as

rank(A) = dim (range(A))
> rank(A) is the maximum number of independent columns (or rows) of A,
= rank(A) < min(n, p).
> rank(A) = rank(AT); and rank(A) + dim (null(A)) = n.

-

ICHHEI{]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 40



Matrix definitions contd.

Definition (Eigenvalues & Eigenvectors)

The vector x is an eigenvector of a square matrix A € R"*X"™ if Ax = Ax where
A € R is called an eigenvalue of A.

> A scales its eigenvectors by it eigenvalues.

Definition (Singular values & singular vectors)
For A € R"*P and unit vectors u € R"™ and v € R? if
Av=0ou and ATu=ov
then o €R (o > 0) is a singular value of A; v and u are the right singular vector
and the left singular vector respectively of A.
Definition (Symmetric matrix)
A matrix A € R"*" is symmetric if A = AT

Lemma

The eigenvalues of a symmetric A are real.

Proof.
Assume Ax = \x, x € CP,x # 0, then XL Ax = X7 (Ax) = X7 (Ax) = A E?:l |z;]?
but X7 Ax = (Ax)Tx = ()\x)Tx = Xz:;l lz;|2 = A=) ie. AER m]
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Matrix definitions contd.

Definition (Positive semidefinite & positive definite matrices)
A symmetric matrix A € R™*"™ is positive semidefinite (denoted A > 0) if
xT Ax > 0 for all x # 0; while it is positive definite (denoted A > 0) if xT Ax > 0
> A > 0iff all its eigenvalues are nonnegative i.e. Apin(A) > 0.
> Similarly, A > 0 iff all its eigenvalues are positive i.e. Apin(A) > 0.
> A is negative semidefinite if —A > 0; while A is negative definite if —A > 0.
» Semidefinite ordering of two symmetric matrices, A and B: A > Bif A—B > 0.

Example (Matrix inequalities)

.IfA>0and B> 0,then A+B >0
.IfA>BandC>=D,then A+ C>B+D
. fB<0then A+ B <A

If A>0and >0, then ®A >0

. If A= 0, then A% =0

. If A >0, then A= >0
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Matrix decompositions

Definition (Eigenvalue decomposition)
The eigenvalue decomposition of a square matrix, A € R?»X™ s given by:
A =XAX!
> the columns of X € R"*" i.e. x;, are eigenvectors of A

> A =diag (A1, A2,..., \n) where \; (also denoted \;(A)) are eigenvalues of A

> A matrix that admits this decomposition is therefore called diagonalizable matrix

Eigendecomposition of symmetric matrices

If A € R"*" is symmetric, the decomposition becomes A = UAUT
where U € R™"*™ is unitary (or orthonormal), i.e. UTU =1 and )\; are real

If we order A1 > Ao > -+ > Ay, Ai(A) becomes the ith largest eigenvalue of A:
> An(A) = Amin(A) is the minimum eigenvalue of A
> M (A) = Amax(A) is the maximum eigenvalue of A

3 |
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Matrix decompositions contd

Definition (Determinant of a matrix)
The determinant of a square matrix A € RP*P, denoted by det(A), is given by:
det(A) = Hleki

where \; are eigenvalues of A.

L]
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Matrix decompositions contd

Definition (Singular value decomposition)

The singular value decomposition (SVD) of a matrix, A € R™*P, is given by:
T
A=UsVT =) o]
i=1

h

» rank(A) = r < min(n,p) and o is the ith singular value of A

> u; and v; are the ith left and right singular vectors of A respectively
> U € R"X" and V € RPX" are unitary matrices (i.e. UTU =1)

» ¥ =diag(01,02,...,0.) Where g1 > 02> ... >0, >0
> v; are eigenvectors of ATA; o; = /X (ATA) (and \; (ATA) =0fori>r)
since  ATA = (U=V?)" (UnVT) = (VE2VT)

> u; are eigenvectors of AAT; o; = /)i (AAT) (and )\; (AAT) =0fori>r)
since  AAT = (U=V?) (UsvT)’ = (US?UT)
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Matrix decompositions contd

Definition (LU)
The LU factorization of a nonsingular square matrix, A € RPXP is given by:
A =PLU

where P is a permutation matrix!, L is lower triangular and U is upper triangular.

Definition (QR)
The QR factorization of any matrix, A € R"*P, is given by:
A =QR

where Q € R™*™ is an orthonormal matrix, i.e. QTQ =1, and R € R”*? is upper
triangular.

Definition (Cholesky)

The Cholesky factorization of a positive definite and symmetric matrix, A € RPXP s

given by:
A =LLT
where L is a lower triangular matrix with positive entries on the diagonal.
L A matrix P € RPXP is permutation if it has only one 1 in each row and each column.
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Complexity of matrix operations

Complexity of matrix operations

The complexity or cost of an algorithm is expressed in terms of floating-point
operations (flops) as a function of the problem dimension.

Definition (floating-point operation)

A floating-point operation (flop) is one addition, subtraction, multiplication, or
division of two floating-point numbers.

-
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Complexity of matrix operations contd

Table: Complexity examples: vector are in RP, matrices in R™*? or RP*™ for square matrices

Operation [ Complexity Remarks
vector addition p flops
vector inner product 2p — 1 flops or & 2p for p large
matrix-vector product n(2p — 1) flops or & 2np for p large

2m if A is sparse with m nonzeros
matrix-matrix product mn(2p — 1) flops or & 2mnp for p large

much less if A is sparsel
LU decomposition %pg + 2p? flops or %pg for p large

much less if A is sparse®
Cholesky decomposition %p3 + 2p? flops or %pg for p large

much less if A is sparse!
SvD C1n?p + Cap® flops | C1 = 4, C2 = 22 for R-SVD algo.
Determinant complexity of SVD

1 Complexity depends on p, no. of nonzeros in A and the sparsity pattern.
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Matrix norms

Similar to vector norms, matrix norms are a metric over matrices:

Definition (Matrix norm)

A norm of an n X p matrix is a map || - || : R”*? — R such that for all matrices
A,B € R"%P and scalar A € R

(a) ||A]| > 0 for all A € R**P nonnegativity

(b) [JA|| =0 if and only if A =0  definitiveness

(c) IIMAIl = IAI[All homogeniety

(d) JA+BJ| <|A] +|B] triangle inequality

Definition (Matrix inner product)

Matrix inner product is defined as follows

(A,B) = trace (ABT) .

L]
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Linear operators

> Matrices are often given in an implicit form.

> It is convenient to think of them as linear operators.

Proposition (Linear operators & matrices)

Any linear operator in finite dimensional spaces can be represented as a matrix.

Example

Given matrices A, B and X with compatible dimensions and the linear operator
M : R P — R™P, 3 linear operator can define the following implicit mapping

M(X) = (BT ® A) vec(X) = vec(AXB),

where ® is the Kronecker product and vec : R"*P — R™P is yet another linear
operator that vectorizes its entries.
Note: Clearly, it is more efficient to compute vec(AXB) than to perform the matrix

multiplication (BT ® A) vec(X).

.
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Matrix norms contd.

Definition (Operator norm)
The operator norm between ¢, and ¢, (1 < g,r < c0) of a matrix A is defined as

[Allg—r = sup [lAx]|

lIxllq <1
Problem
Show that ||A|l2—2 = ||A]| i.e., 2 to ¢2 operator norm is the spectral norm.
Solution

|All22 = sup ||Ax|l2 = sup |[[UEVTx|2 (using SVD of A)

lIxll2<1 lIxll2<1

= sup [|ZVTx|2 (rotational invariance of || - ||2)
lIxll2<1

= sup ||Zz|2 (letting VIx = z)

llzll2<1
min(n,p)
= swp 4| S 0222 = omax = [IA] o
<1
Izll2< —
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Matrix norms contd.

Other examples

> The ||A]lco—soo (norm induced by £oc-norm) also denoted ||A ||, is the
max-row-sum norm:

p
|Alloo—so0 = sup{||Axlloc | [xlloo <1} = max Y "ay;l.
1=1,...,n
=1

> The ||A|l1—1 (norm induced by £1-norm) also denoted ||A||1, is the
max-column-sum norm:

n
|Al1 = sup{llAxils | Il <1} = max 3 oyl
2

. V
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Matrix norms contd.

Useful relation for operator norms

The following identity holds

= (AT2,x) =t [|AT ||

(z, Ax) = max
lIxllg <12l =1

IAflgosr = max
llz|l»<1,[|x[[q=1

whenever 1/g+1/¢' =1=1/r+1/r'.

Example

1. ||A||OO~>1 = ||AT||1~>oo-
2. |All2—1 = [|AT]|2- 0.
3. |Allcm2 = [AT [12.

L]
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*Matrix norms contd.

Computation of operator norms

> The computation of some operator norms is NP-hard* [3]; these include:

L |Alloco—1
2. [|All2—1
3. [[A]loo—2

> But some of them are approximable [5]; these include

1. ||Allco—»1  (via Gronthendieck factorization)
2. ||Allcc2  (via Pietzs factorization)

*: See Lecture 3.
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Matrix norms contd.

> Similar to vector £,-norms, we have Schatten g-norms for matrices.
Definition (Schatten g-norms)

|A]lq := ( 1:21 (U(A)i)q)l/q, where o(A); is the 3" singular value of A.

Example (with » = min{n, p} and o; = 0(A);)

Al =[All. = = trace ( V ATA> (Nuclear/trace)
n_ p
Az =[Allr = = ZZ |ai;|2  (Frobenius)
i=1 j=1
A
[Alloo = [|A]l = = max 1A (Spectral /matrix)
x#0  ||x]|
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Matrix norms contd.

Problem (Rank-r approximation)

Find argmin [|X — Y| subject to: rank(X) < 7.
X

3 V
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Matrix norms contd.

Problem (Rank-r approximation)

Find argmin || X —Y||r subject to: rank(X) <r.
X

Solution (Eckart—Young—Mirsky Theorem)

argmin || X - Y| argmin  [|X — USyVT|r, (SVD)
X:rank(X)<r X:rank(X)<r

= argmin ||[UTXV - Sv|r, (unit. invar. of || - ||)
X:rank(X)<r

18) argmin  ||X — Sy ||r | VT, (sparse approx.)
X:rank(X)<r

= UH, (Zv) V7T, (r-sparse approx. of the diagonal entries)
Singular value hard thresholding operator H, performs the best rank-r approximation

of a matrix via sparse approximation: We keep the r largest singular values of the
matrix and set the rest to zero.
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*Matrix norms contd.

> The last step of the above solution makes use of the Mirsky inequality.
Theorem (Mirsky inequality)
If A, B are p X p matrices with singular values
012022:-20p20, m2122-"-2720
respectively. Let o = (o1,...,0p)" and T = (71,...,7p)", then

A =Bl 2 [lo—7|2.

> Mirsky theorem is proved using the following simplified version of von Neumann
trace inequality.

Theorem (von Neumann trace inequality)

If A, B are p X p matrices with singular values

120> 20p 20, TIR2T2 2720

respectively. Let o = (o1, ..., crp)T and 7 = (71,..., Tp)T, then

(A,B) < (o,7)

. V
ILGHEI{]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 34/ 40 -ﬂ ﬂ.



Matrix norms contd.
Matrix & vector norm analogy

Vectors | x| Ixllz | [xlle

Matrices | X[« | [IX[= | [X]]

Definition (Dual of a matrix)
The dual norm of A € R"*P is defined as

[[A]l* = sup {trace (ATX) | X[ <1}.

Matrix & vector dual norm analogy

Vector primal norm | 1xl1 | [I1<[|2 | [I%¢[| oo
Vector dual norm | B [|x]2 [ 1%l
Matrix primal norm [1X]] X|| ¢ B
Matrix dual norm [1X] X||F (1] «
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Matrix norms contd.

Definition (Nuclear norm computation)
[[Allx :=||le(A)|l1 where o(A) is a vector of singular values of A

1
= min Ul||lr||V]rF = min = (U] + || V]2
s MOV = min o (101 V)

)

Additional useful properties are below:

> Nuclear vs. Frobenius: ||A||lr < JAllx < y/rank(A) - ||A|lF
> Holder for matrices:  [(A,B)| < ||Al[,||B|

> We have
1 HAH%~>2 < |Allr
2. [|AllG 5o < Al 1llAllco— oo
3. |Al2,5 < ||A|l1—1 when A is self-adjoint.

1,1 _
q whenp+q_1
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*Matrix perturbation inequalities

> In the theorems below A, B € RPXP are symmetric matrices with spectra
{)\Z-(A)}f:1 and {)\i(B)}f:1 where A1 > Xo > -+ > Ap.

Theorem (Lidskii inequality)

Aip (A+B)+-+ A, (A+B) <Ay (A)+--- g, (A)+ A (B)+---+ A, (B),
forany1 <i3 <---<ip < p.

Theorem (Weyl inequality)

Xitj—1 (A+B) <X (A)+X;(B), forany i,j>1 and i+j—1<p.

Theorem (Interlacing property)
Let A, = A(1:n,1:n), then
Ant1 (Ang1) < An (An) + An (Apg1)  for n=1,...,p.

> These inequalities hold in the more general setting when \; are replaced by o;.
> The list goes on to include Wedins bounds, Wielandt-Hoffman bounds and so on.

> More on such inequalities can be found in Terry Tao's blog (254A, Notes 3a).
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*Tensors

> Tensors provide a natural and concise mathematical represention of data.

Definition (Tensor)

An mt_rank tensor in p-dimensional space is a mathematical object that has p
indices and p™ components and obeys certain transformation rules.

> In the literature, order is used interchangeably with rank, i.e., kth—rank tensor is
also referred to as an order-k tensor.

> Tensors are multidimensional arrays and are a generalization of:

1. scalars - tensors with no indices; i.e., zeroth-rank tensor.
2. vectors - tensors with exactly one index; i.e., first-rank tensor.
3. matrices - tensors with exactly two indices; i.e., second-rank tensor.

> Think of the third-order Taylor series expansion
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*Tensors contd.

Caveat!

Not much is known about tensors and the generalizability of matrix notions to tensors:

> The notion of tensor (symmetric) rank is considerably more delicate than matrix
(symmetric) rank. For instance:

1. Not clear a priori that the symmetric rank should even be finite [2].
2. Removal of the best rank-1 approximation of a general tensor may increase the tensor
rank of the residual [4].

> It is NP-hard to compute the rank of a tensor in general; only approximations of
(super) symmetric tensors possible [1].
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