Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch
Lecture 1: Introduction to Convex Optimization
Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)
EE-556 (Fall 2017)

erc
ric
(P)fl

License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes - unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Motivation

- Collecting data at unprecedented rates

Figure: Next-generation sequencing data size
"Big data and its technical challenges."
[Communications of the ACM, July 2014]

Motivation

- Collecting data at unprecedented rates
- Outpacing the growth of computation
- data: more of a burden than a blessing

Figure: Next-gen. sequencing data size vs SPECint.
"Big data and its technical challenges."
[Communications of the ACM, July 2014]

Motivation

- Collecting data at unprecedented rates
- Outpacing the growth of computation

Figure: Next-gen. sequencing data size vs SPECint.
"Big data and its technical challenges."
[Communications of the ACM, July 2014]

- data: more of a burden than a blessing
- Dogma: Running time of an algorithm increases with the size of its input data
\Rightarrow Important problems will take increasingly more time to solve!

Challenge (EE-556)

Improve inferential precision within a time-budget as the data grows

- Convex optimization in the context of statistical analysis
- review of linear algebra \& probability theory in recitations

Logistics

- Credits: 4
- Prerequisites: Previous coursework in calculus, linear algebra, and probability is required. Familiarity with optimization is useful.
- Grading: Continuous control via homework exercises \& exam (cf., syllabus)
- HW topics: Support vector machines, compressive subsampling, power flow...
- Moodle: My courses> Genie electrique et electronique (EL) > Master > EE-556
syllabus \& course outline \& HW exercises
- TA's: Alp Yurtsever and Junhong Lin (head TA's); Marwa El Halabi, Baran Gozcu, Bang Cong Vu, Quang Van Nguyen, Ilija Bogunovic, Yen-Huan Li, Ya-Ping Hsieh, Kamal Parameswaran, and Ahmet Alacaoglu

Outline

- This class:

1. What is an optimization problem?
2. Gradient descent: A basic introduction
3. Common templates on convex optimization

- Next class

1. Review of probability, statistics and linear algebra

Recommended reading material

- Chapter 1 in S. Boyd, and L. Vandenberghe, Convex Optimization, Cambridge Univ. Press, 2009.
- Chapter 1 in Nocedal, Jorge, and Wright, Stephen J., Numerical Optimization, Springer, 2006.

Google PageRank

mathematics of data epfl
ب Q
All Images News Videos Maps More Settings Tools

About 256.000 results (0,61 seconds)
Mathematics of data: from theory to computation | EPFL
edu.epfl.ch/coursebook/en/mathematics-of-data-from-theory-to-computation-EE-556 * English. Summary. This course reviews recent advances in convex optimization and statistical analysis in the wake of Big Data. We provide an overview of the ...

EE 556 - Mathematics of Data: From Theory to Computation - lions | epfl lions.epfl.ch , STI , IEL , LIONS , Teaching v
Aug 1, 2016 - Convex optimization offers a unified framework in obtaining numerical solutions to data analytics problems with provable statistical guarantees ...
${ }^{[P D F]}$ Mathematics of Data: From Theory to Computation - lions | epfl lions.epfl.ch/files/content/sites/.../mathematics_of_data/lecture\ 6\ (2014).pdf v Lecture 06: Motivation for nonsmooth, constrained minimization. Mathematics of Data: From Theory to Computation. Prof. Volkan Cevher volkan.cevher@epfl.ch.

Statistics for data science | EPFL
edu.epfl.ch/coursebook/en/statistics-for-data-science-MATH-413 *
MATH-413 ... Statistics lies at the foundation of data science, providing a unifying ... Data science, inference, likelihood, regression, regularisation, statistics.

Swiss Data Science Center

https://datascience.ch/ *
The Initiative creates both Master courses in data science at EPFL and ETH Zurich ... in data science methods and topics ranging from mathematical foundations, ...
You've visited this page 4 times. Last visit: 7/2/17

Modeling Google PageRank

- A basic model

- Compute the conditional probabilities:

$$
\begin{array}{ll}
P(\text { The Washington Post } \mid \text { Google News }) & =2 / 8 \\
P(\text { The Atlantic } \mid \text { Google News }) & =1 / 8
\end{array}
$$

- A toy graph and transition matrix:

$$
\mathbf{E}=\left[\begin{array}{llll}
0 & \frac{1}{3} & 0 & 1 \\
0 & 0 & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{3} & 0 & 0 \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{2} & 0
\end{array}\right]
$$

Modeling Google PageRank

- Transition matrix for world wide web:

$$
\mathbf{E}=\left[\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 n} \\
c_{21} & c_{22} & \ldots & c_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n n}
\end{array}\right]
$$

- $\sum_{i=1}^{n} c_{i j}=1, \forall j \in\{1,2, \ldots, n\}$ ($n \approx 4.5$ billion $)$
- Estimated memory to store $\mathbf{E}: 10^{11} \mathrm{~GB}$!

Modeling Google PageRank

- Transition matrix for world wide web:

$$
\mathbf{E}=\left[\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 n} \\
c_{21} & c_{22} & \ldots & c_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n n}
\end{array}\right]
$$

- $\sum_{i=1}^{n} c_{i j}=1, \forall j \in\{1,2, \ldots, n\} \quad(n \approx 4.5$ billion $)$
- Estimated memory to store $\mathbf{E}: 10^{11} \mathrm{~GB}$!
- A bit of mathematical modeling:
- r_{i}^{k} : Probability of being at node i at $k^{\text {th }}$ state. Let us define a state vector

$$
\mathbf{r}^{k}=\left[r_{1}^{k}, r_{2}^{k}, \ldots, r_{n}^{k}\right]^{\top}
$$

- Multiplying \mathbf{r}^{k} by \mathbf{E} takes one random step along the edges of the graph:

$$
r_{i}^{1}=\sum_{j=1}^{n} c_{i j} r_{j}^{0}=\left(\mathbf{E r}^{0}\right)_{i}
$$

since $c_{i j}=P(i \mid j)$ (by the law of total probability).

Towards a Formal Formulation for Google PageRank

Goal

Find the ranking vector \mathbf{r}^{\star} after an infinite number of random steps.

- Disconnected web: Initial state vector affects the ranking vector.

A solution: Model the event that the surfer will quit the current webpage and open another.

Towards a Formal Formulation for Google PageRank

Goal

Find the ranking vector \mathbf{r}^{\star} after an infinite number of random steps.

- Sink nodes: Column of zeros in \mathbf{E}, moves \mathbf{r} to $\mathbf{0}$!

A solution: Create artifical links from sink nodes to all the nodes.

Towards a Formal Formulation for Google PageRank

Goal

Find the ranking vector \mathbf{r}^{\star} after an infinite number of random steps.

- Disconnected web: Initial state vector affects the ranking vector.

A solution: Model the event that the surfer quits the current webpage to open another.

$$
\mathbf{B}=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \ldots & 1
\end{array}\right]=\frac{1}{n} \mathbb{1} \mathbb{1}^{\top}
$$

- Sink nodes: Column of zeros in \mathbf{E}, moves \mathbf{r} to $\mathbf{0}$! A solution: Create artifical links from sink nodes to all the nodes.

$$
\lambda_{i}= \begin{cases}1 & \text { if } \mathrm{i}^{\text {th }} \text { node } \text { is a sink node } \\ 0 & \text { otherwise }\end{cases}
$$

Google PageRank

- Define the pagerank matrix \mathbf{M} as

$$
\mathbf{M}=(1-p)\left(\mathbf{E}+\frac{1}{n} \mathbb{1} \lambda^{T}\right)+p \mathbf{B} .
$$

M is a column stochastic matrix.

Problem Formulation

- We characterize the solution as
- $\mathbf{M r}^{\star}=\mathbf{r}^{\star}$.
- \mathbf{r}^{\star} is a probability state vector:

$$
r_{i} \geq 0, \quad \sum_{i=1}^{n} r_{i}=1
$$

- Find $\mathbf{r} \geq 0$ such that $\mathbf{M r}=\mathbf{r}$ and $\mathbb{1}^{\top} \mathbf{r}=1$.

Google PageRank

- Define the pagerank matrix \mathbf{M} as

$$
\mathbf{M}=(1-p)\left(\mathbf{E}+\frac{1}{n} \mathbb{1} \lambda^{T}\right)+p \mathbf{B} .
$$

M is a column stochastic matrix.

Problem Formulation

- We characterize the solution as
- $\mathbf{M r}^{\star}=\mathbf{r}^{\star}$.
- \mathbf{r}^{\star} is a probability state vector:

$$
r_{i} \geq 0, \quad \sum_{i=1}^{n} r_{i}=1
$$

- Find $\mathbf{r} \geq 0$ such that $\mathbf{M r}=\mathbf{r}$ and $\mathbb{1}^{\top} \mathbf{r}=1$.

Optimization formulation

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\left\{f(\mathbf{x})=\frac{1}{2}\|M \mathbf{x}-\mathbf{x}\|^{2}+\frac{\gamma}{2}\left(\mathbb{1}^{T} \mathbf{x}-1\right)^{2}\right\} .
$$

The general formulation: Least-squares

Optimization formulation (Least-squares estimator)

$$
\min _{\mathbf{x} \in \mathbb{R}^{d}} \underbrace{\frac{1}{2}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}}_{f(\mathbf{x})},
$$

where $\mathbf{x}=\mathbf{r}, \mathbf{b}=\left[\begin{array}{c}\mathbf{r} \\ \frac{\gamma}{n} \mathbb{1}\end{array}\right], \mathbf{A}=\left[\begin{array}{c}\mathbf{M} \\ \frac{\gamma}{2 n} \mathbb{1} \mathbb{1}^{\top}\end{array}\right], d=n$ in Google PageRank proglem.

Linear regression problem

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{d}$ and $\mathbf{A} \in \mathbb{R}^{n \times d}$ (full column rank). Goal: estimate \mathbf{x}^{\natural}, given \mathbf{A} and

$$
\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}
$$

where \mathbf{w} denotes unknown noise.

- Many other examples:

Image reconstruction (MRI), stock market prediction, house pricing, etc.

Regression

- Example: Taking a mortgage.
- Houses data (source: https://www.homegate.ch)

- Banks: estimate the loan based on location, orientation, view, etc.

- Output values: continuous.

VS
Classification

- Example: Spam classification.
- Incoming emails:

- How to group emails in categories?

- Output values: discrete, categorical.

Breast Cancer Detection

- Genome data for breast cancer (source: http://genome.ucsc.edu):

- A patient with genome data \mathbf{a}_{t} : has he got breast cancer or not (i.e., $b_{t}=1$ or -1)?

Breast Cancer Detection

Goal

Predict either $b_{t}=1$ or $b_{t}=-1$ given \mathbf{a}_{t}.

- Pre-examination: extract important genes from the genome sequence \mathbf{a}_{t} :

$$
\begin{array}{rr}
\mathbf{a}_{t} \rightarrow & \mathbf{a}_{t}^{\top} \mathbf{x} \\
\uparrow & + \\
& \\
& \text { weights }=\text { importance of genes }
\end{array} \quad \begin{array}{r}
\mu \\
\uparrow
\end{array}
$$

- Conclusion: choose a probability P and predict as follow:

$$
b_{t}= \begin{cases}1, & \text { if } P\left(b=1 \mid \mathbf{a}_{t}\right)>P\left(b=-1 \mid \mathbf{a}_{t}\right), \\ -1, & \text { otherwise }\end{cases}
$$

- How do we model probabilities?

> logistic function

Classification with logistic transform

- Logistic function:

$$
t \mapsto h(t):=\frac{1}{1+\exp (-t)} .
$$

- Model the conditional probability of the label b given test result a

$$
P(b \mid \mathbf{a}):=h\left(b\left(\mathbf{a}^{\top} \mathbf{x}+\mu\right)\right)=\frac{1}{1+\exp \left(-b\left(\mathbf{a}^{\top} \mathbf{x}+\mu\right)\right)}
$$

where $\mathbf{x}=$ weights, $\mu=$ intercept.

$$
\begin{aligned}
& P(b \mid \mathbf{a}) \begin{cases}\geq 0.5, & \text { if } \mathbf{a}^{\top} \mathbf{x}+\mu, b \text { have the same sign, } \\
<0.5, & \text { otherwise } .\end{cases} \\
& \bullet \text { Prediction }= \begin{cases}\text { disease }, & \text { if } P(b \mid \mathbf{a})>0.5, \\
\text { normal, } & \text { if } P(b \mid \mathbf{a})<0.5 .\end{cases} \\
& P(b \mid \mathbf{a})=0.5 \text { (green line): uncertain. }
\end{aligned}
$$

Classification: How does it work?

- Classification diagram:

$$
\begin{array}{rc}
\left(\mathbf{a}_{i}, b_{i}\right)_{i=1}^{n} \xrightarrow[\text { parameter } \mathbf{x}]{\text { modeling }} P\left(b_{i} \mid \mathbf{a}_{i}, \mathbf{x}\right) & \stackrel{\text { independency }}{\longrightarrow} p(\mathbf{x}):=\prod_{i=1}^{n} P\left(b_{i} \mid \mathbf{a}_{i}, \mathbf{x}\right) \\
\mathbf{a}_{t} \longrightarrow P\left(b \mid \mathbf{a}_{t}, \mathbf{x}^{\star}\right) \longleftarrow- & \mathbf{x}^{\star}
\end{array}
$$

evaluating logistic function \downarrow

$$
b_{t}
$$

- Maximizing $\log p(\mathbf{x})$ gives the \log-likelihood estimator (covered later in this course).

Logistic regression

Problem (Logistic regression)

Given a sample vector $\mathbf{a}_{i} \in \mathbb{R}^{p}$ and a binary class label $b_{i} \in\{-1,+1\}(i=1, \ldots, n)$, we define the conditional probability of b_{i} given \mathbf{a}_{i} as:

$$
\mathbb{P}\left(b_{i} \mid \mathbf{a}_{i}, \mathbf{x}^{\natural}, \mu\right) \propto 1 /\left(1+e^{-b_{i}\left(\left\langle\mathbf{x}^{\natural}, \mathbf{a}_{i}\right\rangle+\mu\right)}\right),
$$

where $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ is some true weight vector, μ is called the intercept. How do we estimate \mathbf{x}^{\natural} given the sample vectors, the binary labels, and μ ? Logistic regression is a classification problem!

Log-likelihood

$$
\log p(\mathbf{x})=-\sum_{i=1}^{n} \log \left(1+\exp \left(-b_{i}\left(\mathbf{a}_{i}^{\top} \mathbf{x}+\mu\right)\right)\right)
$$

Optimization formulation

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathbb{R}^{p}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \log \left(1+\exp \left(-b_{i}\left(\mathbf{a}_{i}^{T} \mathbf{x}+\mu\right)\right)\right)}_{f(\mathbf{x})} \tag{1}
\end{equation*}
$$

Unconstrained minimization

Problem (Mathematical formulation)

How can we find an optimal solution to the following optimization problem?

$$
\begin{equation*}
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{F(\mathbf{x}):=f(\mathbf{x})\} \tag{2}
\end{equation*}
$$

Note that (2) is unconstrained.

Definition (Optimal solutions and solution set)

- $\mathbf{x}^{\star} \in \mathbb{R}^{p}$ is a solution to (2) if $F\left(\mathbf{x}^{\star}\right)=F^{\star}$.
- $\mathcal{S}^{\star}:=\left\{\mathbf{x}^{\star} \in \mathbb{R}^{p}: F\left(\mathbf{x}^{\star}\right)=F^{\star}\right\}$ is the solution set of (2).
- (2) has solution if \mathcal{S}^{\star} is non-empty.

A basic iterative strategy

General idea of an optimization algorithm

Guess a solution, and then refine it based on oracle information.
Repeat the procedure until the result is good enough.

Approximate vs. exact optimality

Is it possible to solve a convex optimization problem?

> "In general, optimization problems are unsolvable" - Y. Nesterov [1]

- Even when a closed-form solution exists, numerical accuracy may still be an issue.
- We must be content with approximately optimal solutions.

Definition

We say that $\mathbf{x}_{\epsilon}^{\star}$ is ϵ-optimal in objective value if

$$
f\left(\mathbf{x}_{\epsilon}^{\star}\right)-f^{\star} \leq \epsilon .
$$

Definition

We say that $\mathbf{x}_{\epsilon}^{\star}$ is ϵ-optimal in sequence if, for some norm $\|\cdot\|$,

$$
\left\|\mathbf{x}_{\epsilon}^{\star}-\mathbf{x}^{\star}\right\| \leq \epsilon
$$

- The latter approximation guarantee is considered stronger.

A simple example

- Choose initial point: x^{0}, and a step size $\alpha>0$.

A simple example

- Choose initial point: x^{0}, and a step size $\alpha>0$.
- Take a step in the negative gradient direction: $x^{k+1}=x^{k}-\alpha \nabla f\left(x^{k}\right)$

A simple example

- Choose initial point: x^{0}, and a step size $\alpha>0$.
- Take a step in the negative gradient direction: $x^{k+1}=x^{k}-\alpha \nabla f\left(x^{k}\right)$
- Repeat this procedure until x^{k} is accurate enough.

A gradient method

Lemma (First-order necessary optimality condition)

Let \mathbf{x}^{\star} be a global minimum of a differentiable convex function f. Then, it holds that

$$
\nabla f\left(\mathbf{x}^{\star}\right)=\mathbf{0}
$$

Fixed-point characterization

Multiply by -1 and add \mathbf{x}^{\star} to both sides to obtain a fixed point condition,

$$
\mathbf{x}^{\star}=\mathbf{x}^{\star}-\alpha \nabla f\left(\mathbf{x}^{\star}\right) \quad \text { for all } \alpha \in \mathbb{R}
$$

Gradient method

Choose a starting point \mathbf{x}^{0} and iterate

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k} \nabla f\left(\mathbf{x}^{k}\right)
$$

where α_{k} is a step-size to be chosen so that \mathbf{x}^{k} converges to \mathbf{x}^{\star}.

Challenges for an iterative optimization algorithm

Problem

Find the minimum x^{\star} of $f(x)$, given starting point x^{0} based on only local information.

- Fog of war

Challenges for an iterative optimization algorithm

Problem

Find the minimum x^{\star} of $f(x)$, given starting point x^{0} based on only local information.

- Fog of war, non-differentiability, discontinuities, local minima, stationary points...

Local minima

$$
\begin{aligned}
& \min _{x \in \mathbb{R}}\left\{x^{4}-3 x^{3}+x^{2}+\frac{3}{2} x\right\} \\
& \frac{d f}{d x}=4 x^{3}-9 x^{2}+2 x+\frac{3}{2}
\end{aligned}
$$

Choose $x^{0}=0$ and $\alpha=\frac{1}{6}$
$x^{1}=x^{0}-\left.\alpha \frac{d f}{d x}\right|_{x=x^{0}}=0-\frac{1}{6} \frac{3}{2}=-\frac{1}{4}$
$x^{2}=-\frac{5}{16}$
x^{k} is converging to local minimum!

Effect of very small step-size $\alpha \ldots$

$$
\min _{x \in \mathbb{R}} \frac{1}{2}(x-3)^{2}
$$

Choose $x^{0}=5$ and $\alpha=\frac{1}{10}$

$$
\begin{aligned}
& x^{1}=x^{0}-\left.\alpha \frac{d f}{d x}\right|_{x=x^{0}}=5-\frac{1}{10} 2=4.8 \\
& x^{2}=x^{1}-\left.\alpha \frac{d f}{d x}\right|_{x=x^{1}}=4.8-\frac{1}{10} 1.8=4.62
\end{aligned}
$$

x^{k} converges very slowly.

Effect of very large step-size α...

$$
\begin{aligned}
& \min _{x \in \mathbb{R}} \frac{1}{2}(x-3)^{2} \\
& \frac{d f}{d x}=x-3
\end{aligned}
$$

Choose $x^{0}=5$ and $\alpha=\frac{5}{2}$

$$
\begin{aligned}
& x^{1}=x^{0}-\left.\alpha \frac{d f}{d x}\right|_{x=x^{0}}=5-\frac{5}{2} 2=0 \\
& x^{2}=x^{1}-\left.\alpha \frac{d f}{d x}\right|_{x=x^{1}}=0-\frac{5}{2}(-3)=\frac{15}{2}
\end{aligned}
$$

x^{k} diverges.

Nonsmooth optimization

For nonsmooth optimization, the first order optimality condition

$$
\nabla f\left(\mathbf{x}^{\star}\right)=\mathbf{0}
$$

does not hold for every descent direction.

Constrained optimization

In many practical problems, we need to minimize the cost under some constraints.

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{x} \in \mathcal{X}\}
$$

Example: Optimal Power Flow

Goal is to design generator outputs to minimize the cost.

OPF: Model

Objective:

```
minimize total generation cost by designing the generator outputs
```

subject to:

- physical constraints - conservation of energy

$$
\text { power generated - power used }=\text { power lost }
$$

- generator limit constraints minimum and maximum power output of each generator
- line capacity constraints
maximum power that can be transferred from each line

OPF: Notation

A power network with

- set of buses $\mathcal{N}:=\{1,2, \ldots, n\}$
- set of generator buses $\mathcal{G} \subseteq \mathcal{N}$
- set of flow lines $\mathcal{L} \subseteq \mathcal{N} \times \mathcal{N}$

Denote by

- known constant power load $P_{D_{j}}+i Q_{D_{j}}$ at bus $j \in \mathcal{N}$
- known admittance $y_{l m}$ at line $(l, m) \in \mathcal{L}$
- unknown generator output $P_{G_{j}}+i Q_{G_{j}}$ at generator bus $j \in \mathcal{G}$

To formulate this problem, define

- V_{j} : unknown complex voltage at bus $j \in \mathcal{N}$
- $P_{l m}$: unknown active power transferred from bus $l \in \mathcal{N}$ through the line $(l, m) \in \mathcal{L}$
- $S_{l m}$: unknown complex power transferred from bus $l \in \mathcal{N}$ through the line $(l, m) \in \mathcal{L}$
- $f_{j}\left(P_{G_{j}}\right)$: known convex generating cost function for generator $j \in \mathcal{G}$

OPF: Formulation

$$
\begin{aligned}
& \underset{\left[\begin{array}{c}
\mathbf{P}_{G} \\
\mathbf{Q}_{G} \\
\operatorname{\mathbf {Q}_{G}}
\end{array}\right]}{ } \quad \sum_{j \in \mathcal{G}} f_{j}\left(P_{G_{j}}\right) \\
& \text { subject to } \quad P_{G j}-P_{D j}=\sum_{l \in \mathcal{N}(j)} \operatorname{Re}\left\{V_{j}\left(V_{j}^{*}-V_{l}^{*}\right) y_{j l}^{*}\right\} \\
& Q_{G_{j}}-Q_{D_{j}}=\sum_{l \in \mathcal{N}(j)} \operatorname{Im}\left\{V_{j}\left(V_{j}^{*}-V_{l}^{*}\right) y_{j l}^{*}\right\} \\
& P_{j}^{\min } \leq P_{G j} \leq P_{j}^{\max } \\
& Q_{j}^{\min } \leq Q_{G_{j}} \leq Q_{j}^{\max } \\
& V_{j}^{\text {min }} \leq\left|V_{j}\right| \leq V_{j}^{\text {max }} \\
& \left|\operatorname{Re}\left\{V_{l}\left(V_{l}^{*}-V_{m}^{*}\right) y_{l m}^{*}\right\}\right| \leq P_{l m}^{\max } \\
& \text { line } \\
& \text { capacity } \\
& \forall j \in \mathcal{N}, \forall(l, m) \in \mathcal{L}
\end{aligned}
$$

This is a nonsmooth, nonconvex, constrained optimization problem. In the final homework, we will solve this problem via a convex relaxation.

Convexity is the key

If f is convex,

- any local minimum is also a global minimum,
- we have a principal step-size selection,
- we can handle non-smooth problems like constraints.

Unfortunately, convexity does not imply tractability...

Do not forget!

- Recitation on Friday
- A short review of linear algebra
- Exercise session for the lecture

References

[1] Yu. Nesterov.
Introductory Lectures on Convex Optimization: A Basic Course.
Kluwer, Boston, MA, 2004.

