Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 10: Source separation by convex optimization

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2015)

License Information for Mathematics of Data Slides

- This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.
- Share Alike
 - The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

- Today
 - 1. Sourse separation
 - 2. Convex geometry of linear inverse problems
- Next week
 - 1. Primal-Dual methods

Recommended reading

- D. Amelunxen et al., "Living on the edge: Phase transitions in convex programs with random data," 2014, arXiv:1303.6672v2 [cs.IT].
- M.B. McCoy et al., "Convexity in source separation," IEEE Sig. Process. Mag., vol. 31, pp. 87–95, 2014.
- V. Chandrasekaran *et al.*, "The convex geometry of linear inverse problems," *Found. Comput. Math.*, vol. 12, pp. 805–849, 2012.

Motivation

Motivation

This lecture illustrates how compressive sensing generalizes as a *source separation problem* in a unified framework.

It turns out that the formulations of convex estimators for both linear inverse problems and source separation problems, in general, require minimizing *nonsmooth* convex functions.

We introduce *constrained* optimization formulations as an alternative to regularization, and provide the corresponding statistics guarantees.

Source separation

Problem (Source separation)

Let $x^{\natural},y^{\natural}\in \mathbb{R}^p$ be two unknown vectors. How do we estimate x^{\natural} and y^{\natural} given $z:=x^{\natural}+y^{\natural}?$

Source separation

Problem (Source separation)

Let $x^{\natural},y^{\natural}\in\mathbb{R}^p$ be two unknown vectors. How do we estimate x^{\natural} and y^{\natural} given $z:=x^{\natural}+y^{\natural}?$

Observation

Source separation is impossible if we do not have any additional information about \mathbf{x}^{\natural} and $\mathbf{y}^{\natural}.$

Example

Obviously, without any additional information, the equation $\mathbf{z}=\mathbf{x}^{\natural}+\mathbf{y}^{\natural}$ has infinitely many solutions for $(\mathbf{x}^{\natural},\mathbf{y}^{\natural}).$

Two important insights from nearly trivial examples

Insight # 1: To have a well-posed source separation problem, some information on the *signal structures* is needed. Here, simple representations (introduced in Lecture 7) turn out to be key.

Example

Let $\mathbf{z} = (2, 1)^T := \mathbf{x}^{\natural} + \mathbf{y}^{\natural}$. Without additional information it is impossible to perfectly recover \mathbf{x}^{\natural} and \mathbf{y}^{\natural} .

However, suppose now we know $\mathbf{x}^{\natural} = (x^{\natural}, 0)^T$ and $\mathbf{y}^{\natural} = (0, y^{\natural})^T$, then we can perfectly recover $\mathbf{x}^{\natural} = (2, 0)^T$ and $\mathbf{y}^{\natural} = (0, 1)^T$.

Insight # 2: The signal structures must be *incoherent* in some sense. That is, the superposed signals should not look alike so that we can separate them.

Example

Suppose now that we know $\mathbf{x}^{\natural} = (2, x^{\natural})^T$ and $\mathbf{y}^{\natural} = (0, y^{\natural})^T$, then it is still impossible to perfectly recover \mathbf{x}^{\natural} and \mathbf{y}^{\natural} .

Problem (Spikes and sines)

Let $\mathbf{x}^{\natural}, \mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be sparse, and let \mathbf{D} denote the discrete cosine transform (DCT) matrix. How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z} := \mathbf{x}^{\natural} + \mathbf{D}\mathbf{y}^{\natural}$?

Problem (Spikes and sines)

Let $\mathbf{x}^{\natural}, \mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be sparse, and let \mathbf{D} denote the discrete cosine transform (DCT) matrix. How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z} := \mathbf{x}^{\natural} + \mathbf{D}\mathbf{y}^{\natural}$?

Problem (Spikes and sines)

Let $\mathbf{x}^{\natural}, \mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be sparse, and let \mathbf{D} denote the discrete cosine transform (DCT) matrix. How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z} := \mathbf{x}^{\natural} + \mathbf{D}\mathbf{y}^{\natural}$?

 \mathbf{z}

Problem (Spikes and sines)

Let $\mathbf{x}^{\natural}, \mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be sparse, and let \mathbf{D} denote the discrete cosine transform (DCT) matrix. How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z} := \mathbf{x}^{\natural} + \mathbf{D}\mathbf{y}^{\natural}$?

Other applications of the source separation problem

Problem (Robust principal component analysis (PCA) [6]) Let $\mathbf{X}^{\natural} \in \mathbb{R}^{p \times p}$ be sparse and $\mathbf{Y}^{\natural} \in \mathbb{R}^{p \times p}$ be low-rank. How do we estimate \mathbf{X}^{\natural} and \mathbf{Y}^{\natural} given $\mathbf{Z} := \mathbf{X}^{\natural} + \mathbf{Y}^{\natural}$?

Applications: Background separation in videos taken with a stationary camera.

Figure: (Left) Original snapshot. Center "Low rank" background. Right "Sparse" foreground.

Other applications of the source separation problem

Problem (Robust principal component analysis (PCA) [6]) Let $\mathbf{X}^{\natural} \in \mathbb{R}^{p \times p}$ be sparse and $\mathbf{Y}^{\natural} \in \mathbb{R}^{p \times p}$ be low-rank. How do we estimate \mathbf{X}^{\natural} and \mathbf{Y}^{\natural} given $\mathbf{Z} := \mathbf{X}^{\natural} + \mathbf{Y}^{\natural}$?

Applications: Face illumination removal [2]: the set of all images of a convex Lambertian scene under changing illumination is close to a 9-dimensional subspace.

Figure: (Left) Faces with varying illumination. Center "Low rank" part. Right "Sparse" part.

There are many other applications

Problem (Signal denoising [16])

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ and let $\mathbf{w}^{\natural} \in \mathbb{R}^{p}$ denote some unknown noise. How do we estimate \mathbf{x}^{\natural} (and thus also \mathbf{w}^{\natural}) given $\mathbf{b} = \mathbf{x}^{\natural} + \mathbf{w}^{\natural}$?

Applications: Wireless communications with narrowband interferences, signal processing with impulse noises, etc.

Problem (Morphological component analysis [7])

Let $\mathbf{x}^{\natural}, \mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be sparse, and $\mathbf{U}, \mathbf{V} \in \mathbb{R}^{n \times p}$. How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z} := \mathbf{U}\mathbf{x}^{\natural} + \mathbf{V}\mathbf{y}^{\natural}$?

Applications: Spikes and Sines, texture separation, image inpainting, etc.

Problem (Covariance denoising [15])

Consider the standard linear array model, where we have narrowband signals $\mathbf{s}(t) \in \mathbb{R}^r$ impinging on an array of $p \gg r$ sensors at bearings $\boldsymbol{\theta} \in \mathbb{R}^r$. The array observations $\mathbf{b}(t) \in \mathbb{R}^p$ can be written as a linear superposition of the source signals and noise $\mathbf{w} \in \mathbb{R}^p$ via a linear manifold matrix $\mathbf{A}(\boldsymbol{\theta})$: $\mathbf{b}(t) = \mathbf{A}(\boldsymbol{\theta})\mathbf{s}(t) + \mathbf{w}(t)$.

If we assume that the noise is white Gaussian with unknown variance σ^2 , then the covariance of the observations $\mathbf{Z} = \mathbb{E}[\mathbf{b}\mathbf{b}^T]$ have a low-rank and diagonal decomposition: $\mathbf{Z} = \mathbf{X}^{\natural} + \mathbf{Y}^{\natural}$, where $\mathbf{X}^{\natural} = \mathbf{A}(\theta)^T \boldsymbol{\Sigma}_s \mathbf{A}(\theta)$ and $\mathbf{Y}^{\natural} = \sigma^2 \mathbb{I}$, and $\boldsymbol{\Sigma}_s \in \mathbb{R}^{r \times r}$ is the source covariance. How do we estimate \mathbf{X}^{\natural} and \mathbf{Y}^{\natural} given \mathbf{Z} ?

Applications: Direction-of-arrival estimation, radar, mixture of factor analyzers, etc.

Computational issue

Consider the general estimator of $(\mathbf{x}^{\natural},\mathbf{y}^{\natural})$ given $\mathbf{z}:=\mathbf{U}\mathbf{x}^{\natural}+\mathbf{V}\mathbf{y}^{\natural}$ for sparse vectors \mathbf{x}^{\natural} and \mathbf{y}^{\natural} and corresponding linear transformations \mathbf{U} and \mathbf{V} .

 ℓ_0 -"norm" approach

$$(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \arg\min_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_0 + \rho \, \|\mathbf{y}\|_0 : \mathbf{z} = \mathbf{U}\mathbf{x} + \mathbf{V}\mathbf{y} \right\}.$$

with some $\rho > 0$ that trades the relative sparsity of x and y.

 $\begin{array}{ll} \text{Observation:} & \text{Since } (\mathbf{x},\mathbf{y})\mapsto \mathbf{U}\mathbf{x}+\mathbf{V}\mathbf{y} \text{ is a linear mapping, there exists a matrix } \mathbf{A} \\ \text{such that } \mathbf{z}=\mathbf{A}\tilde{\mathbf{x}}^{\natural}, \text{ where } \tilde{\mathbf{x}}^{\natural}:=((\mathbf{x}^{\natural})^{T},(\mathbf{y}^{\natural})^{T})^{T}. \text{ In fact } \mathbf{A}:=\left[\begin{array}{cc} \mathbf{U} & \mathbf{V} \end{array}\right]. \end{array}$

Tractability

Choosing $\rho = 1$, we have

$$\hat{\tilde{\mathbf{x}}} \in \arg\min_{\tilde{\mathbf{x}} \in \mathbb{R}^{2p}} \left\{ \|\tilde{\mathbf{x}}\|_0 : \mathbf{z} = \mathbf{A}\tilde{\mathbf{x}} \right\}.$$

In general, this procedure is NP-hard.

lions@epfl

Slide 11/41

Source separation with the ℓ_1 -norm

Recall the following definition for linear inverse problems.

Definition (Lasso) Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$, $\mathbf{A} \in \mathbb{R}^{n \times p}$, and $\mathbf{b} := \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$. The Lasso estimator for \mathbf{x}^{\natural} is given by $\hat{\mathbf{x}}_{\text{Lasso}} \in \arg\min_{\mathbf{x}\in\mathbb{R}^{p}} \left\{ \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \rho \|\mathbf{x}\|_{1} \right\}.$ for some $\rho > 0$.

For sparse source separation with $\mathbf{z}=\mathbf{U}\mathbf{x}^{\natural}+\mathbf{V}\mathbf{y}^{\natural}$, it is natural to consider the following *convex optimization* analogy.

 ℓ_1 -norm approach

$$(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \arg\min_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_1 + \rho \|\mathbf{y}\|_1 : \mathbf{z} = \mathbf{U}\mathbf{x} + \mathbf{V}\mathbf{y} \right\}$$

with some $\rho > 0$.

lions@epfl

Slide 12/41

Atomic norms

Definition (Atomic sets & atoms)

An *atomic set* A is a set of vectors in \mathbb{R}^p . An *atom* is an element in an atomic set.

Definition (Gauge function)

Let C be a convex set in \mathbb{R}^p , the gauge function associated with C is given by

 $g_{\mathcal{C}}(\mathbf{x}) := \inf \left\{ t : \mathbf{x} = t\mathbf{c} \text{ with some } \mathbf{c} \in \mathcal{C}, t > 0 \right\}, \quad \forall \mathbf{x} \in \mathbb{R}^p.$

Definition (Atomic norm)

Let \mathcal{A} be an *atomic set* in \mathbb{R}^p , the **atomic norm** associated with \mathcal{A} is given by

$$\|\mathbf{x}\|_{\mathcal{A}} := g_{\operatorname{conv}(\mathcal{A})}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^p,$$

where $conv(\mathcal{A})$ denotes the *convex hull* of \mathcal{A} .

Source separation with the ℓ_1 -norm

Definition (Lasso) Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$, $\mathbf{A} \in \mathbb{R}^{n \times p}$, and $\mathbf{b} := \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$. The Lasso estimator for \mathbf{x}^{\natural} is given by $\hat{\mathbf{x}}_{\text{Lasso}} \in \arg\min_{\mathbf{x}\in\mathbb{R}^{p}} \left\{ \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \rho \|\mathbf{x}\|_{1} \right\}.$

for some $\rho \geq 0$.

 ℓ_1 -norm approach

$$(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \arg\min_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_1 + \rho \, \|\mathbf{y}\|_1 : \mathbf{z} = \mathbf{U}\mathbf{x} + \mathbf{V}\mathbf{y} \right\}$$

with some $\rho > 0$.

Another way of looking at things

Define atomic sets $\mathcal{A}_{\mathbf{x}}$ using the set of columns of \mathbf{U} and $\mathcal{A}_{\mathbf{y}}$ using the set of columns of \mathbf{V} . Let $\tilde{\mathbf{x}}^{\natural} = \mathbf{U}\mathbf{x}^{\natural}$ and $\tilde{\mathbf{y}}^{\natural} = \mathbf{V}\mathbf{y}^{\natural}$. With some $\rho > 0$, we equivalently have

$$(\hat{\tilde{\mathbf{x}}}, \hat{\tilde{\mathbf{y}}}) \in \arg\min_{\tilde{\mathbf{x}}, \tilde{\mathbf{y}} \in \mathbb{R}^p} \left\{ \left\| \tilde{\mathbf{x}} \right\|_{\mathcal{A}_{\mathbf{x}}} + \rho \left\| \tilde{\mathbf{y}} \right\|_{\mathcal{A}_{\mathbf{y}}} : \mathbf{z} = \tilde{\mathbf{x}} + \tilde{\mathbf{y}} \right\}$$

General recipe for source separation

Problem (Source separation)

Let $\mathcal{A}_{\mathbf{x}}$ and $\mathcal{A}_{\mathbf{y}}$ be two atomic sets in \mathbb{R}^p , and let $\mathbf{x}^{\natural} \in \mathbb{R}^p$ and $\mathbf{y}^{\natural} \in \mathbb{R}^p$ be simple with respect to $\mathcal{A}_{\mathbf{x}}$ and $\mathcal{A}_{\mathbf{y}}$ respectively. How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z} := \mathbf{x}^{\natural} + \mathbf{y}^{\natural}$?

A general recipe

$$(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \arg\min_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_{\mathcal{A}_{\mathbf{x}}} + \rho \, \|\mathbf{y}\|_{\mathcal{A}_{\mathbf{y}}} : \mathbf{z} = \mathbf{x} + \mathbf{y} \right\}$$

with some $\rho > 0$. In the sequel, we consider how to choose ρ .

Alternative formulations

Other variants are possible. For instance, consider the constrained variant

$$(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \arg\min_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_{\mathcal{A}_{\mathbf{x}}} : \mathbf{z} = \mathbf{x} + \mathbf{y}, \|\mathbf{y}\|_{\mathcal{A}_{\mathbf{y}}} \leq \kappa \right\}.$$

When $\kappa = \left\| \mathbf{y}^{\natural} \right\|_{\mathcal{A}_{\mathbf{y}}}$, the true vectors are feasible. As compared to the regularized version, the difficulty of choosing ρ shifts to the difficulty of choosing κ .

Slide 15/41

Example: Robust PCA

Problem (Robust principal component analysis (PCA) [2])

Let $X \in \mathbb{R}^{p \times p}$ be sparse and $Y \in \mathbb{R}^{p \times p}$ be low-rank. How do we estimate X and Y given Z := X + Y?

Observation:

- $\begin{array}{l} \bullet \ \mathbf{X} \text{ is simple with respect to the atomic set} \\ \mathcal{A}_{\mathbf{X}} := \Big\{ \mathbf{A}_{\mathbf{X}} : \| \mathrm{vec}(\mathbf{A}_{\mathbf{X}}) \|_0 = 1, \| \mathbf{A}_{\mathbf{X}} \|_F = 1 \Big\}, \text{ and} \end{array}$
- $\mathbf{Y} \text{ is simple with respect to the atomic set} \\ \mathcal{A}_{\mathbf{Y}} := \Big\{ \mathbf{A}_{\mathbf{Y}} : \operatorname{rank}(\mathbf{A}_{\mathbf{Y}}) = 1, \|\mathbf{A}_{\mathbf{Y}}\|_F = 1 \Big\}.$

Atomic norm approach

$$(\hat{\mathbf{X}}, \hat{\mathbf{Y}}) \in \arg \min_{\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{p \times p}} \left\{ \|\mathbf{X}\|_{\mathcal{A}_{\mathbf{X}}} + \rho \, \|\mathbf{Y}\|_{\mathcal{A}_{\mathbf{Y}}} \right\}$$

with some $\rho > 0$. Theory states that $\rho = 1/\sqrt{p}$ is nearly optimal.

$$\text{Recall that } \left\|\mathbf{X}\right\|_{\mathcal{A}_{\mathbf{X}}} = \left\|\operatorname{vec}(\mathbf{X})\right\|_{1} \text{ and } \left\|\mathbf{Y}\right\|_{\mathcal{A}_{\mathbf{Y}}} = \left\|\mathbf{Y}\right\|_{S_{1}}.$$

Basis pursuit with atomic norms

The convex optimization tools used for source separation $({\bf z}={\bf x}+{\bf y})$ and linear inverse problems $({\bf b}={\bf A}{\bf x})$ are similar. For the rest of the lecture, we will focus on the latter.

Linear model with *simple* parameter

Let \mathcal{A} be an atomic set in \mathbb{R}^p . Let $\mathbf{x}^{\natural} \in \mathbb{R}^p$ be *simple* with respect to \mathcal{A} , and let $\mathbf{A} \in \mathbb{R}^{n \times p}$. The samples are given by $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$, where \mathbf{w} denotes the unknown noise.

We consider the following *constrained* estimator.

Basis pursuit denoising with atomic norms

$$\hat{\mathbf{x}}_{\mathsf{BPDN}} := \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \left\| \mathbf{x} \right\|_{\mathcal{A}} : \left\| \mathbf{b} - \mathbf{A} \mathbf{x} \right\|_2 \le \kappa \right\}$$

with some $\kappa \geq 0$.

- ▶ In general, this problem cannot be solved in polynomial time even if it is convex.
- > When we can solve it, this heuristic formulation provides surprisingly good results.

Performance guarantee of basis pursuit denoising

Theorem [5] Recall $\hat{\mathbf{x}}_{BPDN} := \arg \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_{\mathcal{A}} : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 \le \kappa \right\}$ If $\|\mathbf{w}\|_2 := \left\| \mathbf{b} - \mathbf{A}\mathbf{x}^{\natural} \right\|_2 \le \kappa$, it is possible to have $\left\| \hat{\mathbf{x}}_{BPDN} - \mathbf{x}^{\natural} \right\|_2 \le \frac{2\kappa}{\sqrt{\mu}}$,

given that

$$n \ge \frac{w^2 + \frac{3}{2}}{\left(1 - \sqrt{\mu}\right)^2},$$

with some $\mu(\mathbf{A}) > 0$, where w is some function of the atomic set \mathcal{A} and \mathbf{x}^{\natural} .

- ► The quantity w² characterizes the *degrees-of-freedom* of x[↓].
- The parameter $\mu(\mathbf{A})$ characterizes the *well-posedness* of the estimation problem.

We formally define w and prove the theorem in the following slides. First we need the notion of *tangent cones*.

Tangent cone

Definition (Tangent cone)

Let $g: \mathbb{R}^p \to \mathbb{R} \cup \{-\infty, +\infty\}$ be a proper lower semi-continuous convex function. The tangent cone $\mathcal{T}_g(\mathbf{x})$ of the function g at a point $\mathbf{x} \in \mathbb{R}^p$ is defined as

$$\mathcal{T}_{g}(\mathbf{x}) := \operatorname{cone} \left\{ \mathbf{y} - \mathbf{x} : g(\mathbf{y}) \le g(\mathbf{x}), \mathbf{y} \in \mathbb{R}^{p} \right\}.$$

Condition for exact recovery in the noiseless case

We consider estimating $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$, which is simple with respect to an atomic set \mathcal{A} , given samples $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural}$ and $\mathbf{A} \in \mathbb{R}^{n \times p}$, $n \leq p$, by

$$\hat{\mathbf{x}}_{\text{BPDN}} \in \arg\min_{\mathbf{x}\in\mathbb{R}^p}\left\{\left\|\mathbf{x}\right\|_{\mathcal{A}}: \mathbf{b} = \mathbf{A}\mathbf{x}\right\}.$$

Condition for exact recovery in the noiseless case

Proposition

Let
$$g : \mathbf{x} \mapsto \|\mathbf{x}\|_{\mathcal{A}}$$
. Recall $\hat{\mathbf{x}}_{BPDN} \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \{\|\mathbf{x}\|_{\mathcal{A}} : \mathbf{b} = \mathbf{A}\mathbf{x}\}.$
We have $\hat{\mathbf{x}}_{BPDN} = \mathbf{x}^{\natural}$ if and only if $\mathcal{T}_q(\mathbf{x}^{\natural}) \cap \operatorname{null}(\mathbf{A}) = \{\mathbf{0}\}.$

Condition for exact recovery in the noiseless case

Proposition

Let
$$g : \mathbf{x} \mapsto \|\mathbf{x}\|_{\mathcal{A}}$$
. Recall $\hat{\mathbf{x}}_{BPDN} \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \{\|\mathbf{x}\|_{\mathcal{A}} : \mathbf{b} = \mathbf{A}\mathbf{x}\}$.
We have $\hat{\mathbf{x}}_{BPDN} = \mathbf{x}^{\natural}$ if and only if $\mathcal{T}_q(\mathbf{x}^{\natural}) \cap \operatorname{null}(\mathbf{A}) = \{\mathbf{0}\}$.

We consider estimating $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$, which is simple with respect to an atomic set \mathcal{A} , given samples $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$ and $\mathbf{A} \in \mathbb{R}^{n \times p}$, $n \leq p$, where \mathbf{w} denotes the unknown noise, by

$$\hat{\mathbf{x}}_{\mathsf{BPDN}} \in \arg\min_{\mathbf{x}\in\mathbb{R}^p} \left\{ \|\mathbf{x}\|_{\mathcal{A}} : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 \le \kappa \right\}.$$

Definition (Restricted strong convexity)

The restricted strong convexity condition holds if $\|\mathbf{A}\mathbf{z}\|_2^2 \ge \mu \|\mathbf{z}\|_2^2$ for all $\mathbf{z} \in \mathcal{T}_g(\mathbf{x}^{\natural})$ with some $\mu > 0$.

Proposition

Let $g: \mathbf{x} \mapsto \|\mathbf{x}\|_{\mathcal{A}}$. Recall $\hat{\mathbf{x}}_{BPDN} := \arg \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_{\mathcal{A}} : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 \le \kappa \right\}$. We have $\left\| \hat{\mathbf{x}}_{BPDN} - \mathbf{x}^{\natural} \right\|_2 \le \frac{2\kappa}{\sqrt{\mu}}$ if $\|\mathbf{w}\|_2 \le \kappa$ and the restricted strong convexity condition holds with some $\mu > 0$.

Definition (Restricted strong convexity)

The restricted strong convexity condition holds if $\|\mathbf{A}\mathbf{z}\|_2^2 \ge \mu \|\mathbf{z}\|_2^2$ for all $\mathbf{z} \in \mathcal{T}_g(\mathbf{x}^{\natural})$ with some $\mu > 0$.

Proposition

$$\textit{Let } g: \mathbf{x} \mapsto \left\|\mathbf{x}\right\|_{\mathcal{A}}. \textit{ Recall } \hat{\mathbf{x}}_{\textit{BPDN}} := \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \left\|\mathbf{x}\right\|_{\mathcal{A}}: \left\|\mathbf{b} - \mathbf{A}\mathbf{x}\right\|_2 \le \kappa \right\}.$$

We have $\left\| \hat{\mathbf{x}}_{BPDN} - \mathbf{x}^{t} \right\|_{2} \leq \frac{2\kappa}{\sqrt{\mu}}$ if $\|\mathbf{w}\|_{2} \leq \kappa$ and the restricted strong convexity condition holds with some $\mu > 0$.

Key observation: $\hat{\mathbf{x}}_{\text{BPDN}} - \mathbf{x}^{\natural} \in \mathcal{T}_g(\mathbf{x}^{\natural})$ (since $\hat{\mathbf{x}}_{\text{BPDN}}$ minimizes $\|\mathbf{x}\|_{\mathcal{A}}$ subject to $\|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 \leq \kappa$, and \mathbf{x}^{\natural} satisfies this constraint by assumption)

Definition (Restricted strong convexity)

The restricted strong convexity condition holds if $\|\mathbf{A}\mathbf{z}\|_2^2 \ge \mu \|\mathbf{z}\|_2^2$ for all $\mathbf{z} \in \mathcal{T}_g(\mathbf{x}^{\natural})$ with some $\mu > 0$.

Proposition

Let
$$g : \mathbf{x} \mapsto \|\mathbf{x}\|_{\mathcal{A}}$$
. Recall $\hat{\mathbf{x}}_{BPDN} := \arg \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_{\mathcal{A}} : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 \le \kappa \right\}$.
We have $\left\| \hat{\mathbf{x}}_{BPDN} - \mathbf{x}^{\mathbf{b}} \right\|_2 \le \frac{2\kappa}{\sqrt{\mu}}$ if $\|\mathbf{w}\|_2 \le \kappa$ and the restricted strong convexity condition holds with some $\mu > 0$.

Proof.

By definition $\hat{\mathbf{x}}_{\mathsf{BPDN}} - \mathbf{x}^{\natural} \in \mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right)$; thus

$$\left\| \mathbf{A} \left(\hat{\mathbf{x}}_{\text{BPDN}} - \mathbf{x}^{\natural} \right) \right\|_2 \geq \sqrt{\mu} \left\| \hat{\mathbf{x}}_{\text{BPDN}} - \mathbf{x}^{\natural} \right\|_2.$$

By the triangle inequality,

$$\left\|\mathbf{A}\left(\hat{\mathbf{x}}_{\mathsf{BPDN}} - \mathbf{x}^{\natural}\right)\right\|_{2} \leq \left\|\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}_{\mathsf{BPDN}}\right\|_{2} + \left\|\mathbf{b} - \mathbf{A}\mathbf{x}^{\natural}\right\|_{2} \leq 2\kappa.$$

Definition (Restricted strong convexity)

The restricted strong convexity condition holds if $\|\mathbf{A}\mathbf{z}\|_2^2 \ge \mu \|\mathbf{z}\|_2^2$ for all $\mathbf{z} \in \mathcal{T}_g(\mathbf{x}^{\natural})$ with some $\mu > 0$.

▶ In the figure, μ is proportional to $\sin^2(\varphi)$, where the proportionality depends on the norm of the rows of **A**.

Interpretation of the *restricted strong convexity* condition

Definition (Restricted strong convexity)

The restricted strong convexity condition holds if $\|\mathbf{A}\mathbf{z}\|_2^2 \ge \mu \|\mathbf{z}\|_2^2$ for all $\mathbf{z} \in \mathcal{T}_g(\mathbf{x}^{\natural})$ with some $\mu > 0$.

Proposition

The restricted strong convexity condition holds if and only if the function $f: \mathbf{h} \mapsto \frac{1}{2} \left\| \mathbf{b} - \mathbf{A} \left(\mathbf{x}^{\natural} + \mathbf{h} \right) \right\|_{2}^{2}$ satisfies

$$f(\mathbf{x}^{\natural} + \mathbf{h}) \geq f(\mathbf{x}^{\natural}) + \left\langle \nabla f(\mathbf{x}^{\natural}), \mathbf{h} \right\rangle + \frac{\mu}{2} \, \|\mathbf{h}\|_2^2 \,, \quad \textit{for all } \mathbf{h} \in \mathcal{T}_g\left(\mathbf{x}^{\natural}\right),$$

or, $f(\mathbf{h})$ behaves as a strongly convex function for $\mathbf{h} \in \mathcal{T}_g(\mathbf{x}^{\natural})$.

lions@epfl

Slide 26/41

Interpretation of the *restricted strong convexity* condition

Proposition

The restricted strong convexity condition holds if and only if the function $f: \mathbf{h} \mapsto \frac{1}{2} \left\| \mathbf{b} - \mathbf{A} \left(\mathbf{x}^{\natural} + \mathbf{h} \right) \right\|_{2}^{2}$ satisfies

$$f(\mathbf{x}^{\natural} + \mathbf{h}) \geq f(\mathbf{x}^{\natural}) + \left\langle \nabla f(\mathbf{x}^{\natural}), \mathbf{h} \right\rangle + \frac{\mu}{2} \, \|\mathbf{h}\|_2^2 \,, \quad \text{for all } \mathbf{h} \in \mathcal{T}_g\left(\mathbf{x}^{\natural}\right),$$

or, $f(\mathbf{h})$ behaves as a strongly convex function for $\mathbf{h} \in \mathcal{T}_g(\mathbf{x}^{\natural})$.

Interpretation of the *restricted strong convexity* condition

Definition (Restricted strong convexity)

The restricted strong convexity condition holds if $\|\mathbf{Az}\|_2^2 \ge \mu \|\mathbf{z}\|_2^2$ for all $\mathbf{z} \in \mathcal{T}_g(\mathbf{x}^{\natural})$ with some $\mu > 0$.

Proposition

The restricted strong convexity condition holds if and only if the function $f: \mathbf{h} \mapsto \frac{1}{2} \left\| \mathbf{b} - \mathbf{A} \left(\mathbf{x}^{\natural} + \mathbf{h} \right) \right\|_{2}^{2}$ satisfies

$$f(\mathbf{x}^{\natural} + \mathbf{h}) \geq f(\mathbf{x}^{\natural}) + \left\langle \nabla f(\mathbf{x}^{\natural}), \mathbf{h} \right\rangle + \frac{\mu}{2} \|\mathbf{h}\|_{2}^{2}, \quad \text{for all } \mathbf{h} \in \mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right).$$

or, $f(\mathbf{h})$ behaves as a strongly convex function for $\mathbf{h} \in \mathcal{T}_g(\mathbf{x}^{\natural})$.

Observation: Note that $\hat{\mathbf{x}}_{\text{BPDN}} = \mathbf{x}^{\natural} + \mathbf{h}$ with some $\mathbf{h} \in \mathcal{T}_g(\mathbf{x}^{\natural})$ by definition. Thus the restricted strong convexity condition implies that the function $\frac{1}{2} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2$ behaves as if \mathbf{A} had full column rank for all possible values of $\hat{\mathbf{x}}_{\text{BPDN}}$.

▶ There are some variants of this restricted strong convexity condition based on similar ideas [1, 12].

Verifying the conditions

Now we have performance guarantees for $\hat{\mathbf{x}}_{\text{BPDN}}.$

Proposition (Noiseless)

Let $g: \mathbf{x} \mapsto \|\mathbf{x}\|_{\mathcal{A}}$. We have $\hat{\mathbf{x}}_{BPDN} = \mathbf{x}^{\natural}$ if and only if $\mathcal{T}_g(\mathbf{x}^{\natural}) \cap \operatorname{null}(\mathbf{A}) = \{\mathbf{0}\}$.

Proposition (Noisy)

Let
$$g : \mathbf{x} \mapsto \|\mathbf{x}\|_{\mathcal{A}}$$
. We have $\|\hat{\mathbf{x}}_{BPDN} - \mathbf{x}^{\natural}\|_{2} \leq \frac{2\kappa}{\sqrt{\mu}}$ if $\|\mathbf{w}\|_{2} \leq \kappa$ and $\|\mathbf{A}\mathbf{z}\|_{2}^{2} \geq \mu \|\mathbf{z}\|_{2}^{2}$ for all $\mathbf{z} \in \mathcal{T}_{g}(\mathbf{x}^{\natural})$ with some $\mu > 0$.

How do we verify these conditions, especially when we do not know x^{\natural} and thus $\mathcal{T}_g\left(x^{\natural}\right)?$

No good answers currently.

The probabilistic approach

Suppose now that A is random.

Show that no matter what \mathbf{x}^{\natural} is, under *some other verifiable conditions*, we have

$$\begin{split} \mathcal{T}_g\left(\mathbf{x}^{\natural}\right) \cap \mathrm{null}\left(\mathbf{A}\right) &= \left\{\mathbf{0}\right\}, \text{ or } \\ \|\mathbf{A}\mathbf{z}\|_2^2 &\geq \mu \, \|\mathbf{z}\|_2^2, \quad \forall \mathbf{z} \in \mathcal{T}_g\left(\mathbf{x}^{\natural}\right) \text{ with some } \mu > 0, \end{split}$$

with probability bounded away from 0.

A key quantity characterizing the degrees of freedom of the tangent cone is the *Gaussian width*, and the key technical tool is the *escape-through-the-mesh theorem*.

Gaussian width

Definition (Gaussian width)

The Gaussian width $w(\Omega)$ of a set $\Omega \subset \mathbb{R}^n$ is given by

$$w(\Omega) := \mathbb{E}\left[\max_{\mathbf{x}\in\Omega} \langle \mathbf{g}, \mathbf{x} \rangle\right],$$

where $\mathbf{g} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

Example

Let V be a d-dimensional subspace of $\mathbb{R}^p,$ and let Ω be the intersection of V and the unit ℓ_2 -norm sphere. Then $w(\Omega)=\sqrt{d}.$

This supports our claim that $[w(\Omega)]^2$ characterizes the degree of freedom of a set.

Proposition

- 1. The Gaussian width is invariant under translation and unitary transforms (rotations).
- 2. Let $C_1 \subseteq C_2 \subseteq \mathbb{R}^n$. Then $w(C_1) \leq w(C_2)$.

Examples

Let Ω always denote the intersection of $\mathcal{T}_{\|\cdot\|_{\mathcal{A}}}(\mathbf{x}^{\natural})$ and the unit ℓ_2 -norm sphere.

Example ([5])

- 1. Let $\mathcal{A} = \{\mathbf{e}_1, \dots, \mathbf{e}_p\}$, and let $\mathbf{x}^{\natural} \in \mathbb{R}^p$ with at most s non-zero entries. Then $\|\cdot\|_{\mathcal{A}}$ is the ℓ_1 -norm, and $w(\Omega)^2 \leq 2s \log\left(\frac{p}{s}\right) + \frac{5}{4}s$.
- 2. Let $\mathcal{A} = \{-1, +1\}^p$, and let $\mathbf{x}^{\natural} \in \mathbb{R}^p$ be a convex combination of k vectors in \mathcal{A} . Then $\|\cdot\|_{\mathcal{A}}$ is the ℓ_{∞} -norm, and $w(\Omega)^2 \leq \frac{p+k}{2}$.
- 3. Let $\mathcal{A} = \{ \mathbf{X} : \operatorname{rank} (\mathbf{X}) = 1, \|\mathbf{X}\|_F = 1, \mathbf{X} \in \mathbb{R}^{p \times p} \}$, and let $\mathbf{X}^{\natural} \in \mathbb{R}^{p \times p}$ with rank r. Then $\|\cdot\|_{\mathcal{A}}$ is the nuclear norm, and $w(\Omega)^2 \leq 3r(2p-r)$.

Some applications follow directly.

*Escape-through-the-mesh theorem

Theorem (Escape-through-the-mesh theorem [5, 10, 14])

Let $\mathbf{A} \in \mathbb{R}^{n \times p}$ be a matrix of *i.i.d.* Gaussian random variables with zero means and variances 1/n. Let Ω be a given set on the unit ℓ_2 -norm sphere. Then

$$\mathbb{P}\left(\left\{\left\|\mathbf{A}\mathbf{x}\right\|_{2} \geq \sqrt{\mu}, \, \forall \mathbf{x} \in \Omega\right\}\right) \geq 1 - \exp\left\{-\frac{1}{2}\left[a_{n} - w(\Omega) - \sqrt{n\mu}\right]^{2}\right\}$$

given that $a_n - w(\Omega) - \sqrt{n\mu} \ge 0$, where $a_n := \sqrt{2} \Gamma\left(\frac{n+1}{2}\right) / \Gamma\left(\frac{n}{2}\right)$, Γ being the gamma function, and

$$w(\Omega) := \mathbb{E}\left[\max_{\mathbf{x}\in\Omega} \langle \mathbf{g}, \mathbf{x} \rangle\right],$$

g being a vector of i.i.d. standard Gaussian random variables.

Observation:

- ► The event $\{ \|\mathbf{A}\mathbf{x}\|_2^2 \ge \mu, \forall \mathbf{x} \in \Omega \}$ implies the event that $\operatorname{null}(\mathbf{A})$ does not intersect with the mesh Ω .
- One can prove that $\frac{n}{\sqrt{n+1}} \leq a_n \leq \sqrt{n}$, which implies $a_n \approx \sqrt{n}$.

Probabilistic results for the noiseless case

Let $\mathbf{A} \in \mathbb{R}^{n \times p}$ be a matrix of *i.i.d.* Gaussian random variables with zero means and variances 1/n.

Let Ω be the intersection of $\mathcal{T}_{\|\cdot\|_{\mathcal{A}}}(\mathbf{x}^{\natural})$ and the unit ℓ_2 -norm sphere.

Theorem (Noiseless)

We have $\hat{\mathbf{x}}_{BPDN} = \mathbf{x}^{\natural}$ with probability at least $1 - \exp\left\{-\frac{1}{2}\left[a_n - w(\Omega)\right]^2\right\}$, provided that $n \ge w(\Omega)^2 + 1$.

Proof.

Replace Ω by the intersection of $\mathcal{T}_{\|\cdot\|_{\mathcal{A}}}(\mathbf{x}^{\natural})$ and the unit ℓ_2 -norm sphere in the escape-through-the-mesh theorem. Note that the escape-through-the-mesh theorem is only meaningful when $a_n \geq w(\Omega)$; this condition leads to the constraint $n \geq w(\Omega)^2 + 1$.

Probabilistic results for the noisy case

Assume that $\mathbf{A} \in \mathbb{R}^{n \times p}$ be a *matrix of i.i.d. Gaussian random variables* with zero means and variances 1/n.

Let Ω be the intersection of $\mathcal{T}_{\|\cdot\|_{\mathcal{A}}}(\mathbf{x}^{\natural})$ and the unit ℓ_2 -norm sphere.

Theorem (Noisy)
For any
$$\mu \in (0, 1)$$
, we have $\left\| \hat{\mathbf{x}}_{BPDN} - \mathbf{x}^{\natural} \right\|_{2} \leq \frac{2\delta}{\sqrt{\mu}}$ with probability at least
 $1 - \exp\left\{ -\frac{1}{2} \left[a_{n} - w(\Omega) - \sqrt{\mu n} \right]^{2} \right\}$ provided that $\|\mathbf{w}\|_{2} \leq \delta$ and $n \geq \frac{w(\Omega)^{2} + \frac{3}{2}}{(1 - \sqrt{\mu})^{2}}$.

Proof.

Replace Ω by the intersection of $\mathcal{T}_{\|\cdot\|_{\mathcal{A}}}(\mathbf{x}^{\natural})$ and the unit ℓ_2 -norm sphere in the escape-through-the-mesh theorem. Note that the escape-through-the-mesh theorem is only meaningful when $a_n \geq w(\Omega) + \sqrt{\mu n}$; this condition leads to the constraint $n \geq \frac{w(\Omega)^2 + \frac{3}{2}}{(1 - \sqrt{\mu})^2}$, assuming $\mu \in (0, 1)$.

Interpretation of the results

Recall the result in the previous slide.

Theorem (Noisy)
For any
$$\mu \in (0, 1)$$
, we have $\left\| \hat{\mathbf{x}}_{BPDN} - \mathbf{x}^{\natural} \right\|_{2} \leq \frac{2\kappa}{\sqrt{\mu}}$ with probability at least
 $1 - \exp\left\{ -\frac{1}{2} \left[a_{n} - w(\Omega) - \sqrt{\mu n} \right]^{2} \right\}$ provided that $\|\mathbf{w}\|_{2} \leq \kappa$ and $n \geq \frac{w(\Omega)^{2} + \frac{3}{2}}{(1 - \sqrt{\mu})^{2}}$.

We have an equivalent formulation assuming $\kappa = \|\mathbf{w}\|_2$.

Theorem

lions@epfl

For any $\mu \in (0,1)$, we have

$$\left\| \hat{\mathbf{x}}_{\textit{BPDN}} - \mathbf{x}^{\natural} \right\|_{2} \leq \frac{2\sqrt{n}}{a_{n} - w(\Omega) - t} \left\| \mathbf{w} \right\|_{2} \leq \frac{2\sqrt{n}}{\sqrt{n} - w(\Omega) - t} \left\| \mathbf{w} \right\|_{2}$$

with probability at least $1 - \exp\left(-\frac{1}{2}t^2\right)$ provided $n \ge \frac{w(\Omega)^2 + \frac{3}{2}}{(1 - \sqrt{\mu})^2}$.

Observation: The quantity $w(\Omega)^2$ characterizes the degree of freedom of \mathbf{x}^{\natural} . **Remark:** We will discuss an improvement of this guarantee.

Mathematics of Data: From Theory to Computation | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 34/41

Application 1: Compressive sensing

Problem formulation [4, 9]

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ with at most *s* non-zero entries, and let $\mathbf{A} \in \mathbb{R}^{n \times p}$. How do we estimate \mathbf{x}^{\natural} given \mathbf{A} and $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$, where \mathbf{w} denotes unknown noise?

Example

Let $\mathcal{A} = \{\pm \mathbf{e}_1, \dots, \pm \mathbf{e}_p\}$, and let $\mathbf{x}^{\natural} \in \mathbb{R}^p$ with at most s non-zero entries. Then $\|\cdot\|_{\mathcal{A}}$ is the ℓ_1 -norm, and $w(\Omega)^2 \leq 2s \log\left(\frac{p}{s}\right) + \frac{5}{4}s$.

Choose ${\bf A}$ to be a matrix of i.i.d. Gaussian random variables with zero means and variances 1/n. Then by

$$\hat{\mathbf{x}}_{\mathsf{BPDN}} \in rgmin_{\mathbf{x} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_1 : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 \le \kappa
ight\}$$

with $\kappa = \|\mathbf{w}\|_2$, we have

$$\left\| \hat{\mathbf{x}}_{\mathsf{BPDN}} - \mathbf{x}^{\natural} \right\|_{2} \lesssim \frac{2\sqrt{n}}{\sqrt{n} - \sqrt{2s \log\left(\frac{p}{s}\right) + \frac{5}{4}s}} \| \mathbf{w} \|_{2}.$$

Application 2: Multi-knapsack feasibility problem

Problem formulation [11]

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ which is a convex combination of k vectors in $\mathcal{A} := \{-1, +1\}^{p}$, and let $\mathbf{A} \in \mathbb{R}^{n \times p}$. How large should n be such that we can recover \mathbf{x}^{\natural} given \mathbf{A} and $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural}$ via

$$\hat{\mathbf{x}}_{\mathsf{BPDN}} \in \arg\min_{\mathbf{x}\in\mathbb{R}^p} \left\{ \|\mathbf{x}\|_{\infty} : \mathbf{b} = \mathbf{A}\mathbf{x} \right\}?$$

Example

Let $\mathcal{A} = \{-1, +1\}^p$, and let $\mathbf{x}^{\natural} \in \mathbb{R}^p$ be a convex combination of k vectors in \mathcal{A} . Then $\|\cdot\|_{\mathcal{A}}$ is the ℓ_{∞} -norm, and $w(\Omega)^2 \leq \frac{p+k}{2}$.

Choose ${\bf A}$ to be a matrix of i.i.d. Gaussian random variables with zero means and variances 1/n. Then we have

$$\mathbb{P}\left(\left\{\hat{\mathbf{x}}_{\mathsf{BPDN}} = \mathbf{x}^{\natural}\right\}\right) \gtrsim 1 - \exp\left\{-\frac{1}{2}\left[\sqrt{n} - \sqrt{\frac{p+k}{2}}\right]^2\right\}.$$

Application 3: Matrix completion

Problem formulation [3, 8]

Let $\mathbf{X}^{\natural} \in \mathbb{R}^{p \times p}$ with $\operatorname{rank}(\mathbf{X}^{\natural}) = r$, and let $\mathbf{A}_1, \ldots, \mathbf{A}_n$ be matrices in $\mathbb{R}^{p \times p}$. How do we estimate \mathbf{X}^{\natural} given $\mathbf{A}_1, \ldots, \mathbf{A}_n$ and $b_i = \operatorname{Tr}(\mathbf{A}_i \mathbf{X}^{\natural}) + w_i$, $i = 1, \ldots, n$, where $\mathbf{w} := (w_1, \ldots, w_n)^T$ denotes unknown noise?

Example

Let $\mathcal{A} = \left\{ \mathbf{X} : \operatorname{rank} (\mathbf{X}) = 1, \|\mathbf{X}\|_F = 1, \mathbf{X} \in \mathbb{R}^{p \times p} \right\}$, and let $\mathbf{X}^{\natural} \in \mathbb{R}^{p \times p}$ with rank r. Then $\|\cdot\|_{\mathcal{A}}$ is the nuclear norm, and $w(\Omega)^2 \leq 3r(2p - r)$.

Choose each A_i to be a matrix of i.i.d. Gaussian random variables with zero means and variances $1/n. \ {\rm Then} \ {\rm by}$

$$\hat{\mathbf{X}}_{\mathsf{BPDN}} \in \arg\min_{\mathbf{X} \in \mathbb{R}^{p \times p}} \left\{ \left\| \mathbf{X} \right\|_{*} : \sum_{i=1}^{n} \left(b_{i} - \operatorname{Tr}\left(\mathbf{A}_{i} \mathbf{X} \right) \right)^{2} \leq \kappa^{2} \right\}$$

with $\kappa = \left\| \mathbf{w} \right\|_2$, we have

$$\left\| \hat{\mathbf{X}}_{\mathsf{BPDN}} - \mathbf{X}^{\natural} \right\|_{2} \lesssim \frac{2\sqrt{n}}{\sqrt{n} - \sqrt{3r(2p-r)}} \left\| \mathbf{w} \right\|_{2}.$$

Sharper bounds with oracle information

Suppose that we are able to set

$$\hat{\mathbf{x}}_{\text{BPDN,oracle}} \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \left\|\mathbf{x}\right\|_{\mathcal{A}} : \left\|\mathbf{b} - \mathbf{A}\mathbf{x}\right\|_2 \leq \left\|\mathbf{w}\right\|_2 \right\}.$$

Theorem ([13])

lions@epfl

With probability at least $1-6\exp\left(-t^2/26
ight)$, we have

$$\left\|\hat{\mathbf{x}}_{\textit{BPDN,oracle}} - \mathbf{x}^{\natural}\right\|_{2} \leq \left[\frac{w(\Omega) + t}{a_{n-1}}\right] \left[\frac{2\sqrt{n}}{a_{n} - w(\Omega) - t}\right] \|\mathbf{w}\|_{2}$$

for any t > 0, where Ω denotes the intersection of $\mathcal{T}_{\|\cdot\|_{\mathcal{A}}}(\mathbf{x}^{\natural})$ and the unit ℓ_2 -norm sphere.

Observation: Recall that our analysis gives that with probability at least $1-\exp\left(-t^2/2\right)$,

$$\left| \hat{\mathbf{x}}_{\text{BPDN,oracle}} - \mathbf{x}^{\natural} \right\|_2 \lesssim \left[\frac{2\sqrt{n}}{a_n - w(\Omega) - t} \right] \left\| w \right\|_2.$$

An improvement by the factor $\frac{w(\Omega)+t}{a_{n-1}} \leq 1$ appears assuming access of the oracle information $\|\mathbf{w}\|_2$.

Mathematics of Data: From Theory to Computation | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Slide 38/41

References |

- Peter Bickel, Ya'acov Ritov, and Alexandre B. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. *Ann. Stat.*, 37(4):1705–1732, 2009.
- [2] Emmanuel Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component analysis? *J. ACM*, 58(3), may 2011.
- [3] Emmanuel Candès and Benjamin Recht.
 Exact matrix completion via convex optimization.

Found. Comput. Math., 9:717-772, 2009.

[4] Emmanuel J. Candès, Justin Romberg, and Terence Tao.

Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information.

IEEE Trans. Inf. Theory, 52(2):489-509, February 2006.

- [5] Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, and Alan S. Willsky. The convex geometry of linear inverse problems. *Found. Comput. Math.*, 12:805–849, 2012.
- [6] Venkat Chandrasekaran, Sujay Sanghavi, Pablo A. Parrilo, and Alan S. WIIlsky. Rank-sparsity incoherence for matrix decomposition. *SIAM J. Optim.*, 21(2):572–596, 2011.

References II

[7] M. Elad, J.-L. Starck, P. Querre, and D. L. Donoho.

Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA).

Appl. Comput. Harmon. Anal., 19:340–358, 2005.

[8] Steven T. Flammia, David Gross, Yi-Kai Liu, and Jens Eisert.

Quantum tomography via compressed sensing: Error bounds, sample complexity and efficient estimators.

New J. Phys., 14, 2012.

[9] Simon Foucart and Holger Rauhut.

A Mathematical Introduction to Compressive Sensing. Birkhäuser, Basel, 2013.

[10] Y. Gordon.

On Milman's inequality and random subspaces which escape through a mesh in \mathbb{R}^n . In Joram Lindenstrauss and Vitali D. Milman, editors, *Geometric Aspects of Functional Analysis: Israel Seminar (GAFA) 1986–87*, Berlin, 1988. Springer-Verl.

[11] O. L. Mangasarian and Benjamin Recht.

Probability of unique integer solution to a system of linear equations.

Eur. J. Oper. Res., 214:27-30, 2011.

References III

[12] Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright, and Bin Yu.

A unified framework for high-dimensional analysis of $M\mbox{-estimators}$ with decomposable regularizers.

Stat. Sci., 27(4):538-557, 2012.

[13] Samet Oymak, Christos Thrampoulidis, and Babak Hassibi.

Simple bounds for noisy linear inverse problems with exact side information. 2013. arXiv:1312.0641v2 [cs.IT].

[14] Mark Rudelson and Roman Vershynin.

On sparse reconstruction from Fourier and Gaussian measurements. *Commun. Pure Appl. Math.*, LXI:1025–1045, 2008.

[15] James Saunderson, Venkat Chandrasekaran, Pablo A Parrilo, and Alan S Willsky. Diagonal and low-rank matrix decompositions, correlation matrices, and ellipsoid fitting. *SIAM Journal on Matrix Analysis and Applications*, 33(4):1395–1416, 2012.

[16] Ghristoph Studer, Patrick Kuppinger, Graeme Pope, and Helmut Bölcskei. Recovery of sparsely corrupted signals. *IEEE Trans. Inf. Theory*, 58(5):3115–3130, May 2012.

