Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 10: Source separation by convex optimization
Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2015)

License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes - unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

- Today

1. Sourse separation
2. Convex geometry of linear inverse problems

- Next week

1. Primal-Dual methods

Recommended reading

- D. Amelunxen et al., "Living on the edge: Phase transitions in convex programs with random data," 2014, arXiv:1303.6672v2 [cs.IT].
- M.B. McCoy et al., "Convexity in source separation," IEEE Sig. Process. Mag., vol. 31, pp. 87-95, 2014.
- V. Chandrasekaran et al., "The convex geometry of linear inverse problems," Found. Comput. Math., vol. 12, pp. 805-849, 2012.

Motivation

Motivation

This lecture illustrates how compressive sensing generalizes as a source separation problem in a unified framework.

It turns out that the formulations of convex estimators for both linear inverse problems and source separation problems, in general, require minimizing nonsmooth convex functions.

We introduce constrained optimization formulations as an alternative to regularization, and provide the corresponding statistics guarantees.

Source separation

Problem (Source separation)

Let $\mathbf{x}^{\natural}, \mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be two unknown vectors. How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $z:=x^{\natural}+y^{\natural}$?

Source separation

Problem (Source separation)

Let $\mathbf{x}^{\natural}, \mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be two unknown vectors. How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z}:=\mathbf{x}^{\natural}+\mathbf{y}^{\natural}$?

Observation

Source separation is impossible if we do not have any additional information about \mathbf{x}^{\natural} and \mathbf{y}^{\natural}.

Example

Obviously, without any additional information, the equation $\mathbf{z}=x^{\natural}+y^{\natural}$ has infinitely many solutions for $\left(\mathbf{x}^{\natural}, \mathbf{y}^{\natural}\right)$.

Two important insights from nearly trivial examples

Insight \# 1: To have a well-posed source separation problem, some information on the signal structures is needed. Here, simple representations (introduced in Lecture 7) turn out to be key.

Example

Let $\mathbf{z}=(2,1)^{T}:=\mathbf{x}^{\natural}+\mathbf{y}^{\natural}$. Without additional information it is impossible to perfectly recover \mathbf{x}^{\natural} and \mathbf{y}^{\natural}.

However, suppose now we know $\mathbf{x}^{\natural}=\left(x^{\natural}, 0\right)^{T}$ and $\mathbf{y}^{\natural}=\left(0, y^{\natural}\right)^{T}$, then we can perfectly recover $\mathbf{x}^{\natural}=(2,0)^{T}$ and $\mathbf{y}^{\natural}=(0,1)^{T}$.

Insight \# 2: The signal structures must be incoherent in some sense. That is, the superposed signals should not look alike so that we can separate them.

Example

Suppose now that we know $\mathbf{x}^{\natural}=\left(2, x^{\natural}\right)^{T}$ and $\mathbf{y}^{\natural}=\left(0, y^{\natural}\right)^{T}$, then it is still impossible to perfectly recover \mathbf{x}^{\natural} and \mathbf{y}^{\natural}.

A classical well-posed source separation problem

Problem (Spikes and sines)

Let $\mathbf{x}^{\natural}, \mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be sparse, and let \mathbf{D} denote the discrete cosine transform (DCT) matrix. How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z}:=\mathbf{x}^{\natural}+\mathbf{D} \mathbf{y}^{\natural}$?

spikes

A classical well-posed source separation problem

Problem (Spikes and sines)

Let $\mathbf{x}^{\natural}, \mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be sparse, and let \mathbf{D} denote the discrete cosine transform (DCT) matrix. How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z}:=\mathbf{x}^{\natural}+\mathbf{D} \mathbf{y}^{\natural}$?

$$
\mathbf{z} \quad=\quad \mathbf{x}^{\natural} \quad+\quad \mathbf{D y}^{\natural}
$$

A classical well-posed source separation problem

Problem (Spikes and sines)

Let $\mathbf{x}^{\natural}, \mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be sparse, and let \mathbf{D} denote the discrete cosine transform (DCT) matrix. How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z}:=\mathbf{x}^{\natural}+\mathbf{D} \mathbf{y}^{\natural}$?

A classical well-posed source separation problem

Problem (Spikes and sines)

Let $\mathbf{x}^{\natural}, \mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be sparse, and let \mathbf{D} denote the discrete cosine transform (DCT) matrix. How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z}:=\mathbf{x}^{\natural}+\mathbf{D} \mathbf{y}^{\natural}$?

Other applications of the source separation problem

Problem (Robust principal component analysis (PCA) [6])
Let $\mathbf{X}^{\natural} \in \mathbb{R}^{p \times p}$ be sparse and $\mathbf{Y}^{\natural} \in \mathbb{R}^{p \times p}$ be low-rank. How do we estimate \mathbf{X}^{\natural} and \mathbf{Y}^{\natural} given $\mathbf{Z}:=\mathbf{X}^{\natural}+\mathbf{Y}^{\natural}$?

Applications: Background separation in videos taken with a stationary camera.

Figure: (Left) Original snapshot. Center "Low rank" background. Right "Sparse" foreground.

Other applications of the source separation problem

Problem (Robust principal component analysis (PCA) [6])
Let $\mathbf{X}^{\natural} \in \mathbb{R}^{p \times p}$ be sparse and $\mathbf{Y}^{\natural} \in \mathbb{R}^{p \times p}$ be low-rank. How do we estimate \mathbf{X}^{\natural} and \mathbf{Y}^{\natural} given $\mathbf{Z}:=\mathbf{X}^{\natural}+\mathbf{Y}^{\natural}$?

Applications: Face illumination removal [2]: the set of all images of a convex Lambertian scene under changing illumination is close to a 9-dimensional subspace.

Figure: (Left) Faces with varying illumination. Center "Low rank" part. Right "Sparse" part.

There are many other applications

Problem (Signal denoising [16])

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ and let $\mathbf{w}^{\natural} \in \mathbb{R}^{p}$ denote some unknown noise. How do we estimate \mathbf{x}^{\natural} (and thus also \mathbf{w}^{\natural}) given $\mathbf{b}=\mathbf{x}^{\natural}+\mathbf{w}^{\natural}$?

Applications: Wireless communications with narrowband interferences, signal processing with impulse noises, etc.

Problem (Morphological component analysis [7])

Let $\mathbf{x}^{\natural}, \mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be sparse, and $\mathbf{U}, \mathbf{V} \in \mathbb{R}^{n \times p}$. How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z}:=\mathbf{U} \mathbf{x}^{\natural}+\mathbf{V} \mathbf{y}^{\natural}$?

Applications: Spikes and Sines, texture separation, image inpainting, etc.

Problem (Covariance denoising [15])

Consider the standard linear array model, where we have narrowband signals $\mathbf{s}(t) \in \mathbb{R}^{r}$ impinging on an array of $p \gg r$ sensors at bearings $\theta \in \mathbb{R}^{r}$. The array observations $\mathbf{b}(t) \in \mathbb{R}^{p}$ can be written as a linear superposition of the source signals and noise $\mathbf{w} \in \mathbb{R}^{p}$ via a linear manifold matrix $\mathbf{A}(\boldsymbol{\theta}): \mathbf{b}(t)=\mathbf{A}(\theta) \mathbf{s}(t)+\mathbf{w}(t)$.
If we assume that the noise is white Gaussian with unknown variance σ^{2}, then the covariance of the observations $\mathbf{Z}=\mathbb{E}\left[\mathbf{b} \mathbf{b}^{T}\right]$ have a low-rank and diagonal decomposition: $\mathbf{Z}=\mathbf{X}^{\natural}+\mathbf{Y}^{\natural}$, where $\mathbf{X}^{\natural}=\mathbf{A}(\theta)^{T} \boldsymbol{\Sigma}_{s} \mathbf{A}(\theta)$ and $\mathbf{Y}^{\natural}=\sigma^{2} \mathbb{I}$, and $\boldsymbol{\Sigma}_{s} \in \mathbb{R}^{r \times r}$ is the source covariance. How do we estimate \mathbf{X}^{\natural} and \mathbf{Y}^{\natural} given \mathbf{Z} ?

Applications: Direction-of-arrival estimation, radar, mixture of factor analyzers, etc.

Computational issue

Consider the general estimator of $\left(\mathbf{x}^{\natural}, \mathbf{y}^{\natural}\right)$ given $\mathbf{z}:=\mathbf{U} \mathbf{x}^{\natural}+\mathbf{V} \mathbf{y}^{\natural}$ for sparse vectors \mathbf{x}^{\natural} and \mathbf{y}^{\natural} and corresponding linear transformations \mathbf{U} and \mathbf{V}.
ℓ_{0}-"norm" approach

$$
(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \arg \min _{\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{0}+\rho\|\mathbf{y}\|_{0}: \mathbf{z}=\mathbf{U x}+\mathbf{V y}\right\}
$$

with some $\rho>0$ that trades the relative sparsity of \mathbf{x} and \mathbf{y}.

Observation: Since $(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{U x}+\mathbf{V y}$ is a linear mapping, there exists a matrix \mathbf{A} such that $\mathbf{z}=\mathbf{A} \tilde{\mathbf{x}}^{\natural}$, where $\tilde{\mathbf{x}}^{\natural}:=\left(\left(\mathbf{x}^{\natural}\right)^{T},\left(\mathbf{y}^{\natural}\right)^{T}\right)^{T}$. In fact $\mathbf{A}:=\left[\begin{array}{ll}\mathbf{U} & \mathbf{V}\end{array}\right]$.

Tractability

Choosing $\rho=1$, we have

$$
\hat{\hat{\mathbf{x}}} \in \arg \min _{\tilde{\mathbf{x}} \in \mathbb{R}^{2 p}}\left\{\|\tilde{\mathbf{x}}\|_{0}: \mathbf{z}=\mathbf{A} \tilde{\mathbf{x}}\right\} .
$$

In general, this procedure is NP-hard.

Source separation with the ℓ_{1}-norm

Recall the following definition for linear inverse problems.

Definition (Lasso)

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}, \mathbf{A} \in \mathbb{R}^{n \times p}$, and $\mathbf{b}:=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$. The Lasso estimator for \mathbf{x}^{\natural} is given by

$$
\hat{\mathbf{x}}_{\text {Lasso }} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{b}-\mathbf{A x}\|_{2}^{2}+\rho\|\mathbf{x}\|_{1}\right\} .
$$

for some $\rho \geq 0$.
For sparse source separation with $\mathbf{z}=\mathbf{U} \mathbf{x}^{\natural}+\mathbf{V y}^{\natural}$, it is natural to consider the following convex optimization analogy.

ℓ_{1}-norm approach

$$
(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \arg \min _{\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{1}+\rho\|\mathbf{y}\|_{1}: \mathbf{z}=\mathbf{U x}+\mathbf{V y}\right\}
$$

with some $\rho>0$.

Atomic norms

Definition (Atomic sets \& atoms)

An atomic set \mathcal{A} is a set of vectors in \mathbb{R}^{p}. An atom is an element in an atomic set.

Definition (Gauge function)

Let \mathcal{C} be a convex set in \mathbb{R}^{p}, the gauge function associated with \mathcal{C} is given by

$$
g_{\mathcal{C}}(\mathbf{x}):=\inf \{t: \mathbf{x}=t \mathbf{c} \text { with some } \mathbf{c} \in \mathcal{C}, t>0\}, \quad \forall \mathbf{x} \in \mathbb{R}^{p} .
$$

Definition (Atomic norm)

Let \mathcal{A} be an atomic set in \mathbb{R}^{p}, the atomic norm associated with \mathcal{A} is given by

$$
\|\mathbf{x}\|_{\mathcal{A}}:=g_{\operatorname{conv}(\mathcal{A})}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^{p}
$$

where $\operatorname{conv}(\mathcal{A})$ denotes the convex hull of \mathcal{A}.

Source separation with the ℓ_{1}-norm

Definition (Lasso)

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}, \mathbf{A} \in \mathbb{R}^{n \times p}$, and $\mathbf{b}:=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$. The Lasso estimator for \mathbf{x}^{\natural} is given by

$$
\hat{\mathbf{x}}_{\text {Lasso }} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{b}-\mathbf{A x}\|_{2}^{2}+\rho\|\mathbf{x}\|_{1}\right\} .
$$

for some $\rho \geq 0$.

ℓ_{1}-norm approach

$$
(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \arg \min _{\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{1}+\rho\|\mathbf{y}\|_{1}: \mathbf{z}=\mathbf{U} \mathbf{x}+\mathbf{V y}\right\}
$$

with some $\rho>0$.

Another way of looking at things

Define atomic sets $\mathcal{A}_{\mathbf{x}}$ using the set of columns of \mathbf{U} and $\mathcal{A}_{\mathbf{y}}$ using the set of columns of \mathbf{V}. Let $\tilde{\mathbf{x}}^{\natural}=\mathbf{U} \mathbf{x}^{\natural}$ and $\tilde{\mathbf{y}}^{\natural}=\mathbf{V} \mathbf{y}^{\natural}$. With some $\rho>0$, we equivalently have

$$
(\hat{\tilde{\mathbf{x}}}, \hat{\mathbf{y}}) \in \arg \min _{\tilde{\mathbf{x}}, \tilde{\mathbf{y}} \in \mathbb{R}^{p}}\left\{\|\tilde{\mathbf{x}}\|_{\mathcal{A}_{\mathbf{x}}}+\rho\|\tilde{\mathbf{y}}\|_{\mathcal{A}_{\mathbf{y}}}: \mathbf{z}=\tilde{\mathbf{x}}+\tilde{\mathbf{y}}\right\}
$$

General recipe for source separation

Problem (Source separation)

Let $\mathcal{A}_{\mathbf{x}}$ and $\mathcal{A}_{\mathbf{y}}$ be two atomic sets in \mathbb{R}^{p}, and let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ and $\mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be simple with respect to $\mathcal{A}_{\mathbf{x}}$ and $\mathcal{A}_{\mathbf{y}}$ respectively. How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z}:=\mathbf{x}^{\natural}+\mathbf{y}^{\natural}$?

A general recipe

$$
(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \arg \min _{\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{\mathcal{A}_{\mathbf{x}}}+\rho\|\mathbf{y}\|_{\mathcal{A}_{\mathbf{y}}}: \mathbf{z}=\mathbf{x}+\mathbf{y}\right\}
$$

with some $\rho>0$. In the sequel, we consider how to choose ρ.

Alternative formulations

Other variants are possible. For instance, consider the constrained variant

$$
(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \arg \min _{\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{\mathcal{A}_{\mathbf{x}}}: \mathbf{z}=\mathbf{x}+\mathbf{y},\|\mathbf{y}\|_{\mathcal{A}_{\mathbf{y}}} \leq \kappa\right\}
$$

When $\kappa=\left\|\mathbf{y}^{\natural}\right\|_{\mathcal{A}_{\mathbf{y}}}$, the true vectors are feasible. As compared to the regularized version, the difficulty of choosing ρ shifts to the difficulty of choosing κ.

Example: Robust PCA

Problem (Robust principal component analysis (PCA) [2])
Let $\mathbf{X} \in \mathbb{R}^{p \times p}$ be sparse and $\mathbf{Y} \in \mathbb{R}^{p \times p}$ be low-rank. How do we estimate \mathbf{X} and \mathbf{Y} given $\mathbf{Z}:=\mathbf{X}+\mathbf{Y}$?

Observation:

- \mathbf{X} is simple with respect to the atomic set

$$
\mathcal{A}_{\mathbf{X}}:=\left\{\mathbf{A}_{\mathbf{X}}:\left\|\operatorname{vec}\left(\mathbf{A}_{\mathbf{X}}\right)\right\|_{0}=1,\left\|\mathbf{A}_{\mathbf{X}}\right\|_{F}=1\right\}, \text { and }
$$

- \mathbf{Y} is simple with respect to the atomic set $\mathcal{A}_{\mathbf{Y}}:=\left\{\mathbf{A}_{\mathbf{Y}}: \operatorname{rank}\left(\mathbf{A}_{\mathbf{Y}}\right)=1,\left\|\mathbf{A}_{\mathbf{Y}}\right\|_{F}=1\right\}$.

Atomic norm approach

$$
(\hat{\mathbf{X}}, \hat{\mathbf{Y}}) \in \arg \min _{\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{p \times p}}\left\{\|\mathbf{X}\|_{\mathcal{A}_{\mathbf{X}}}+\rho\|\mathbf{Y}\|_{\mathcal{A}_{\mathbf{Y}}}\right\}
$$

with some $\rho>0$. Theory states that $\rho=1 / \sqrt{p}$ is nearly optimal.
Recall that $\|\mathbf{X}\|_{\mathcal{A}_{\mathbf{X}}}=\|\operatorname{vec}(\mathbf{X})\|_{1}$ and $\|\mathbf{Y}\|_{\mathcal{A}_{\mathbf{Y}}}=\|\mathbf{Y}\|_{S_{1}}$.

Basis pursuit with atomic norms

The convex optimization tools used for source separation ($\mathbf{z}=\mathbf{x}+\mathbf{y}$) and linear inverse problems $(\mathbf{b}=\mathbf{A} \mathbf{x})$ are similar. For the rest of the lecture, we will focus on the latter.

Linear model with simple parameter

Let \mathcal{A} be an atomic set in \mathbb{R}^{p}. Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ be simple with respect to \mathcal{A}, and let $\mathbf{A} \in \mathbb{R}^{n \times p}$. The samples are given by $\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$, where \mathbf{w} denotes the unknown noise.

We consider the following constrained estimator.

Basis pursuit denoising with atomic norms

$$
\hat{\mathbf{x}}_{\mathrm{BPDN}}:=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{\mathcal{A}}:\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2} \leq \kappa\right\}
$$

with some $\kappa \geq 0$.

- In general, this problem cannot be solved in polynomial time even if it is convex.
- When we can solve it, this heuristic formulation provides surprisingly good results.

Performance guarantee of basis pursuit denoising

Theorem

[5] Recall

$$
\hat{\mathbf{x}}_{B P D N}:=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{\mathcal{A}}:\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2} \leq \kappa\right\}
$$

If $\|\mathbf{w}\|_{2}:=\left\|\mathbf{b}-\mathbf{A} \mathbf{x}^{\natural}\right\|_{2} \leq \kappa$, it is possible to have

$$
\left\|\hat{\mathbf{x}}_{B P D N}-\mathbf{x}^{\natural}\right\|_{2} \leq \frac{2 \kappa}{\sqrt{\mu}}
$$

given that

$$
n \geq \frac{w^{2}+\frac{3}{2}}{(1-\sqrt{\mu})^{2}}
$$

with some $\mu(\mathbf{A})>0$, where w is some function of the atomic set \mathcal{A} and \mathbf{x}^{\natural}.

- The quantity w^{2} characterizes the degrees-of-freedom of \mathbf{x}^{\natural}.
- The parameter $\mu(\mathbf{A})$ characterizes the well-posedness of the estimation problem.

We formally define w and prove the theorem in the following slides.
First we need the notion of tangent cones.

Tangent cone

Definition (Tangent cone)

Let $g: \mathbb{R}^{p} \rightarrow \mathbb{R} \cup\{-\infty,+\infty\}$ be a proper lower semi-continuous convex function. The tangent cone $\mathcal{T}_{g}(\mathbf{x})$ of the function g at a point $\mathbf{x} \in \mathbb{R}^{p}$ is defined as

$$
\mathcal{T}_{g}(\mathbf{x}):=\operatorname{cone}\left\{\mathbf{y}-\mathbf{x}: g(\mathbf{y}) \leq g(\mathbf{x}), \mathbf{y} \in \mathbb{R}^{p}\right\}
$$

Condition for exact recovery in the noiseless case

We consider estimating $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$, which is simple with respect to an atomic set \mathcal{A}, given samples $\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}$ and $\mathbf{A} \in \mathbb{R}^{n \times p}, n \leq p$, by

$$
\hat{\mathbf{x}}_{\mathrm{BPDN}} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{\mathcal{A}}: \mathbf{b}=\mathbf{A} \mathbf{x}\right\} .
$$

Condition for exact recovery in the noiseless case

Proposition

Let $g: \mathbf{x} \mapsto\|\mathbf{x}\|_{\mathcal{A}}$. Recall $\hat{\mathbf{x}}_{\text {BPDN }} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{\mathcal{A}}: \mathbf{b}=\mathbf{A} \mathbf{x}\right\}$.
We have $\hat{\mathbf{x}}_{B P D N}=\mathbf{x}^{\natural}$ if and only if $\mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right) \cap \operatorname{null}(\mathbf{A})=\{\mathbf{0}\}$.

Condition for exact recovery in the noiseless case

Proposition

Let $g: \mathbf{x} \mapsto\|\mathbf{x}\|_{\mathcal{A}}$. Recall $\hat{\mathbf{x}}_{\text {BPDN }} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{\mathcal{A}}: \mathbf{b}=\mathbf{A} \mathbf{x}\right\}$.
We have $\hat{\mathbf{x}}_{B P D N}=\mathbf{x}^{\natural}$ if and only if $\mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right) \cap \operatorname{null}(\mathbf{A})=\{\mathbf{0}\}$.

Condition for exact recovery in the noisy case

We consider estimating $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$, which is simple with respect to an atomic set \mathcal{A}, given samples $\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$ and $\mathbf{A} \in \mathbb{R}^{n \times p}, n \leq p$, where \mathbf{w} denotes the unknown noise, by

$$
\hat{\mathbf{x}}_{\mathrm{BPDN}} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{\mathcal{A}}:\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2} \leq \kappa\right\} .
$$

Condition for good recovery in the noisy case

Definition (Restricted strong convexity)

The restricted strong convexity condition holds if $\|\mathbf{A z}\|_{2}^{2} \geq \mu\|\mathbf{z}\|_{2}^{2}$ for all $\mathbf{z} \in \mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right)$ with some $\mu>0$.

Proposition

Let $g: \mathbf{x} \mapsto\|\mathbf{x}\|_{\mathcal{A}}$. Recall $\hat{\mathbf{x}}_{\text {BPDN }}:=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{\mathcal{A}}:\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2} \leq \kappa\right\}$. We have $\left\|\hat{\mathbf{x}}_{\text {BPDN }}-\mathbf{x}^{\natural}\right\|_{2} \leq \frac{2 \kappa}{\sqrt{\mu}}$ if $\|\mathbf{w}\|_{2} \leq \kappa$ and the restricted strong convexity condition holds with some $\mu>0$.

Condition for good recovery in the noisy case

Definition (Restricted strong convexity)

The restricted strong convexity condition holds if $\|\mathbf{A} \mathbf{z}\|_{2}^{2} \geq \mu\|\mathbf{z}\|_{2}^{2}$ for all $\mathbf{z} \in \mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right)$ with some $\mu>0$.

Proposition

Let $g: \mathbf{x} \mapsto\|\mathbf{x}\|_{\mathcal{A}}$. Recall $\hat{\mathbf{x}}_{\text {BPDN }}:=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{\mathcal{A}}:\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2} \leq \kappa\right\}$.
We have $\left\|\hat{\mathbf{x}}_{\text {BPDN }}-\mathbf{x}^{\natural}\right\|_{2} \leq \frac{2 \kappa}{\sqrt{\mu}}$ if $\|\mathbf{w}\|_{2} \leq \kappa$ and the restricted strong convexity condition holds with some $\mu>0$.
Key observation: $\hat{\mathbf{x}}_{\text {BPDN }}-\mathbf{x}^{\natural} \in \mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right)$ (since $\hat{\mathbf{x}}_{\text {BPDN }}$ minimizes $\|\mathbf{x}\|_{\mathcal{A}}$ subject to $\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2} \leq \kappa$, and \mathbf{x}^{\natural} satisfies this constraint by assumption)

Condition for good recovery in the noisy case

Definition (Restricted strong convexity)

The restricted strong convexity condition holds if $\|\mathbf{A z}\|_{2}^{2} \geq \mu\|\mathbf{z}\|_{2}^{2}$ for all $\mathbf{z} \in \mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right)$ with some $\mu>0$.

Proposition

Let $g: \mathbf{x} \mapsto\|\mathbf{x}\|_{\mathcal{A}} . \operatorname{Recall} \hat{\mathbf{x}}_{B P D N}:=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{\mathcal{A}}:\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2} \leq \kappa\right\}$.
We have $\left\|\hat{\mathbf{x}}_{\text {BPDN }}-\mathbf{x}^{\mathrm{\natural}}\right\|_{2} \leq \frac{2 \kappa}{\sqrt{\mu}}$ if $\|\mathbf{w}\|_{2} \leq \kappa$ and the restricted strong convexity condition holds with some $\mu>0$.

Proof.

By definition $\hat{\mathbf{x}}_{\text {BPDN }}-\mathrm{x}^{\natural} \in \mathcal{T}_{g}\left(\mathrm{x}^{\natural}\right)$; thus

$$
\left\|\mathbf{A}\left(\hat{\mathbf{x}}_{\text {BPDN }}-\mathbf{x}^{\mathrm{\natural}}\right)\right\|_{2} \geq \sqrt{\mu}\left\|\hat{\mathbf{x}}_{\text {BPDN }}-\mathbf{x}^{\mathrm{\natural}}\right\|_{2} .
$$

By the triangle inequality,

$$
\left\|\mathbf{A}\left(\hat{\mathbf{x}}_{\text {BPDN }}-\mathbf{x}^{\mathrm{y}}\right)\right\|_{2} \leq\left\|\mathbf{b}-\mathbf{A} \hat{\mathbf{x}}_{\text {BPDN }}\right\|_{2}+\left\|\mathbf{b}-\mathbf{A} \mathbf{x}^{\mathrm{\natural}}\right\|_{2} \leq 2 \kappa .
$$

Condition for good recovery in the noisy case

Definition (Restricted strong convexity)

The restricted strong convexity condition holds if $\|\mathbf{A z}\|_{2}^{2} \geq \mu\|\mathbf{z}\|_{2}^{2}$ for all $\mathbf{z} \in \mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right)$ with some $\mu>0$.

- In the figure, μ is proportional to $\sin ^{2}(\varphi)$, where the proportionality depends on the norm of the rows of \mathbf{A}.

Interpretation of the restricted strong convexity condition

Definition (Restricted strong convexity)

The restricted strong convexity condition holds if $\|\mathbf{A} \mathbf{z}\|_{2}^{2} \geq \mu\|\mathbf{z}\|_{2}^{2}$ for all $\mathbf{z} \in \mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right)$ with some $\mu>0$.

Proposition

The restricted strong convexity condition holds if and only if the function $f: \mathbf{h} \mapsto \frac{1}{2}\left\|\mathbf{b}-\mathbf{A}\left(\mathbf{x}^{\natural}+\mathbf{h}\right)\right\|_{2}^{2}$ satisfies

$$
f\left(\mathbf{x}^{\natural}+\mathbf{h}\right) \geq f\left(\mathbf{x}^{\natural}\right)+\left\langle\nabla f\left(\mathbf{x}^{\natural}\right), \mathbf{h}\right\rangle+\frac{\mu}{2}\|\mathbf{h}\|_{2}^{2}, \quad \text { for all } \mathbf{h} \in \mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right)
$$

or, $f(\mathbf{h})$ behaves as a strongly convex function for $\mathbf{h} \in \mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right)$.

Interpretation of the restricted strong convexity condition

Proposition

The restricted strong convexity condition holds if and only if the function $f: \mathbf{h} \mapsto \frac{1}{2}\left\|\mathbf{b}-\mathbf{A}\left(\mathbf{x}^{\natural}+\mathbf{h}\right)\right\|_{2}^{2}$ satisfies

$$
f\left(\mathbf{x}^{\natural}+\mathbf{h}\right) \geq f\left(\mathbf{x}^{\natural}\right)+\left\langle\nabla f\left(\mathbf{x}^{\natural}\right), \mathbf{h}\right\rangle+\frac{\mu}{2}\|\mathbf{h}\|_{2}^{2}, \quad \text { for all } \mathbf{h} \in \mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right),
$$

or, $f(\mathbf{h})$ behaves as a strongly convex function for $\mathbf{h} \in \mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right)$.

Interpretation of the restricted strong convexity condition

Definition (Restricted strong convexity)

The restricted strong convexity condition holds if $\|\mathbf{A} \mathbf{z}\|_{2}^{2} \geq \mu\|\mathbf{z}\|_{2}^{2}$ for all $\mathbf{z} \in \mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right)$ with some $\mu>0$.

Proposition

The restricted strong convexity condition holds if and only if the function $f: \mathbf{h} \mapsto \frac{1}{2}\left\|\mathbf{b}-\mathbf{A}\left(\mathbf{x}^{\natural}+\mathbf{h}\right)\right\|_{2}^{2}$ satisfies

$$
f\left(\mathbf{x}^{\natural}+\mathbf{h}\right) \geq f\left(\mathbf{x}^{\natural}\right)+\left\langle\nabla f\left(\mathbf{x}^{\natural}\right), \mathbf{h}\right\rangle+\frac{\mu}{2}\|\mathbf{h}\|_{2}^{2}, \quad \text { for all } \mathbf{h} \in \mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right)
$$

or, $f(\mathbf{h})$ behaves as a strongly convex function for $\mathbf{h} \in \mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right)$.
Observation: Note that $\hat{\mathbf{x}}_{\text {BPDN }}=\mathbf{x}^{\natural}+\mathbf{h}$ with some $\mathbf{h} \in \mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right)$ by definition. Thus the restricted strong convexity condition implies that the function $\frac{1}{2}\|\mathbf{b}-\mathbf{A x}\|_{2}^{2}$ behaves as if \mathbf{A} had full column rank for all possible values of $\hat{\mathbf{x}}_{\text {BPDN }}$.

- There are some variants of this restricted strong convexity condition based on similar ideas [1, 12].

Verifying the conditions

Now we have performance guarantees for $\hat{\mathbf{x}}_{\text {BPDN }}$.

Proposition (Noiseless)

Let $g: \mathbf{x} \mapsto\|\mathbf{x}\|_{\mathcal{A}}$. We have $\hat{\mathbf{x}}_{\text {BPDN }}=\mathbf{x}^{\natural}$ if and only if $\mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right) \cap \operatorname{null}(\mathbf{A})=\{\mathbf{0}\}$.

Proposition (Noisy)

Let $g: \mathbf{x} \mapsto\|\mathbf{x}\|_{\mathcal{A}}$. We have $\left\|\hat{\mathbf{x}}_{\text {BPDN }}-\mathbf{x}^{\natural}\right\|_{2} \leq \frac{2 \kappa}{\sqrt{\mu}}$ if $\|\mathbf{w}\|_{2} \leq \kappa$ and $\|\mathbf{A} \mathbf{z}\|_{2}^{2} \geq \mu\|\mathbf{z}\|_{2}^{2}$ for all $\mathbf{z} \in \mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right)$ with some $\mu>0$.

How do we verify these conditions, especially when we do not know \mathbf{x}^{\natural} and thus $\mathcal{T}_{g}\left(\mathrm{x}^{\natural}\right)$?

No good answers currently.

The probabilistic approach

Suppose now that \mathbf{A} is random.

Show that no matter what \mathbf{x}^{\natural} is, under some other verifiable conditions, we have

$$
\begin{aligned}
& \mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right) \cap \operatorname{null}(\mathbf{A})=\{\mathbf{0}\}, \text { or } \\
& \|\mathbf{A z}\|_{2}^{2} \geq \mu\|\mathbf{z}\|_{2}^{2}, \quad \forall \mathbf{z} \in \mathcal{T}_{g}\left(\mathbf{x}^{\natural}\right) \text { with some } \mu>0,
\end{aligned}
$$

with probability bounded away from 0 .

A key quantity characterizing the degrees of freedom of the tangent cone is the Gaussian width, and the key technical tool is the escape-through-the-mesh theorem.

Gaussian width

Definition (Gaussian width)

The Gaussian width $w(\Omega)$ of a set $\Omega \subset \mathbb{R}^{n}$ is given by

$$
w(\Omega):=\mathbb{E}\left[\max _{\mathbf{x} \in \Omega}\langle\mathbf{g}, \mathbf{x}\rangle\right],
$$

where $\mathbf{g} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

Example

Let V be a d-dimensional subspace of \mathbb{R}^{p}, and let Ω be the intersection of V and the unit ℓ_{2}-norm sphere. Then $w(\Omega)=\sqrt{d}$.

This supports our claim that $[w(\Omega)]^{2}$ characterizes the degree of freedom of a set.

Proposition

1. The Gaussian width is invariant under translation and unitary transforms (rotations).
2. Let $\mathcal{C}_{1} \subseteq \mathcal{C}_{2} \subseteq \mathbb{R}^{n}$. Then $w\left(\mathcal{C}_{1}\right) \leq w\left(\mathcal{C}_{2}\right)$.

Examples

Let Ω always denote the intersection of $\mathcal{T}_{\|\cdot\|_{\mathcal{A}}}\left(\mathbf{x}^{\natural}\right)$ and the unit ℓ_{2}-norm sphere.

Example ([5])

1. Let $\mathcal{A}=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{p}\right\}$, and let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ with at most s non-zero entries. Then $\|\cdot\|_{\mathcal{A}}$ is the ℓ_{1}-norm, and $w(\Omega)^{2} \leq 2 s \log \left(\frac{p}{s}\right)+\frac{5}{4} s$.
2. Let $\mathcal{A}=\{-1,+1\}^{p}$, and let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ be a convex combination of k vectors in \mathcal{A}. Then $\|\cdot\|_{\mathcal{A}}$ is the ℓ_{∞}-norm, and $w(\Omega)^{2} \leq \frac{p+k}{2}$.
3. Let $\mathcal{A}=\left\{\mathbf{X}: \operatorname{rank}(\mathbf{X})=1,\|\mathbf{X}\|_{F}=1, \mathbf{X} \in \mathbb{R}^{p \times p}\right\}$, and let $\mathbf{X}^{\natural} \in \mathbb{R}^{p \times p}$ with rank r. Then $\|\cdot\|_{\mathcal{A}}$ is the nuclear norm, and $w(\Omega)^{2} \leq 3 r(2 p-r)$.

Some applications follow directly.

*Escape-through-the-mesh theorem

Theorem (Escape-through-the-mesh theorem [5, 10, 14])

Let $\mathbf{A} \in \mathbb{R}^{n \times p}$ be a matrix of i.i.d. Gaussian random variables with zero means and variances $1 / n$. Let Ω be a given set on the unit ℓ_{2}-norm sphere. Then

$$
\mathbb{P}\left(\left\{\|\mathbf{A} \mathbf{x}\|_{2} \geq \sqrt{\mu}, \forall \mathbf{x} \in \Omega\right\}\right) \geq 1-\exp \left\{-\frac{1}{2}\left[a_{n}-w(\Omega)-\sqrt{n \mu}\right]^{2}\right\}
$$

given that $a_{n}-w(\Omega)-\sqrt{n \mu} \geq 0$, where $a_{n}:=\sqrt{2} \Gamma\left(\frac{n+1}{2}\right) / \Gamma\left(\frac{n}{2}\right), \Gamma$ being the gamma function, and

$$
w(\Omega):=\mathbb{E}\left[\max _{\mathbf{x} \in \Omega}\langle\mathbf{g}, \mathbf{x}\rangle\right],
$$

g being a vector of i.i.d. standard Gaussian random variables.

Observation:

- The event $\left\{\|\mathbf{A x}\|_{2}^{2} \geq \mu, \forall \mathbf{x} \in \Omega\right\}$ implies the event that null (A) does not intersect with the mesh Ω.
- One can prove that $\frac{n}{\sqrt{n+1}} \leq a_{n} \leq \sqrt{n}$, which implies $a_{n} \approx \sqrt{n}$.

Probabilistic results for the noiseless case

Let $\mathbf{A} \in \mathbb{R}^{n \times p}$ be a matrix of i.i.d. Gaussian random variables with zero means and variances $1 / n$.

Let Ω be the intersection of $\mathcal{T}_{\|\cdot\|_{\mathcal{A}}}\left(\mathbf{x}^{\natural}\right)$ and the unit ℓ_{2}-norm sphere.

Theorem (Noiseless)

We have $\hat{\mathbf{x}}_{\text {BPDN }}=\mathbf{x}^{\natural}$ with probability at least $1-\exp \left\{-\frac{1}{2}\left[a_{n}-w(\Omega)\right]^{2}\right\}$, provided that $n \geq w(\Omega)^{2}+1$.

Proof.

Replace Ω by the intersection of $\mathcal{T}_{\|\cdot\|_{\mathcal{A}}}\left(\mathbf{x}^{\natural}\right)$ and the unit ℓ_{2}-norm sphere in the escape-through-the-mesh theorem. Note that the escape-through-the-mesh theorem is only meaningful when $a_{n} \geq w(\Omega)$; this condition leads to the constraint $n \geq w(\Omega)^{2}+1$.

Probabilistic results for the noisy case

Assume that $\mathbf{A} \in \mathbb{R}^{n \times p}$ be a matrix of i.i.d. Gaussian random variables with zero means and variances $1 / n$.

Let Ω be the intersection of $\mathcal{T}_{\|\cdot\|_{\mathcal{A}}}\left(\mathbf{x}^{\natural}\right)$ and the unit ℓ_{2}-norm sphere.

Theorem (Noisy)

For any $\mu \in(0,1)$, we have $\left\|\hat{\mathbf{x}}_{\text {BPDN }}-\mathbf{x}^{\natural}\right\|_{2} \leq \frac{2 \delta}{\sqrt{\mu}}$ with probability at least $1-\exp \left\{-\frac{1}{2}\left[a_{n}-w(\Omega)-\sqrt{\mu n}\right]^{2}\right\}$ provided that $\|\mathbf{w}\|_{2} \leq \delta$ and $n \geq \frac{w(\Omega)^{2}+\frac{3}{2}}{(1-\sqrt{\mu})^{2}}$.

Proof.

Replace Ω by the intersection of $\mathcal{T}_{\|\cdot\|_{\mathcal{A}}}\left(\mathrm{x}^{\natural}\right)$ and the unit ℓ_{2}-norm sphere in the escape-through-the-mesh theorem. Note that the escape-through-the-mesh theorem is only meaningful when $a_{n} \geq w(\Omega)+\sqrt{\mu n}$; this condition leads to the constraint $n \geq \frac{w(\Omega)^{2}+\frac{3}{2}}{(1-\sqrt{\mu})^{2}}$, assuming $\mu \in(0,1)$.

Interpretation of the results

Recall the result in the previous slide.

Theorem (Noisy)

For any $\mu \in(0,1)$, we have $\left\|\hat{\mathbf{x}}_{B P D N}-\mathbf{x}^{\natural}\right\|_{2} \leq \frac{2 \kappa}{\sqrt{\mu}}$ with probability at least $1-\exp \left\{-\frac{1}{2}\left[a_{n}-w(\Omega)-\sqrt{\mu n}\right]^{2}\right\}$ provided that $\|\mathbf{w}\|_{2} \leq \kappa$ and $n \geq \frac{w(\Omega)^{2}+\frac{3}{2}}{(1-\sqrt{\mu})^{2}}$.

We have an equivalent formulation assuming $\kappa=\|\mathbf{w}\|_{2}$.

Theorem

For any $\mu \in(0,1)$, we have

$$
\left\|\hat{\mathbf{x}}_{B P D N}-\mathbf{x}^{\mathfrak{\natural}}\right\|_{2} \leq \frac{2 \sqrt{n}}{a_{n}-w(\Omega)-t}\|\mathbf{w}\|_{2} \leq \frac{2 \sqrt{n}}{\sqrt{n}-w(\Omega)-t}\|\mathbf{w}\|_{2}
$$

with probability at least $1-\exp \left(-\frac{1}{2} t^{2}\right)$ provided $n \geq \frac{w(\Omega)^{2}+\frac{3}{2}}{(1-\sqrt{\mu})^{2}}$.

Observation: The quantity $w(\Omega)^{2}$ characterizes the degree of freedom of \mathbf{x}^{\natural}.
Remark: We will discuss an improvement of this guarantee.

Application 1: Compressive sensing

Problem formulation [4, 9]

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ with at most s non-zero entries, and let $\mathbf{A} \in \mathbb{R}^{n \times p}$. How do we estimate \mathbf{x}^{\natural} given \mathbf{A} and $\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$, where \mathbf{w} denotes unknown noise?

Example

Let $\mathcal{A}=\left\{ \pm \mathbf{e}_{1}, \ldots, \pm \mathbf{e}_{p}\right\}$, and let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ with at most s non-zero entries. Then $\|\cdot\|_{\mathcal{A}}$ is the ℓ_{1}-norm, and $w(\Omega)^{2} \leq 2 s \log \left(\frac{p}{s}\right)+\frac{5}{4} s$.

Choose \mathbf{A} to be a matrix of i.i.d. Gaussian random variables with zero means and variances $1 / n$. Then by

$$
\hat{\mathbf{x}}_{\text {BPDN }} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{1}:\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2} \leq \kappa\right\}
$$

with $\kappa=\|\mathbf{w}\|_{2}$, we have

$$
\left\|\hat{\mathbf{x}}_{\mathrm{BPDN}}-\mathbf{x}^{\natural}\right\|_{2} \lesssim \frac{2 \sqrt{n}}{\sqrt{n}-\sqrt{2 s \log \left(\frac{p}{s}\right)+\frac{5}{4} s}}\|\mathbf{w}\|_{2}
$$

Application 2: Multi-knapsack feasibility problem

Problem formulation [11]

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ which is a convex combination of k vectors in $\mathcal{A}:=\{-1,+1\}^{p}$, and let $\mathbf{A} \in \mathbb{R}^{n \times p}$. How large should n be such that we can recover \mathbf{x}^{\natural} given \mathbf{A} and $\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}$ via

$$
\hat{\mathbf{x}}_{\text {BPDN }} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{\infty}: \mathbf{b}=\mathbf{A} \mathbf{x}\right\} ?
$$

Example

Let $\mathcal{A}=\{-1,+1\}^{p}$, and let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ be a convex combination of k vectors in \mathcal{A}. Then $\|\cdot\|_{\mathcal{A}}$ is the ℓ_{∞}-norm, and $w(\Omega)^{2} \leq \frac{p+k}{2}$.

Choose \mathbf{A} to be a matrix of i.i.d. Gaussian random variables with zero means and variances $1 / n$. Then we have

$$
\mathbb{P}\left(\left\{\hat{\mathbf{x}}_{\text {BPDN }}=\mathbf{x}^{\natural}\right\}\right) \gtrsim 1-\exp \left\{-\frac{1}{2}\left[\sqrt{n}-\sqrt{\frac{p+k}{2}}\right]^{2}\right\} .
$$

Application 3: Matrix completion

Problem formulation [3, 8]

Let $\mathbf{X}^{\natural} \in \mathbb{R}^{p \times p}$ with $\operatorname{rank}\left(\mathbf{X}^{\natural}\right)=r$, and let $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}$ be matrices in $\mathbb{R}^{p \times p}$. How do we estimate \mathbf{X}^{\natural} given $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}$ and $b_{i}=\operatorname{Tr}\left(\mathbf{A}_{i} \mathbf{X}^{\natural}\right)+w_{i}, i=1, \ldots, n$, where $\mathbf{w}:=\left(w_{1}, \ldots, w_{n}\right)^{T}$ denotes unknown noise?

Example

Let $\mathcal{A}=\left\{\mathbf{X}: \operatorname{rank}(\mathbf{X})=1,\|\mathbf{X}\|_{F}=1, \mathbf{X} \in \mathbb{R}^{p \times p}\right\}$, and let $\mathbf{X}^{\natural} \in \mathbb{R}^{p \times p}$ with rank r. Then $\|\cdot\|_{\mathcal{A}}$ is the nuclear norm, and $w(\Omega)^{2} \leq 3 r(2 p-r)$.

Choose each A_{i} to be a matrix of i.i.d. Gaussian random variables with zero means and variances $1 / n$. Then by

$$
\hat{\mathbf{X}}_{\text {BPDN }} \in \arg \min _{\mathbf{X} \in \mathbb{R}^{p \times p}}\left\{\|\mathbf{X}\|_{*}: \sum_{i=1}^{n}\left(b_{i}-\operatorname{Tr}\left(\mathbf{A}_{i} \mathbf{X}\right)\right)^{2} \leq \kappa^{2}\right\}
$$

with $\kappa=\|\mathbf{w}\|_{2}$, we have

$$
\left\|\hat{\mathbf{X}}_{\mathrm{BPDN}}-\mathbf{X}^{\natural}\right\|_{2} \lesssim \frac{2 \sqrt{n}}{\sqrt{n}-\sqrt{3 r(2 p-r)}}\|\mathbf{w}\|_{2} .
$$

Sharper bounds with oracle information

Suppose that we are able to set

$$
\hat{\mathbf{x}}_{\text {BPDN, oracle }} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{\mathcal{A}}:\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2} \leq\|\mathbf{w}\|_{2}\right\} .
$$

Theorem ([13])

With probability at least $1-6 \exp \left(-t^{2} / 26\right)$, we have

$$
\left\|\hat{\mathbf{x}}_{\text {BPDN,oracle }}-\mathbf{x}^{\natural}\right\|_{2} \leq\left[\frac{w(\Omega)+t}{a_{n-1}}\right]\left[\frac{2 \sqrt{n}}{a_{n}-w(\Omega)-t}\right]\|\mathbf{w}\|_{2}
$$

for any $t>0$, where Ω denotes the intersection of $\mathcal{T}_{\|\cdot\|_{\mathcal{A}}}\left(\mathrm{x}^{\natural}\right)$ and the unit ℓ_{2}-norm sphere.

Observation: Recall that our analysis gives that with probability at least $1-\exp \left(-t^{2} / 2\right)$,

$$
\left\|\hat{\mathbf{x}}_{\text {BPDN,oracle }}-\mathbf{x}^{\natural}\right\|_{2} \lesssim\left[\frac{2 \sqrt{n}}{a_{n}-w(\Omega)-t}\right]\|w\|_{2} .
$$

An improvement by the factor $\frac{w(\Omega)+t}{a_{n-1}} \leq 1$ appears assuming access of the oracle information $\|\mathbf{w}\|_{2}$.

References I

[1] Peter Bickel, Ya'acov Ritov, and Alexandre B. Tsybakov.
Simultaneous analysis of Lasso and Dantzig selector.
Ann. Stat., 37(4):1705-1732, 2009.
[2] Emmanuel Candès, Xiaodong Li, Yi Ma, and John Wright.
Robust principal component analysis?
J. ACM, 58(3), may 2011.
[3] Emmanuel Candès and Benjamin Recht.
Exact matrix completion via convex optimization.
Found. Comput. Math., 9:717-772, 2009.
[4] Emmanuel J. Candès, Justin Romberg, and Terence Tao.
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information.
IEEE Trans. Inf. Theory, 52(2):489-509, February 2006.
[5] Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, and Alan S. Willsky.
The convex geometry of linear inverse problems.
Found. Comput. Math., 12:805-849, 2012.
[6] Venkat Chandrasekaran, Sujay Sanghavi, Pablo A. Parrilo, and Alan S. WIIlsky. Rank-sparsity incoherence for matrix decomposition.
SIAM J. Optim., 21(2):572-596, 2011.

References II

[7] M. Elad, J.-L. Starck, P. Querre, and D. L. Donoho.
Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA).
Appl. Comput. Harmon. Anal., 19:340-358, 2005.
[8] Steven T. Flammia, David Gross, Yi-Kai Liu, and Jens Eisert.
Quantum tomography via compressed sensing: Error bounds, sample complexity and efficient estimators.
New J. Phys., 14, 2012.
[9] Simon Foucart and Holger Rauhut.
A Mathematical Introduction to Compressive Sensing.
Birkhäuser, Basel, 2013.
[10] Y. Gordon.
On Milman's inequality and random subspaces which escape through a mesh in \mathbb{R}^{n}.
In Joram Lindenstrauss and Vitali D. Milman, editors, Geometric Aspects of Functional Analysis: Israel Seminar (GAFA) 1986-87, Berlin, 1988. Springer-Verl.
[11] O. L. Mangasarian and Benjamin Recht.
Probability of unique integer solution to a system of linear equations.
Eur. J. Oper. Res., 214:27-30, 2011.

References III

[12] Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright, and Bin Yu.
A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers.
Stat. Sci., 27(4):538-557, 2012.
[13] Samet Oymak, Christos Thrampoulidis, and Babak Hassibi.
Simple bounds for noisy linear inverse problems with exact side information.
2013.
arXiv:1312.0641v2 [cs.IT].
[14] Mark Rudelson and Roman Vershynin.
On sparse reconstruction from Fourier and Gaussian measurements.
Commun. Pure Appl. Math., LXI:1025-1045, 2008.
[15] James Saunderson, Venkat Chandrasekaran, Pablo A Parrilo, and Alan S Willsky.
Diagonal and low-rank matrix decompositions, correlation matrices, and ellipsoid fitting.
SIAM Journal on Matrix Analysis and Applications, 33(4):1395-1416, 2012.
[16] Ghristoph Studer, Patrick Kuppinger, Graeme Pope, and Helmut Bölcskei.
Recovery of sparsely corrupted signals.
IEEE Trans. Inf. Theory, 58(5):3115-3130, May 2012.

