Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 1: Introduction to Convex Optimization

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2017)

License Information for Mathematics of Data Slides

- This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.
- Share Alike
 - The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

lions@epfl

Motivation

• Collecting data at unprecedented rates

Figure: Next-generation sequencing data size "Big data and its technical challenges." [Communications of the ACM, July 2014]

Motivation

• Collecting data at unprecedented rates

- Figure: Next-gen. sequencing data size vs SPECint. *"Big data and its technical challenges."* [Communications of the ACM, July 2014]
- Outpacing the growth of computation
 - data: more of a burden than a blessing

Motivation

• Collecting data at unprecedented rates

- Outpacing the growth of computation
- Figure: Next-gen. sequencing data size vs SPECint. "Big data and its technical challenges." [Communications of the ACM, July 2014]
- data: more of a *burden* than a blessing

• Dogma: Running time of an algorithm increases with the size of its input data

⇒ Important problems will take increasingly more time to solve!

Challenge (EE-556)

Improve inferential precision within a time-budget as the data grows

- Convex optimization in the context of statistical analysis
 - review of linear algebra & probability theory in recitations

Logistics

Credits: 4

- Prerequisites: Previous coursework in calculus, linear algebra, and probability is required. Familiarity with optimization is useful.
- Grading: Continuous control via homework exercises & exam (cf., syllabus)
- HW topics: Support vector machines, compressive subsampling, power flow...
- \blacktriangleright Moodle: My courses> Genie electrique et electronique (EL) > Master > EE-556

syllabus & course outline & HW exercises

TA's: Alp Yurtsever and Junhong Lin (head TA's); Marwa El Halabi, Baran Gozcu, Bang Cong Vu, Quang Van Nguyen, Ilija Bogunovic, Yen-Huan Li, Ya-Ping Hsieh, Kamal Parameswaran, and Ahmet Alacaoglu

Outline

- This class:
 - 1. What is an optimization problem?
 - 2. Gradient descent: A basic introduction
 - 3. Common templates on convex optimization
- Next class
 - 1. Review of probability, statistics and linear algebra

Recommended reading material

- Chapter 1 in S. Boyd, and L. Vandenberghe, *Convex Optimization*, Cambridge Univ. Press, 2009.
- Chapter 1 in Nocedal, Jorge, and Wright, Stephen J., Numerical Optimization, Springer, 2006.

Google PageRank

Google	mathematics of data epfl							Ŷ	۹
	All	Images	News	Videos	Maps	More		Settings	Tools

About 256.000 results (0,61 seconds)

Mathematics of data: from theory to computation | EPFL edu.epfl.ch/coursebook/en/mathematics-of-data-from-theory-to-computation-EE-556 *****

English. Summary. This course reviews recent advances in convex optimization and statistical analysis in the wake of Big Data. We provide an overview of the ...

EE 556 - Mathematics of Data: From Theory to Computation - lions | epfl lions.epfl.ch > STI > IEL > LIONS > Teaching ▼

Aug 1, 2016 - Convex optimization offers a unified framework in obtaining numerical solutions to data analytics problems with provable statistical guarantees ...

[^{PDF]} Mathematics of Data: From Theory to Computation - lions | epfl lions.epfl.ch/files/content/sites/.../mathematics_of_data/lecture%206%20(2014).pdf ▼

Lecture 06: Motivation for nonsmooth, constrained minimization. Mathematics of Data: From Theory to Computation. Prof. Volkan Cevher volkan.cevher@epfl.ch.

Statistics for data science | EPFL edu.epfl.ch/coursebook/en/statistics-for-data-science-MATH-413 •

MATH-413 ... Statistics lies at the foundation of data science, providing a unifying ... Data science, inference, likelihood, regression, regularisation, statistics.

Swiss Data Science Center

https://datascience.ch/ -

The Initiative creates both Master courses in data science at EPFL and ETH Zurich ... in data science methods and topics ranging from mathematical foundations, ... You've visited this page 4 times. Last visit: 7/2/17

Modeling Google PageRank

• A basic model

• Compute the conditional probabilities:

P(The Washington Post|Google News) = 2/8P(The Atlantic|Google News) = 1/8

• A toy graph and transition matrix:

 $\mathbf{E} = \begin{bmatrix} 0 & \frac{1}{3} & 0 & 1 \\ 0 & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{3} & 0 & 0 \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{2} & 0 \end{bmatrix}$

Modeling Google PageRank

• Transition matrix for world wide web:

$$\mathbf{E} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{bmatrix}$$

- $\sum_{i=1}^n c_{ij} = 1, \ \forall j \in \{1, 2, \dots, n\}$ ($n \approx 4.5$ billion)
- \bullet Estimated memory to store $\mathbf{E}:10^{11}~\text{GB!}$

Modeling Google PageRank

• Transition matrix for world wide web:

$$\mathbf{E} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{bmatrix}$$

•
$$\sum_{i=1}^{n} c_{ij} = 1$$
, $\forall j \in \{1, 2, \dots, n\}$ ($n \approx 4.5$ billion)

- Estimated memory to store $\mathbf{E} : 10^{11} \text{ GB}!$
- A bit of mathematical modeling:
 - r_i^k : Probability of being at node *i* at k^{th} state. Let us define a state vector

$$\mathbf{r}^{k} = \left[r_{1}^{k}, r_{2}^{k}, \dots, r_{n}^{k}\right]^{\top}$$

• Multiplying \mathbf{r}^k by \mathbf{E} takes one random step along the edges of the graph:

$$r_i^1 = \sum_{j=1}^n c_{ij} r_j^0 = (\mathbf{E}\mathbf{r}^0)_i,$$

since $c_{ij} = P(i|j)$ (by the law of total probability).

Towards a Formal Formulation for Google PageRank

Goal

Find the ranking vector \mathbf{r}^{\star} after an infinite number of random steps.

• Disconnected web: Initial state vector affects the ranking vector.

<u>A solution:</u> Model the event that the surfer will quit the current webpage and open another.

Towards a Formal Formulation for Google PageRank

Goal

Find the ranking vector \mathbf{r}^{\star} after an infinite number of random steps.

• Sink nodes: Column of zeros in \mathbf{E} , moves \mathbf{r} to $\mathbf{0}!$

 $\underline{A \ solution:}$ Create artifical links from sink nodes to all the nodes.

Towards a Formal Formulation for Google PageRank

Goal

Find the ranking vector \mathbf{r}^{\star} after an infinite number of random steps.

• Disconnected web: Initial state vector affects the ranking vector.

<u>A solution</u>: Model the event that the surfer quits the current webpage to open another.

$$\mathbf{B} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{bmatrix} = \frac{1}{n} \mathbb{1} \mathbb{1}^\top$$

• Sink nodes: Column of zeros in \mathbf{E} , moves \mathbf{r} to 0! *A solution:* Create artifical links from sink nodes to all the nodes.

$$\lambda_i = \begin{cases} 1 & \text{if i}^{th} \text{ node is a sink node,} \\ 0 & \text{otherwise.} \end{cases}$$

lions@epfl

Google PageRank

 \bullet Define the pagerank matrix ${\bf M}$ as

$$\mathbf{M} = (1-p)(\mathbf{E} + \frac{1}{n}\mathbb{1}\lambda^T) + p\mathbf{B}.$$

 ${\bf M}$ is a column stochastic matrix.

Problem Formulation

- We characterize the solution as
 - $\mathbf{Mr}^{\star} = \mathbf{r}^{\star}$.
 - r* is a probability state vector:

$$r_i \ge 0, \quad \sum_{i=1}^n r_i = 1.$$

• Find $\mathbf{r} \ge 0$ such that $\mathbf{Mr} = \mathbf{r}$ and $\mathbb{1}^{\top}\mathbf{r} = 1$.

Google PageRank

 \bullet Define the pagerank matrix ${\bf M}$ as

$$\mathbf{M} = (1-p)(\mathbf{E} + \frac{1}{n}\mathbb{1}\lambda^T) + p\mathbf{B}.$$

 ${\bf M}$ is a column stochastic matrix.

Problem Formulation

- We characterize the solution as
 - $\mathbf{Mr}^{\star} = \mathbf{r}^{\star}$.
 - r* is a probability state vector:

$$r_i \ge 0, \quad \sum_{i=1}^n r_i = 1.$$

• Find $\mathbf{r} \geq 0$ such that $\mathbf{Mr} = \mathbf{r}$ and $\mathbb{1}^{\top}\mathbf{r} = 1$.

Optimization formulation

$$\min_{\mathbf{x}\in\mathbb{R}^n}\left\{f(\mathbf{x})=\frac{1}{2}\|M\mathbf{x}-\mathbf{x}\|^2+\frac{\gamma}{2}\left(\mathbbm{1}^T\mathbf{x}-1\right)^2\right\}.$$

The general formulation: Least-squares

Optimization formulation (Least-squares estimator)
$$\min_{\mathbf{x} \in \mathbb{R}^d} \frac{\frac{1}{2} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2}{\int_{f(\mathbf{x})}^{f(\mathbf{x})}},$$
where $\mathbf{x} = \mathbf{r}, \mathbf{b} = \begin{bmatrix} \mathbf{r} \\ \frac{\gamma}{n} \mathbf{1} \end{bmatrix}, \mathbf{A} = \begin{bmatrix} \mathbf{M} \\ \frac{\gamma}{2n} \mathbf{1} \mathbf{1}^\top \end{bmatrix}, d = n$ in Google PageRank proglem.

Linear regression problem

Let $\mathbf{x}^{\natural} \in \mathbb{R}^d$ and $\mathbf{A} \in \mathbb{R}^{n \times d}$ (full column rank). Goal: estimate \mathbf{x}^{\natural} , given \mathbf{A} and

$$\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w},$$

where $\ensuremath{\mathbf{w}}$ denotes unknown noise.

• Many other examples:

Image reconstruction (MRI), stock market prediction, house pricing, etc.

lions@epfl

Regression

- Example: Taking a mortgage.
- Houses data (source: https://www.homegate.ch)

• Banks: estimate the loan based on location, orientation, view, etc.

• Output values: continuous.

vs Classification

- Example: Spam classification.
- Incoming emails:

• How to group emails in categories?

• Output values: discrete, categorical.

Breast Cancer Detection

• Genome data for breast cancer (source: http://genome.ucsc.edu):

• A patient with genome data \mathbf{a}_t : has he got breast cancer or not (i.e., $b_t = 1$ or -1)?

Breast Cancer Detection

Goal

Predict either $b_t = 1$ or $b_t = -1$ given \mathbf{a}_t .

• Pre-examination: extract important genes from the genome sequence a_t :

• Conclusion: choose a probability P and predict as follow:

$$b_t = \begin{cases} 1, & \text{if } P(b=1|\mathbf{a}_t) > P(b=-1|\mathbf{a}_t), \\ -1, & \text{otherwise.} \end{cases}$$

• How do we model probabilities?

logistic function

lions@epfl

Classification with logistic transform

• Logistic function:

$$t \mapsto h(t) := \frac{1}{1 + \exp(-t)}$$

ullet Model the conditional probability of the label b given test result ${\bf a}$

$$P(b|\mathbf{a}) := h\left(b(\mathbf{a}^{\top}\mathbf{x} + \mu)\right) = \frac{1}{1 + \exp\left(-b(\mathbf{a}^{\top}\mathbf{x} + \mu)\right)}$$

where $\mathbf{x} =$ weights, $\mu =$ intercept.

 $P(b|\mathbf{a}) \begin{cases} \geq 0.5, & \text{if } \mathbf{a}^\top \mathbf{x} + \mu, b \text{ have the same sign,} \\ < 0.5, & \text{otherwise.} \end{cases}$ • Prediction = $\begin{cases} \text{disease, } & \text{if } P(b|\mathbf{a}) > 0.5, \\ \text{normal, } & \text{if } P(b|\mathbf{a}) < 0.5. \end{cases}$ • $P(b|\mathbf{a}) = 0.5 \text{ (green line): uncertain.} \end{cases}$

Classification: How does it work?

• Classification diagram:

$$\begin{split} (\mathbf{a}_i, b_i)_{i=1}^n \xrightarrow[\text{parameter } \mathbf{x}]{} P(b_i | \mathbf{a}_i, \mathbf{x}) & \xrightarrow{\text{independency}} p(\mathbf{x}) := \prod_{i=1}^n P(b_i | \mathbf{a}_i, \mathbf{x}) \\ & \downarrow \text{ maximizing w.r.t } \mathbf{x} \\ \mathbf{a}_t \longrightarrow P(b | \mathbf{a}_t, \mathbf{x}^{\star}) \longleftarrow & \mathbf{x}^{\star} \\ \text{evaluating logistic function } \downarrow \\ & b_t \end{split}$$

• Maximizing $\log p(\mathbf{x})$ gives the log-likelihood estimator (covered later in this course).

Logistic regression

Problem (Logistic regression)

Given a sample vector $\mathbf{a}_i \in \mathbb{R}^p$ and a binary class label $b_i \in \{-1, +1\}$ (i = 1, ..., n), we define the conditional probability of b_i given \mathbf{a}_i as:

$$\mathbb{P}(b_i|\mathbf{a}_i, \mathbf{x}^{\natural}, \mu) \propto 1/(1 + e^{-b_i(\langle \mathbf{x}^{\natural}, \mathbf{a}_i \rangle + \mu)}),$$

where $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ is some true weight vector, μ is called the intercept. How do we estimate \mathbf{x}^{\natural} given the sample vectors, the binary labels, and μ ? Logistic regression is a classification problem!

Log-likelihood

$$\log p(\mathbf{x}) = -\sum_{i=1}^{n} \log(1 + \exp\left(-b_i(\mathbf{a}_i^{\top}\mathbf{x} + \mu)\right))$$

Optimization formulation

$$\underset{\mathbf{x}\in\mathbb{R}^{p}}{\min} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-b_{i}(\mathbf{a}_{i}^{T}\mathbf{x} + \mu)))}_{f(\mathbf{x})} \tag{1}$$

lions@epfl

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Unconstrained minimization

Problem (Mathematical formulation)

How can we find an optimal solution to the following optimization problem?

$$F^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) := f(\mathbf{x}) \right\}$$
(2)

Note that (2) is unconstrained.

Definition (Optimal solutions and solution set)

- $\mathbf{x}^{\star} \in \mathbb{R}^p$ is a solution to (2) if $F(\mathbf{x}^{\star}) = F^{\star}$.
- $\blacktriangleright \left| S^{\star} := \{ \mathbf{x}^{\star} \in \mathbb{R}^{p} : F(\mathbf{x}^{\star}) = F^{\star} \} \right| \text{ is the solution set of (2).}$
- (2) has solution if S^* is non-empty.

A basic iterative strategy

General idea of an optimization algorithm

Guess a solution, and then *refine* it based on *oracle information*. *Repeat* the procedure until the result is *good enough*.

Approximate vs. exact optimality

Is it possible to solve a convex optimization problem?

"In general, optimization problems are unsolvable" - Y. Nesterov [1]

- Even when a closed-form solution exists, numerical accuracy may still be an issue.
- We must be content with **approximately** optimal solutions.

Definition

We say that $\mathbf{x}_{\epsilon}^{\star}$ is $\epsilon\text{-optimal}$ in **objective value** if

$$f(\mathbf{x}_{\epsilon}^{\star}) - f^{\star} \leq \epsilon$$
.

Definition

We say that $\mathbf{x}_{\epsilon}^{\star}$ is ϵ -optimal in **sequence** if, for some norm $\|\cdot\|$,

$$\|\mathbf{x}_{\epsilon}^{\star} - \mathbf{x}^{\star}\| \leq \epsilon \; ,$$

The latter approximation guarantee is considered stronger.

A simple example

• Choose initial point: x^0 , and a step size $\alpha > 0$.

A simple example

- Choose initial point: x^0 , and a step size $\alpha > 0$.
- \blacktriangleright Take a step in the negative gradient direction: $x^{k+1} = x^k \alpha \nabla f(x^k)$

A simple example

- Choose initial point: x^0 , and a step size $\alpha > 0$.
- Take a step in the negative gradient direction: $x^{k+1} = x^k \alpha \nabla f(x^k)$
- Repeat this procedure until x^k is accurate enough.

A gradient method

Lemma (First-order necessary optimality condition)

Let \mathbf{x}^{\star} be a global minimum of a differentiable convex function f. Then, it holds that

 $\nabla f(\mathbf{x}^{\star}) = \mathbf{0}.$

Fixed-point characterization

Multiply by -1 and add \mathbf{x}^{\star} to both sides to obtain a fixed point condition,

$$\mathbf{x}^{\star} = \mathbf{x}^{\star} - \alpha \nabla f(\mathbf{x}^{\star}) \qquad \text{for all } \alpha \in \mathbb{R}$$

Gradient method

Choose a starting point \mathbf{x}^0 and iterate

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k)$$

where α_k is a step-size to be chosen so that \mathbf{x}^k converges to \mathbf{x}^{\star} .

lions@epfl

Challenges for an iterative optimization algorithm

Problem

Find the minimum x^* of f(x), given starting point x^0 based on only local information.

Fog of war

Challenges for an iterative optimization algorithm

Problem

Find the minimum x^* of f(x), given starting point x^0 based on only local information.

Fog of war, non-differentiability, discontinuities, local minima, stationary points...

Local minima

 x^k is converging to local minimum!

. . .

Effect of very small step-size α ...

Choose
$$x^0 = 5$$
 and $\alpha = \frac{1}{10}$
 $x^1 = x^0 - \alpha \frac{df}{dx}\Big|_{x=x^0} = 5 - \frac{1}{10}2 = 4.8$
 $x^2 = x^1 - \alpha \frac{df}{dx}\Big|_{x=x^1} = 4.8 - \frac{1}{10}1.8 = 4.62$
... x^k co

 x^k converges very slowly.

lions@epfl

Effect of very large step-size α ...

Choose
$$x^0 = 5$$
 and $\alpha = \frac{5}{2}$
 $x^1 = x^0 - \alpha \frac{df}{dx}\Big|_{x=x^0} = 5 - \frac{5}{2}2 = 0$
 $x^2 = x^1 - \alpha \frac{df}{dx}\Big|_{x=x^1} = 0 - \frac{5}{2}(-3) = \frac{15}{2}$

 x^k diverges.

lions@epfl

. . .

Nonsmooth optimization

For nonsmooth optimization, the first order optimality condition

$$\nabla f(\mathbf{x}^{\star}) = \mathbf{0}$$

does not hold for every descent direction.

Constrained optimization

In many practical problems,

we need to **minimize** the cost **under some constraints**.

$$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{x} \in \mathcal{X} \right\}$$

Example: Optimal Power Flow

Goal is to design generator outputs to minimize the cost.

image from http://wikipedia.org/wiki/Automatic_Generation_Control

OPF: Model

Objective:

minimize total generation cost by designing the generator outputs

subject to:

• physical constraints - conservation of energy

power generated - power used = power lost

• generator limit constraints

minimum and maximum power output of each generator

• line capacity constraints

maximum power that can be transferred from each line

OPF: Notation

A power network with

- set of buses $\mathcal{N} := \{1, 2, \dots, n\}$
- set of generator buses $\mathcal{G} \subseteq \mathcal{N}$
- $\blacktriangleright \text{ set of flow lines } \mathcal{L} \subseteq \mathcal{N} \times \mathcal{N}$

Denote by

- known constant power load $P_{D_j} + i Q_{D_j}$ at bus $j \in \mathcal{N}$
- ▶ known admittance y_{lm} at line $(l,m) \in \mathcal{L}$
- unknown generator output $P_{G_j} + iQ_{G_j}$ at generator bus $j \in \mathcal{G}$

To formulate this problem, define

- V_j : unknown complex voltage at bus $j \in \mathcal{N}$
- P_{lm} : unknown active power transferred from bus $l \in \mathcal{N}$ through the line $(l,m) \in \mathcal{L}$
- S_{lm} : unknown complex power transferred from bus $l \in \mathcal{N}$ through the line $(l,m) \in \mathcal{L}$
- ▶ $f_j(P_{G_j})$: known convex generating cost function for generator $j \in \mathcal{G}$

OPF: Formulation

$$\begin{array}{ll} \underset{\left[\begin{matrix} \mathbf{V} \\ \mathbf{P}_{G} \\ \mathbf{Q}_{G} \end{matrix} \right]}{\text{winimize}} & \sum_{j \in \mathcal{G}} f_{j}(P_{G_{j}}) \\ \\ \text{subject to} & P_{G_{j}} - P_{D_{j}} = \sum_{l \in \mathcal{N}(j)} \operatorname{Re}\{V_{j}(V_{j}^{*} - V_{l}^{*})y_{jl}^{*}\} \\ & Q_{G_{j}} - Q_{D_{j}} = \sum_{l \in \mathcal{N}(j)} \operatorname{Im}\{V_{j}(V_{j}^{*} - V_{l}^{*})y_{jl}^{*}\} \\ & P_{j}^{\min} \leq P_{G_{j}} \leq P_{j}^{\max} \\ & Q_{j}^{\min} \leq Q_{G_{j}} \leq Q_{j}^{\max} \\ & V_{j}^{\min} \leq |V_{j}| \leq V_{j}^{\max} \\ & |\operatorname{Re}\{V_{l}(V_{l}^{*} - V_{m}^{*})y_{lm}^{*}\}| \leq P_{lm}^{\max} \\ & \forall j \in \mathcal{N}, \ \forall (l, m) \in \mathcal{L} \end{array} \right)$$

This is a **nonsmooth**, **nonconvex**, **constrained** optimization problem. In the final homework, we will solve this problem via a convex relaxation.

Convexity is the key

If f is convex,

- any local minimum is also a global minimum,
- we have a principal step-size selection,
- we can handle non-smooth problems like constraints.

Unfortunately, convexity does not imply tractability...

Do not forget!

- Recitation on Friday
 - A short review of linear algebra
 - Exercise session for the lecture

References

[1] Yu. Nesterov.

Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, Boston, MA, 2004.

