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Motivation

• Collecting data at unprecedented rates

• Outpacing the growth of computation

I data: more of a burden than a blessing
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in the Library of Congress. The poten-
tial value of global personal location 
data is estimated to be $700 billion to 
end users, and it can result in an up 
to 50% decrease in product develop-
ment and assembly costs, according to 
a recent McKinsey report.17 McKinsey 
predicts an equally great effect of Big 
Data in employment, where 140,000–
190,000 workers with “deep analytical” 
experience will be needed in the U.S.; 
furthermore, 1.5 million managers will 
need to become data-literate. Not sur-
prisingly, the U.S. President’s Council 
of Advisors on Science and Technology 
recently issued a report on Networking 
and IT R&D22 identified Big Data as a 
“research frontier” that can “acceler-
ate progress across a broad range of 
priorities.” Even popular news media 
now appreciates the value of Big Data 
as evidenced by coverage in the Econo-
mist,7 the New York Times,15,16 National 
Public Radio,19,20 and Forbes magazine.9

While the potential benefits of Big 
Data are real and significant, and some 
initial successes have already been 
achieved (such as the Sloan Digital Sky 
Survey), there remain many technical 
challenges that must be addressed to 
fully realize this potential. The sheer 
size of the data, of course, is a major 
challenge, and is the one most easily 
recognized. However, there are others. 
Industry analysis companies like to 
point out there are challenges not just 
in Volume, but also in Variety and Veloc-
ity,10 and that companies should not 
focus on just the first of these. Variety 
refers to heterogeneity of data types, 
representation, and semantic interpre-
tation. Velocity denotes both the rate at 
which data arrive and the time frame in 
which they must be acted upon. While 
these three are important, this short 
list fails to include additional impor-
tant requirements. Several additions 
have been proposed by various parties, 
such as Veracity. Other concerns, such 
as privacy and usability, still remain.

The analysis of Big Data is an itera-
tive process, each with its own challeng-
es, that involves many distinct phases 
as shown in Figure 2. Here, we consider
the end-to-end Big Data life cycle. 

Phases in the Big Data Life Cycle
Many people unfortunately focus just 
on the analysis/modeling step—while
that step is crucial, it is of little use 

LinkedIn, Microsoft, Quantcast, Twit-
ter, and Yahoo!. They have become
the indispensable foundation for ap-
plications ranging from Web search to
content recommendation and compu-
tational advertising. There have been 
persuasive cases made for the value of 
Big Data for healthcare (through home-
based continuous monitoring and
through integration across providers),3

urban planning (through fusion of 
high-fidelity geographical data), intel-
ligent transportation (through analysis 
and visualization of live and detailed
road network data), environmental 
modeling (through sensor networks 
ubiquitously collecting data),4 energy 
saving (through unveiling patterns of 
use), smart materials (through the new 
materials genome initiative18), machine 

translation between natural languages 
(through analysis of large corpora), ed-
ucation (particularly with online cours-
es),2 computational social sciences (a 
new methodology growing fast in popu-
larity because of the dramatically low-
ered cost of obtaining data),14 systemic 
risk analysis in finance (through inte-
grated analysis of a web of contracts to 
find dependencies between financial
entities),8 homeland security (through
analysis of social networks and finan-
cial transactions of possible terrorists), 
computer security (through analysis of 
logged events, known as Security In-
formation and Event Management, or 
SIEM), and so on. 

In 2010, enterprises and users 
stored more than 13 exabytes of new 
data; this is over 50,000 times the data 

Figure 1. Next-gen sequence data size compared to SPECint.
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Figure 2.  The Big Data analysis pipeline.  Major steps in the analysis of Big Data are shown 
in the top half of the figure. Note the possible feedback loops at all stages. The bottom half 
of the figure shows Big Data characteristics that make these steps challenging.
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Figure: Next-generation sequencing data size
“Big data and its technical challenges.”
[Communications of the ACM, July 2014]

• Dogma: Running time of an algorithm increases with the size of its input data

⇒ Important problems will take increasingly more time to solve!
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Figure: Next-gen. sequencing data size vs SPECint.
“Big data and its technical challenges.”
[Communications of the ACM, July 2014]

• Dogma: Running time of an algorithm increases with the size of its input data

⇒ Important problems will take increasingly more time to solve!
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Figure: Next-gen. sequencing data size vs SPECint.
“Big data and its technical challenges.”
[Communications of the ACM, July 2014]

• Dogma: Running time of an algorithm increases with the size of its input data

⇒ Important problems will take increasingly more time to solve!
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Challenge (EE-556)

Improve inferential precision within a time-budget as the data grows

• Convex optimization in the context of statistical analysis

I review of linear algebra & probability theory in recitations
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Logistics

I Credits: 4

I Prerequisites: Previous coursework in calculus, linear algebra, and probability is
required. Familiarity with optimization is useful.

I Grading: Continuous control via homework exercises & exam (cf., syllabus)
I HW topics: Support vector machines, compressive subsampling, power flow...
I Moodle: My courses> Genie electrique et electronique (EL) > Master > EE-556

syllabus & course outline & HW exercises
I TA’s: Alp Yurtsever and Junhong Lin (head TA’s); Marwa El Halabi, Baran
Gozcu, Bang Cong Vu, Quang Van Nguyen, Ilija Bogunovic, Yen-Huan Li,
Ya-Ping Hsieh, Kamal Parameswaran, and Ahmet Alacaoglu
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Outline

I This class:
1. What is an optimization problem?
2. Gradient descent: A basic introduction
3. Common templates on convex optimization

I Next class
1. Review of probability, statistics and linear algebra
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Recommended reading material

I Chapter 1 in S. Boyd, and L. Vandenberghe, Convex Optimization, Cambridge
Univ. Press, 2009.

I Chapter 1 in Nocedal, Jorge, and Wright, Stephen J., Numerical Optimization,
Springer, 2006.
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Google PageRank

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 39



Modeling Google PageRank
• A basic model

2
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• Compute the conditional probabilities:

P (The Washington Post|Google News) = 2/8
P (The Atlantic|Google News) = 1/8
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Modeling Google PageRank
• Transition matrix for world wide web:

E =


c11 c12 . . . c1n

c21 c22 . . . c2n

..

.
...

. . .
...

cn1 cn2 . . . cnn


•
∑n

i=1 cij = 1, ∀j ∈ {1, 2, . . . , n} (n ≈ 4.5billion )

• Estimated memory to store E : 1011 GB!

• A bit of mathematical modeling:
I rki : Probability of being at node i at kth state. Let us define a state vector

rk =
[
rk1 , r

k
2 , . . . , r

k
n

]>
I Multiplying rk by E takes one random step along the edges of the graph:

r1
i =

n∑
j=1

cijr
0
j = (Er0)i,

since cij = P (i|j) (by the law of total probability).
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Towards a Formal Formulation for Google PageRank

Goal
Find the ranking vector r? after an infinite number of random steps.

• Disconnected web: Initial state vector affects the
ranking vector.

A solution: Model the event that the surfer will quit
the current webpage and open another.

1

2

3

4

1 1 1
2

1
2

1

1

2

3

4

1 1 1
2

1
2

1
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Towards a Formal Formulation for Google PageRank

Goal
Find the ranking vector r? after an infinite number of random steps.

• Sink nodes: Column of zeros in E, moves r to 0!

A solution: Create artifical links from sink nodes to
all the nodes.

1

2 3

1
2

1
3

1
3

1

2 3

1

1
2

1
2
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Towards a Formal Formulation for Google PageRank

Goal
Find the ranking vector r? after an infinite number of random steps.

• Disconnected web: Initial state vector affects the ranking vector.
A solution: Model the event that the surfer quits the current webpage to open another.

B =

1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 =
1
n
11>

• Sink nodes: Column of zeros in E, moves r to 0!
A solution: Create artifical links from sink nodes to all the nodes.

λi =
{

1 if ith node is a sink node,
0 otherwise.
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Google PageRank
• Define the pagerank matrix M as

M = (1− p)(E +
1
n
1λT ) + pB.

M is a column stochastic matrix.

Problem Formulation
• We characterize the solution as
• Mr? = r?.
• r? is a probability state vector:

ri ≥ 0,
n∑
i=1

ri = 1.

• Find r ≥ 0 such that Mr = r and 1>r = 1.

Optimization formulation

min
x∈Rn

{
f(x) =

1
2
‖Mx− x‖2 +

γ

2
(
1Tx− 1

)2
}
.
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The general formulation: Least-squares

Optimization formulation (Least-squares estimator)

min
x∈Rd

1
2
‖b−Ax‖2

2︸              ︷︷              ︸
f(x)

,

where x = r, b =
[

r
γ
n
1

]
, A =

[
M

γ
2n11

>

]
, d = n in Google PageRank proglem.

Linear regression problem
Let x\ ∈ Rd and A ∈ Rn×d (full column rank). Goal: estimate x\, given A and

b = Ax\ + w,

where w denotes unknown noise.

• Many other examples:
Image reconstruction (MRI), stock market prediction, house pricing, etc.
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Regression vs Classification

• Example: Taking a mortgage.
• Houses data (source: https://www.homegate.ch)

• Banks: estimate the loan based on
location, orientation, view, etc.

historical data: house location, orientation, view...

house to be estimated

• Output values: continuous.

• Example: Spam classification.
• Incoming emails:

• How to group emails in categories?

Updates

Promotions

Social Primary

Incoming emails

I sorted emails in  
categories!

• Output values: discrete, categorical.
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Breast Cancer Detection
• Genome data for breast cancer (source: http://genome.ucsc.edu):

b1 = 1

b2 = 1

bn = �1

(disease)

(disease)

(not disease)

a1

a2

an

• A patient with genome data at: has he got breast cancer or not (i.e., bt = 1 or −1)?
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Breast Cancer Detection

Goal
Predict either bt = 1 or bt = −1 given at.

• Pre-examination: extract important genes from the genome sequence at:

at → a>t x + µ

↑ ↑
weights = importance of genes intercept = bias

• Conclusion: choose a probability P and predict as follow:

bt =
{

1, if P (b = 1|at) > P (b = −1|at),
−1, otherwise.

• How do we model probabilities?

logistic function
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Classification with logistic transform

• Logistic function:
t 7→ h(t) :=

1
1 + exp(−t)

.

• Model the conditional probability of the label b given test result a

P (b|a) := h
(
b(a>x + µ)

)
=

1
1 + exp (−b(a>x + µ))

.

where x = weights, µ = intercept.

uncertain

diseasenormal

P (b|a)
{
≥ 0.5, if a>x + µ, b have the same sign,
< 0.5, otherwise.

• Prediction =
{
disease, if P (b|a) > 0.5,

normal, if P (b|a) < 0.5.
•

P (b|a) = 0.5 (green line): uncertain.
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Classification: How does it work?

• Classification diagram:

(ai, bi)ni=1
modeling−−−−−−−→

parameter x
P (bi|ai,x) independency−−−−−−−−→ p(x) :=

n∏
i=1

P (bi|ai,x)

↓ maximizing w.r.t x
at −→P (b|at,x?)←− x?

evaluating logistic function ↓
bt

• Maximizing log p(x) gives the log-likelihood estimator (covered later in this course).
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Logistic regression

Problem (Logistic regression)
Given a sample vector ai ∈ Rp and a binary class label bi ∈ {−1,+1} (i = 1, . . . , n),
we define the conditional probability of bi given ai as:

P(bi|ai,x\, µ) ∝ 1/(1 + e−bi(〈x\,ai〉+µ)),

where x\ ∈ Rp is some true weight vector, µ is called the intercept.
How do we estimate x\ given the sample vectors, the binary labels, and µ?
Logistic regression is a classification problem!

Log-likelihood

log p(x) = −
n∑
i=1

log(1 + exp (−bi(a>i x + µ)))

Optimization formulation

min
x∈Rp

1
n

n∑
i=1

log(1 + exp(−bi(aTi x + µ)))︸                                                 ︷︷                                                 ︸
f(x)

(1)
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Unconstrained minimization

Problem (Mathematical formulation)
How can we find an optimal solution to the following optimization problem?

F ? := min
x∈Rp

{F (x) := f(x)} (2)

Note that (2) is unconstrained.

Definition (Optimal solutions and solution set)

I x? ∈ Rp is a solution to (2) if F (x?) = F ? .

I S? := {x? ∈ Rp : F (x?) = F ?} is the solution set of (2).

I (2) has solution if S? is non-empty.
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A basic iterative strategy

General idea of an optimization algorithm
Guess a solution, and then refine it based on oracle information.
Repeat the procedure until the result is good enough.
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Approximate vs. exact optimality

Is it possible to solve a convex optimization problem?

"In general, optimization problems are unsolvable" - Y. Nesterov [1]

I Even when a closed-form solution exists, numerical accuracy may still be an issue.
I We must be content with approximately optimal solutions.

Definition
We say that x?ε is ε-optimal in objective value if

f(x?ε )− f? ≤ ε .

Definition
We say that x?ε is ε-optimal in sequence if, for some norm ‖ · ‖,

‖x?ε − x?‖ ≤ ε ,

I The latter approximation guarantee is considered stronger.
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A simple example

x
⋆

x
0

← best direction

I Choose initial point: x0, and a step size α > 0.

I Take a step in the negative gradient direction: xk+1 = xk − α∇f(xk)
I Repeat this procedure until xk is accurate enough.
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A simple example

x
⋆

x
0

← best direction

∇f(x0)

−α∇f(x0)
x
1

I Choose initial point: x0, and a step size α > 0.
I Take a step in the negative gradient direction: xk+1 = xk − α∇f(xk)

I Repeat this procedure until xk is accurate enough.
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A simple example

x
⋆

x
0

← best direction

∇f(x0)

−α∇f(x0)
x
1

I Choose initial point: x0, and a step size α > 0.
I Take a step in the negative gradient direction: xk+1 = xk − α∇f(xk)
I Repeat this procedure until xk is accurate enough.
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A gradient method

Lemma (First-order necessary optimality condition)
Let x? be a global minimum of a differentiable convex function f . Then, it holds that

∇f(x?) = 0.

Fixed-point characterization
Multiply by -1 and add x? to both sides to obtain a fixed point condition,

x? = x? − α∇f(x?) for all α ∈ R

Gradient method
Choose a starting point x0 and iterate

xk+1 = xk − αk∇f(xk)

where αk is a step-size to be chosen so that xk converges to x?.
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Challenges for an iterative optimization algorithm

Problem
Find the minimum x? of f(x), given starting point x0 based on only local information.

I Fog of war

x

f(x)

x0
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Challenges for an iterative optimization algorithm

Problem
Find the minimum x? of f(x), given starting point x0 based on only local information.

I Fog of war, non-differentiability, discontinuities, local minima, stationary points...

x

f(x)

x?x0
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Local minima

x

f(x)

1 20�1

1

�1

min
x2R

{x4 � 3x3 + x2 + 3
2x}

df

dx
= 4x3 � 9x2 + 2x +

3

2

local minimum

global minimum

Choose x0 = 0 and α = 1
6

x1 = x0 − α df
dx

∣∣
x=x0 = 0 − 1

6
3
2 = − 1

4
x2 = − 5

16
. . . xk is converging to local minimum!
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Effect of very small step-size α...

x

f(x)

min
x2R

1

2
(x � 3)2

3

df

dx
= x � 3

1 2 4 5 60
x0

choose ↵ = 1
10

x1 = x0 � ↵
df

dx

��
x=x0 = 5 � 1

10
2 = 4.8

x2 = 4.8 � 1

10
1.8 = 4.62

. . .

Choose x0 = 5 and α = 1
10

x1 = x0 − α df
dx

∣∣
x=x0 = 5 − 1

10 2 = 4.8
x2 = x1 − α df

dx

∣∣
x=x1 = 4.8 − 1

10 1.8 = 4.62
. . . xk converges very slowly.
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Effect of very large step-size α...

x

f(x)

min
x2R

1

2
(x � 3)2

3

df

dx
= x � 3

1 2 4 5 60
x0

df

dx
= 2

x1

df

dx
= �3

x2

x1 = x0 � ↵
df

dx

��
x=x0 = 5 � 5

2
2 = 0

choose ↵ = 5
2

x2 = x1 � ↵
df

dx

��
x=x1 = 0 � 5

2
(�3) = 7.5

Choose x0 = 5 and α = 5
2

x1 = x0 − α df
dx

∣∣
x=x0 = 5 − 5

2 2 = 0
x2 = x1 − α df

dx

∣∣
x=x1 = 0 − 5

2 (−3) = 15
2

. . . xk diverges.
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Nonsmooth optimization

x
⋆

For nonsmooth optimization, the first order optimality condition

∇f(x?) = 0

does not hold for every descent direction.
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Constrained optimization

In many practical problems,
we need to minimize the cost under some constraints.

f? := min
x∈Rp

{
f(x) : x ∈ X

}
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Example: Optimal Power Flow
Goal is to design generator outputs to minimize the cost.

image from http://wikipedia.org/wiki/Automatic_Generation_Control
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OPF: Model

Objective:

minimize total generation cost by designing the generator outputs

subject to:

• physical constraints - conservation of energy

power generated - power used = power lost

• generator limit constraints

minimum and maximum power output of each generator

• line capacity constraints

maximum power that can be transferred from each line
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OPF: Notation

A power network with
I set of buses N := {1, 2, . . . , n}
I set of generator buses G ⊆ N
I set of flow lines L ⊆ N ×N

Denote by
I known constant power load PDj

+ iQDj
at bus j ∈ N

I known admittance ylm at line (l, m) ∈ L
I unknown generator output PGj

+ iQGj
at generator bus j ∈ G

To formulate this problem, define
I Vj : unknown complex voltage at bus j ∈ N
I Plm: unknown active power transferred from bus l ∈ N through the line (l, m) ∈ L
I Slm: unknown complex power transferred from bus l ∈ N through the line (l, m) ∈ L
I fj(PGj

): known convex generating cost function for generator j ∈ G

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 35/ 39



OPF: Formulation

minimize[ V
PG
QG

] ∑
j∈G

fj(PGj
)

subject to PGj − PDj =
∑
l∈N (j)

Re{Vj(V ∗j − V
∗
l )y∗jl}

QGj −QDj =
∑
l∈N (j)

Im{Vj(V ∗j − V
∗
l )y∗jl}

Pmin
j ≤ PGj ≤ Pmax

j

Qmin
j ≤ QGj ≤ Qmax

j

V min
j ≤ |Vj | ≤ V max

j

|Re{Vl(V ∗l − V
∗
m)y∗lm}| ≤ P

max
lm

∀j ∈ N , ∀(l,m) ∈ L

line
capacity

energy
conservation

generator
limits

This is a nonsmooth, nonconvex, constrained optimization problem.
In the final homework, we will solve this problem via a convex relaxation.
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Convexity is the key

If f is convex,

I any local minimum is also a global minimum,
I we have a principal step-size selection,
I we can handle non-smooth problems like constraints.

Unfortunately, convexity does not imply tractability...
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Do not forget!

• Recitation on Friday

I A short review of linear algebra
I Exercise session for the lecture
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