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Outline

I Today
1. Sourse separation
2. Convex geometry of linear inverse problems

I Next week
1. Primal-Dual methods
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Recommended reading

I D. Amelunxen et al., “Living on the edge: Phase transitions in convex programs
with random data,” 2014, arXiv:1303.6672v2 [cs.IT].

I M.B. McCoy et al., “Convexity in source separation,” IEEE Sig. Process. Mag.,
vol. 31, pp. 87–95, 2014.

I V. Chandrasekaran et al., “The convex geometry of linear inverse problems,”
Found. Comput. Math., vol. 12, pp. 805–849, 2012.
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Motivation

Motivation
This lecture illustrates how compressive sensing generalizes as a source separation
problem in a unified framework.

It turns out that the formulations of convex estimators for both linear inverse problems
and source separation problems, in general, require minimizing nonsmooth convex
functions.

We introduce constrained optimization formulations as an alternative to regularization,
and provide the corresponding statistics guarantees.
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Source separation

Problem (Source separation)
Let x\,y\ ∈ Rp be two unknown vectors. How do we estimate x\ and y\ given
z := x\ + y\?

Observation
Source separation is impossible if we do not have any additional information about x\
and y\.

Example
Obviously, without any additional information, the equation z = x\ + y\ has infinitely
many solutions for (x\,y\).
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Two important insights from nearly trivial examples

Insight # 1: To have a well-posed source separation problem, some information on
the signal structures is needed. Here, simple representations (introduced in Lecture 7)
turn out to be key.

Example
Let z = (2, 1)T := x\ + y\. Without additional information it is impossible to
perfectly recover x\ and y\.

However, suppose now we know x\ = (x\, 0)T and y\ = (0, y\)T , then we can
perfectly recover x\ = (2, 0)T and y\ = (0, 1)T .

Insight # 2: The signal structures must be incoherent in some sense. That is, the
superposed signals should not look alike so that we can separate them.

Example
Suppose now that we know x\ = (2, x\)T and y\ = (0, y\)T , then it is still impossible
to perfectly recover x\ and y\.
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A classical well-posed source separation problem

Problem (Spikes and sines)
Let x\,y\ ∈ Rp be sparse, and let D denote the discrete cosine transform (DCT)
matrix. How do we estimate x\ and y\ given z := x\ + Dy\?

spikes sines
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A classical well-posed source separation problem

Problem (Spikes and sines)
Let x\,y\ ∈ Rp be sparse, and let D denote the discrete cosine transform (DCT)
matrix. How do we estimate x\ and y\ given z := x\ + Dy\?

Observation: x\ and y\ are sparse︸  ︷︷  ︸
signal structure

in different bases︸                   ︷︷                   ︸
incoherence

.

z = x\ + Dy\
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Other applications of the source separation problem

Problem (Robust principal component analysis (PCA) [6])
Let X\ ∈ Rp×p be sparse and Y\ ∈ Rp×p be low-rank. How do we estimate X\ and
Y\ given Z := X\ + Y\?

Applications: Background separation in videos taken with a stationary camera.

Figure: (Left) Original snapshot. Center “Low rank” background. Right “Sparse” foreground.
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Other applications of the source separation problem

Problem (Robust principal component analysis (PCA) [6])
Let X\ ∈ Rp×p be sparse and Y\ ∈ Rp×p be low-rank. How do we estimate X\ and
Y\ given Z := X\ + Y\?

Applications: Face illumination removal [2]: the set of all images of a convex
Lambertian scene under changing illumination is close to a 9-dimensional subspace.

Figure: (Left) Faces with varying illumination. Center “Low rank” part. Right “Sparse” part.
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There are many other applications

Problem (Signal denoising [16])
Let x\ ∈ Rp and let w\ ∈ Rp denote some unknown noise. How do we estimate x\
(and thus also w\) given b = x\ + w\?

Applications: Wireless communications with narrowband interferences, signal
processing with impulse noises, etc.

Problem (Morphological component analysis [7])
Let x\,y\ ∈ Rp be sparse, and U,V ∈ Rn×p. How do we estimate x\ and y\ given
z := Ux\ + Vy\?

Applications: Spikes and Sines, texture separation, image inpainting, etc.

Problem (Covariance denoising [15])
Consider the standard linear array model, where we have narrowband signals s(t) ∈ Rr
impinging on an array of p� r sensors at bearings θ ∈ Rr. The array observations
b(t) ∈ Rp can be written as a linear superposition of the source signals and noise
w ∈ Rp via a linear manifold matrix A(θ): b(t) = A(θ)s(t) + w(t).
If we assume that the noise is white Gaussian with unknown variance σ2, then the
covariance of the observations Z = E[bbT ] have a low-rank and diagonal
decomposition: Z = X\ + Y\, where X\ = A(θ)TΣsA(θ) and Y\ = σ2I, and
Σs ∈ Rr×r is the source covariance. How do we estimate X\ and Y\ given Z?

Applications: Direction-of-arrival estimation, radar, mixture of factor analyzers, etc.
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Computational issue

Consider the general estimator of (x\,y\) given z := Ux\ + Vy\ for sparse vectors x\
and y\ and corresponding linear transformations U and V.

`0-“norm” approach

(x̂, ŷ) ∈ arg min
x,y∈Rp

{
‖x‖0 + ρ ‖y‖0 : z = Ux + Vy

}
.

with some ρ > 0 that trades the relative sparsity of x and y.

Observation: Since (x,y) 7→ Ux + Vy is a linear mapping, there exists a matrix A
such that z = Ax̃\, where x̃\ := ((x\)T , (y\)T )T . In fact A :=

[
U V

]
.

Tractability
Choosing ρ = 1, we have

ˆ̃x ∈ arg min
x̃∈R2p

{
‖x̃‖0 : z = Ax̃

}
.

In general, this procedure is NP-hard.
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Source separation with the `1-norm

Recall the following definition for linear inverse problems.

Definition (Lasso)
Let x\ ∈ Rp, A ∈ Rn×p, and b := Ax\ + w. The Lasso estimator for x\ is given by

x̂Lasso ∈ arg min
x∈Rp

{
‖b−Ax‖22 + ρ ‖x‖1

}
.

for some ρ ≥ 0.

For sparse source separation with z = Ux\ + Vy\, it is natural to consider the
following convex optimization analogy.

`1-norm approach

(x̂, ŷ) ∈ arg min
x,y∈Rp

{
‖x‖1 + ρ ‖y‖1 : z = Ux + Vy

}
with some ρ > 0.
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Atomic norms

Definition (Atomic sets & atoms)
An atomic set A is a set of vectors in Rp. An atom is an element in an atomic set.

Definition (Gauge function)
Let C be a convex set in Rp, the gauge function associated with C is given by

gC(x) := inf {t : x = tc with some c ∈ C, t > 0} , ∀x ∈ Rp.

Definition (Atomic norm)
Let A be an atomic set in Rp, the atomic norm associated with A is given by

‖x‖A := gconv(A)(x), ∀x ∈ Rp,

where conv(A) denotes the convex hull of A.
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Source separation with the `1-norm

Definition (Lasso)
Let x\ ∈ Rp, A ∈ Rn×p, and b := Ax\ + w. The Lasso estimator for x\ is given by

x̂Lasso ∈ arg min
x∈Rp

{
‖b−Ax‖22 + ρ ‖x‖1

}
.

for some ρ ≥ 0.

`1-norm approach

(x̂, ŷ) ∈ arg min
x,y∈Rp

{
‖x‖1 + ρ ‖y‖1 : z = Ux + Vy

}
with some ρ > 0.

Another way of looking at things
Define atomic sets Ax using the set of columns of U and Ay using the set of columns
of V. Let x̃\ = Ux\ and ỹ\ = Vy\. With some ρ > 0, we equivalently have

(ˆ̃x, ˆ̃y) ∈ arg min
x̃,ỹ∈Rp

{
‖x̃‖Ax

+ ρ ‖ỹ‖Ay
: z = x̃ + ỹ

}
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General recipe for source separation

Problem (Source separation)
Let Ax and Ay be two atomic sets in Rp, and let x\ ∈ Rp and y\ ∈ Rp be simple
with respect to Ax and Ay respectively. How do we estimate x\ and y\ given
z := x\ + y\?

A general recipe

(x̂, ŷ) ∈ arg min
x,y∈Rp

{
‖x‖Ax

+ ρ ‖y‖Ay
: z = x + y

}
with some ρ > 0. In the sequel, we consider how to choose ρ.

Alternative formulations
Other variants are possible. For instance, consider the constrained variant

(x̂, ŷ) ∈ arg min
x,y∈Rp

{
‖x‖Ax

: z = x + y, ‖y‖Ay
≤ κ
}
.

When κ =
∥∥y\
∥∥
Ay

, the true vectors are feasible. As compared to the regularized
version, the difficulty of choosing ρ shifts to the difficulty of choosing κ.
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Example: Robust PCA

Problem (Robust principal component analysis (PCA) [2])
Let X ∈ Rp×p be sparse and Y ∈ Rp×p be low-rank. How do we estimate X and Y
given Z := X + Y?

Observation:
I X is simple with respect to the atomic set
AX :=

{
AX : ‖vec(AX)‖0 = 1, ‖AX‖F = 1

}
, and

I Y is simple with respect to the atomic set
AY :=

{
AY : rank(AY) = 1, ‖AY‖F = 1

}
.

Atomic norm approach

(X̂, Ŷ) ∈ arg min
X,Y∈Rp×p

{
‖X‖AX

+ ρ ‖Y‖AY

}
with some ρ > 0. Theory states that ρ = 1/√p is nearly optimal.

Recall that ‖X‖AX
= ‖vec(X)‖1 and ‖Y‖AY

= ‖Y‖S1
.
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Basis pursuit with atomic norms

The convex optimization tools used for source separation (z = x + y) and linear
inverse problems (b = Ax) are similar. For the rest of the lecture, we will focus on
the latter.

Linear model with simple parameter
Let A be an atomic set in Rp. Let x\ ∈ Rp be simple with respect to A, and let
A ∈ Rn×p. The samples are given by b = Ax\ + w, where w denotes the unknown
noise.

We consider the following constrained estimator.

Basis pursuit denoising with atomic norms

x̂BPDN := arg min
x∈Rp

{
‖x‖A : ‖b−Ax‖2 ≤ κ

}
with some κ ≥ 0.

I In general, this problem cannot be solved in polynomial time even if it is convex.
I When we can solve it, this heuristic formulation provides surprisingly good results.
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Performance guarantee of basis pursuit denoising

Theorem
[5] Recall

x̂BPDN := arg min
x∈Rp

{
‖x‖A : ‖b−Ax‖2 ≤ κ

}
If ‖w‖2 :=

∥∥b−Ax\
∥∥

2
≤ κ, it is possible to have∥∥x̂BPDN − x\

∥∥
2
≤

2κ
√
µ
,

given that

n ≥
w2 + 3

2(
1− √µ

)2 ,
with some µ(A) > 0, where w is some function of the atomic set A and x\.

I The quantity w2 characterizes the degrees-of-freedom of x\.
I The parameter µ(A) characterizes the well-posedness of the estimation problem.

We formally define w and prove the theorem in the following slides.
First we need the notion of tangent cones.
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Tangent cone

Definition (Tangent cone)
Let g : Rp → R∪ {−∞,+∞} be a proper lower semi-continuous convex function. The
tangent cone Tg (x) of the function g at a point x ∈ Rp is defined as

Tg (x) := cone {y− x : g(y) ≤ g(x),y ∈ Rp} .

�
x : g(x)  g(x\)

 

x\

Tg(x
\)

yy � x\
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Condition for exact recovery in the noiseless case

We consider estimating x\ ∈ Rp, which is simple with respect to an atomic set A,
given samples b = Ax\ and A ∈ Rn×p, n ≤ p, by

x̂BPDN ∈ arg min
x∈Rp

{
‖x‖A : b = Ax

}
.
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Condition for exact recovery in the noiseless case

Proposition
Let g : x 7→ ‖x‖A. Recall x̂BPDN ∈ arg minx∈Rp

{
‖x‖A : b = Ax

}
.

We have x̂BPDN = x\ if and only if Tg
(
x\
)
∩ null (A) = {0}.

�
x : kxkA 

��x\
��

A
 

null (A)

x̃

x\

Tk·kA
(x̃)
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Condition for exact recovery in the noiseless case

Proposition
Let g : x 7→ ‖x‖A. Recall x̂BPDN ∈ arg minx∈Rp

{
‖x‖A : b = Ax

}
.

We have x̂BPDN = x\ if and only if Tg
(
x\
)
∩ null (A) = {0}.

x\

null (A)

Tk·kA
(x\)

�
x : kxkA 

��x\
��

A
 

b = Ax\

xx � x\
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Condition for exact recovery in the noisy case

We consider estimating x\ ∈ Rp, which is simple with respect to an atomic set A,
given samples b = Ax\ + w and A ∈ Rn×p, n ≤ p, where w denotes the unknown
noise, by

x̂BPDN ∈ arg min
x∈Rp

{
‖x‖A : ‖b−Ax‖2 ≤ κ

}
.
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Condition for good recovery in the noisy case

Definition (Restricted strong convexity)
The restricted strong convexity condition holds if ‖Az‖22 ≥ µ ‖z‖

2
2 for all z ∈ Tg

(
x\
)

with some µ > 0.

Proposition
Let g : x 7→ ‖x‖A. Recall x̂BPDN := arg minx∈Rp

{
‖x‖A : ‖b−Ax‖2 ≤ κ

}
.

We have
∥∥x̂BPDN − x\

∥∥
2
≤ 2κ√

µ
if ‖w‖2 ≤ κ and the restricted strong convexity

condition holds with some µ > 0.
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Condition for good recovery in the noisy case
Definition (Restricted strong convexity)
The restricted strong convexity condition holds if ‖Az‖22 ≥ µ ‖z‖

2
2 for all z ∈ Tg

(
x\
)

with some µ > 0.

Proposition
Let g : x 7→ ‖x‖A. Recall x̂BPDN := arg minx∈Rp

{
‖x‖A : ‖b−Ax‖2 ≤ κ

}
.

We have
∥∥x̂BPDN − x\

∥∥
2
≤ 2κ√

µ
if ‖w‖2 ≤ κ and the restricted strong convexity

condition holds with some µ > 0.

Key observation: x̂BPDN − x\ ∈ Tg
(
x\
)
(since x̂BPDN minimizes ‖x‖A subject to

‖b−Ax‖2 ≤ κ, and x\ satisfies this constraint by assumption)

null (A)

�
x : kxkA 

��x\
��

A
 

Tk·kA
(x\)

kb � Axk2  

x\

xBPDN

xBPDN � x\
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Condition for good recovery in the noisy case

Definition (Restricted strong convexity)
The restricted strong convexity condition holds if ‖Az‖22 ≥ µ ‖z‖

2
2 for all z ∈ Tg

(
x\
)

with some µ > 0.

Proposition
Let g : x 7→ ‖x‖A. Recall x̂BPDN := arg minx∈Rp

{
‖x‖A : ‖b−Ax‖2 ≤ κ

}
.

We have
∥∥x̂BPDN − x\

∥∥
2
≤ 2κ√

µ
if ‖w‖2 ≤ κ and the restricted strong convexity

condition holds with some µ > 0.

Proof.
By definition x̂BPDN − x\ ∈ Tg

(
x\
)
; thus∥∥A

(
x̂BPDN − x\

)∥∥
2
≥ √µ

∥∥x̂BPDN − x\
∥∥

2
.

By the triangle inequality,∥∥A
(
x̂BPDN − x\

)∥∥
2
≤ ‖b−Ax̂BPDN‖2 +

∥∥b−Ax\
∥∥

2
≤ 2κ.

�
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Condition for good recovery in the noisy case

Definition (Restricted strong convexity)
The restricted strong convexity condition holds if ‖Az‖22 ≥ µ ‖z‖

2
2 for all z ∈ Tg

(
x\
)

with some µ > 0.

null (A)

�
x : kxkA 

��x\
��

A
 

Tk·kA
(x\)

kb � Axk2  

I In the figure, µ is proportional to sin2(ϕ), where the proportionality depends on
the norm of the rows of A.
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Interpretation of the restricted strong convexity condition

Definition (Restricted strong convexity)
The restricted strong convexity condition holds if ‖Az‖22 ≥ µ ‖z‖

2
2 for all z ∈ Tg

(
x\
)

with some µ > 0.

Proposition
The restricted strong convexity condition holds if and only if the function
f : h 7→ 1

2

∥∥b−A
(
x\ + h

)∥∥2
2
satisfies

f(x\ + h) ≥ f(x\) +
〈
∇f(x\),h

〉
+
µ

2
‖h‖22 , for all h ∈ Tg

(
x\
)
,

or, f(h) behaves as a strongly convex function for h ∈ Tg
(
x\
)
.
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Interpretation of the restricted strong convexity condition

Definition (Restricted strong convexity)
The restricted strong convexity condition holds if ‖Az‖22 ≥ µ ‖z‖

2
2 for all z ∈ Tg

(
x\
)

with some µ > 0.

Proposition
The restricted strong convexity condition holds if and only if the function
f : h 7→ 1

2

∥∥b−A
(
x\ + h

)∥∥2
2
satisfies

f(x\ + h) ≥ f(x\) +
〈
∇f(x\),h

〉
+
µ

2
‖h‖22 , for all h ∈ Tg

(
x\
)
,

or, f(h) behaves as a strongly convex function for h ∈ Tg
(
x\
)
.

Observation: Note that x̂BPDN = x\ + h with some h ∈ Tg
(
x\
)
by definition. Thus

the restricted strong convexity condition implies that the function 1
2 ‖b−Ax‖22

behaves as if A had full column rank for all possible values of x̂BPDN.

I There are some variants of this restricted strong convexity condition based on
similar ideas [1, 12].
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Verifying the conditions

Now we have performance guarantees for x̂BPDN.

Proposition (Noiseless)
Let g : x 7→ ‖x‖A. We have x̂BPDN = x\ if and only if Tg

(
x\
)
∩ null (A) = {0}.

Proposition (Noisy)
Let g : x 7→ ‖x‖A. We have

∥∥x̂BPDN − x\
∥∥

2
≤ 2κ√

µ
if ‖w‖2 ≤ κ and ‖Az‖22 ≥ µ ‖z‖

2
2

for all z ∈ Tg
(
x\
)
with some µ > 0.

How do we verify these conditions, especially when we do not know x\ and thus
Tg
(
x\
)
?

No good answers currently.
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The probabilistic approach

Suppose now that A is random.

Show that no matter what x\ is, under some other verifiable conditions, we have

Tg
(
x\
)
∩ null (A) = {0} , or

‖Az‖22 ≥ µ ‖z‖
2
2 , ∀z ∈ Tg

(
x\
)

with some µ > 0,

with probability bounded away from 0.

A key quantity characterizing the degrees of freedom of the tangent cone is the
Gaussian width, and the key technical tool is the escape-through-the-mesh theorem.
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Gaussian width

Definition (Gaussian width)
The Gaussian width w(Ω) of a set Ω ⊂ Rn is given by

w(Ω) := E
[

max
x∈Ω
〈g,x〉

]
,

where g ∼ N (0, I).

Example
Let V be a d-dimensional subspace of Rp, and let Ω be the intersection of V and the
unit `2-norm sphere. Then w(Ω) =

√
d.

This supports our claim that [w(Ω)]2 characterizes the degree of freedom of a set.

Proposition

1. The Gaussian width is invariant under translation and unitary transforms
(rotations).

2. Let C1 ⊆ C2 ⊆ Rn. Then w(C1) ≤ w(C2).
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Examples

Let Ω always denote the intersection of T‖·‖A
(
x\
)
and the unit `2-norm sphere.

Example ([5])
1. Let A = {e1, . . . , ep}, and let x\ ∈ Rp with at most s non-zero entries. Then
‖·‖A is the `1-norm, and w(Ω)2 ≤ 2s log

(
p
s

)
+ 5

4 s.

2. Let A = {−1,+1}p, and let x\ ∈ Rp be a convex combination of k vectors in A.
Then ‖·‖A is the `∞-norm, and w(Ω)2 ≤ p+k

2 .

3. Let A =
{

X : rank (X) = 1, ‖X‖F = 1,X ∈ Rp×p
}
, and let X\ ∈ Rp×p with

rank r. Then ‖·‖A is the nuclear norm, and w(Ω)2 ≤ 3r(2p− r).

Some applications follow directly.
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?Escape-through-the-mesh theorem

Theorem (Escape-through-the-mesh theorem [5, 10, 14])
Let A ∈ Rn×p be a matrix of i.i.d. Gaussian random variables with zero means and
variances 1/n. Let Ω be a given set on the unit `2-norm sphere. Then

P
({
‖Ax‖2 ≥

√
µ, ∀x ∈ Ω

})
≥ 1− exp

{
−

1
2

[an − w(Ω)− √nµ]2
}

given that an − w(Ω)− √nµ ≥ 0, where an :=
√

2 Γ
(
n+1

2

)/
Γ
(
n
2

)
, Γ being the

gamma function, and
w(Ω) := E

[
max
x∈Ω
〈g,x〉

]
,

g being a vector of i.i.d. standard Gaussian random variables.

Observation:
I The event

{
‖Ax‖22 ≥ µ, ∀x ∈ Ω

}
implies the event that null (A) does not

intersect with the mesh Ω.
I One can prove that n√

n+1 ≤ an ≤
√
n, which implies an ≈

√
n.
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Probabilistic results for the noiseless case

Let A ∈ Rn×p be a matrix of i.i.d. Gaussian random variables with zero means and
variances 1/n.

Let Ω be the intersection of T‖·‖A
(
x\
)
and the unit `2-norm sphere.

Theorem (Noiseless)
We have x̂BPDN = x\ with probability at least 1− exp

{
− 1

2 [an − w(Ω)]2
}
, provided

that n ≥ w(Ω)2 + 1.

Proof.
Replace Ω by the intersection of T‖·‖A

(
x\
)
and the unit `2-norm sphere in the

escape-through-the-mesh theorem. Note that the escape-through-the-mesh theorem is
only meaningful when an ≥ w(Ω); this condition leads to the constraint
n ≥ w(Ω)2 + 1. �
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Probabilistic results for the noisy case

Assume that A ∈ Rn×p be a matrix of i.i.d. Gaussian random variables with zero
means and variances 1/n.

Let Ω be the intersection of T‖·‖A
(
x\
)
and the unit `2-norm sphere.

Theorem (Noisy)
For any µ ∈ (0, 1), we have

∥∥x̂BPDN − x\
∥∥

2
≤ 2δ√

µ
with probability at least

1− exp
{
− 1

2

[
an − w(Ω)− √µn

]2} provided that ‖w‖2 ≤ δ and n ≥ w(Ω)2+ 3
2

(1−√µ)2 .

Proof.
Replace Ω by the intersection of T‖·‖A

(
x\
)
and the unit `2-norm sphere in the

escape-through-the-mesh theorem. Note that the escape-through-the-mesh theorem is
only meaningful when an ≥ w(Ω) + √µn; this condition leads to the constraint

n ≥ w(Ω)2+ 3
2

(1−√µ)2 , assuming µ ∈ (0, 1). �
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Interpretation of the results

Recall the result in the previous slide.

Theorem (Noisy)
For any µ ∈ (0, 1), we have

∥∥x̂BPDN − x\
∥∥

2
≤ 2κ√

µ
with probability at least

1− exp
{
− 1

2

[
an − w(Ω)− √µn

]2} provided that ‖w‖2 ≤ κ and n ≥ w(Ω)2+ 3
2

(1−√µ)2 .

We have an equivalent formulation assuming κ = ‖w‖2.

Theorem
For any µ ∈ (0, 1), we have∥∥x̂BPDN − x\

∥∥
2
≤

2
√
n

an − w(Ω)− t
‖w‖2 ≤

2
√
n

√
n− w(Ω)− t

‖w‖2

with probability at least 1− exp
(
− 1

2 t
2
)
provided n ≥ w(Ω)2+ 3

2
(1−√µ)2 .

Observation: The quantity w(Ω)2 characterizes the degree of freedom of x\.
Remark: We will discuss an improvement of this guarantee.
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Application 1: Compressive sensing

Problem formulation [4, 9]
Let x\ ∈ Rp with at most s non-zero entries, and let A ∈ Rn×p. How do we estimate
x\ given A and b = Ax\ + w, where w denotes unknown noise?

Example
Let A = {±e1, . . . ,±ep}, and let x\ ∈ Rp with at most s non-zero entries. Then
‖·‖A is the `1-norm, and w(Ω)2 ≤ 2s log

(
p
s

)
+ 5

4 s.

Choose A to be a matrix of i.i.d. Gaussian random variables with zero means and
variances 1/n. Then by

x̂BPDN ∈ arg min
x∈Rp

{
‖x‖1 : ‖b−Ax‖2 ≤ κ

}
with κ = ‖w‖2, we have∥∥x̂BPDN − x\

∥∥
2
.

2
√
n

√
n−

√
2s log

(
p
s

)
+ 5

4 s

‖w‖2 .
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Application 2: Multi-knapsack feasibility problem

Problem formulation [11]
Let x\ ∈ Rp which is a convex combination of k vectors in A := {−1,+1}p, and let
A ∈ Rn×p. How large should n be such that we can recover x\ given A and
b = Ax\ via

x̂BPDN ∈ arg min
x∈Rp

{
‖x‖∞ : b = Ax

}
?

Example
Let A = {−1,+1}p, and let x\ ∈ Rp be a convex combination of k vectors in A.
Then ‖·‖A is the `∞-norm, and w(Ω)2 ≤ p+k

2 .

Choose A to be a matrix of i.i.d. Gaussian random variables with zero means and
variances 1/n. Then we have

P
({

x̂BPDN = x\
})
& 1− exp

{
−

1
2

[
√
n−

√
p+ k

2

]2}
.
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Application 3: Matrix completion

Problem formulation [3, 8]
Let X\ ∈ Rp×p with rank(X\) = r, and let A1, . . . ,An be matrices in Rp×p. How
do we estimate X\ given A1, . . . ,An and bi = Tr

(
AiX\

)
+ wi, i = 1, . . . , n, where

w := (w1, . . . , wn)T denotes unknown noise?

Example
Let A =

{
X : rank (X) = 1, ‖X‖F = 1,X ∈ Rp×p

}
, and let X\ ∈ Rp×p with rank

r. Then ‖·‖A is the nuclear norm, and w(Ω)2 ≤ 3r(2p− r).

Choose each Ai to be a matrix of i.i.d. Gaussian random variables with zero means
and variances 1/n. Then by

X̂BPDN ∈ arg min
X∈Rp×p

{
‖X‖∗ :

n∑
i=1

(bi − Tr (AiX))2 ≤ κ2

}
with κ = ‖w‖2, we have∥∥X̂BPDN −X\

∥∥
2
.

2
√
n

√
n−

√
3r(2p− r)

‖w‖2 .
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Sharper bounds with oracle information
Suppose that we are able to set

x̂BPDN,oracle ∈ arg min
x∈Rp

{
‖x‖A : ‖b−Ax‖2 ≤ ‖w‖2

}
.

Theorem ([13])
With probability at least 1− 6 exp

(
−t2/26

)
, we have

∥∥x̂BPDN,oracle − x\
∥∥

2
≤
[
w(Ω) + t

an−1

][ 2
√
n

an − w(Ω)− t

]
‖w‖2

for any t > 0, where Ω denotes the intersection of T‖·‖A
(
x\
)
and the unit `2-norm

sphere.

Observation: Recall that our analysis gives that with probability at least
1− exp

(
−t2/2

)
, ∥∥x̂BPDN,oracle − x\

∥∥
2
.

[
2
√
n

an − w(Ω)− t

]
‖w‖2 .

An improvement by the factor w(Ω)+t
an−1

≤ 1 appears assuming access of the oracle
information ‖w‖2.
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