Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch
Lecture 10: Constrained convex minimization I
Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)
EE-556 (Fall 2017)

erc

License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes - unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

- Today

1. Primal-Dual methods

- Next week

1. Frank-Wolfe method
2. Universal primal-dual gradient methods
3. ADMM

Recommended readings

- Quoc Tran-Dinh, Olivier Fercoq and Volkan Cevher, A Smooth Primal-Dual Optimization Framework for Nonsmooth Composite Convex Minimization. to appear in SIOPT, 2017.
- Y. Nesterov, Smooth Minimization of Non-smooth Functions. Math. Program., Ser. A, 103:127-152, 2005.

Swiss army knife of convex formulations

A primal problem prototype

$$
\begin{equation*}
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}-\mathbf{b} \in \mathcal{K}, \mathbf{x} \in \mathcal{X}\} \tag{1}
\end{equation*}
$$

- f is a proper, closed and convex function
- \mathcal{X} and \mathcal{K} are nonempty, closed convex sets
- $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^{n}$ are known
- An optimal solution \mathbf{x}^{\star} to (1) satisfies $f\left(\mathbf{x}^{\star}\right)=f^{\star}, \mathbf{A} \mathbf{x}^{\star}=\mathbf{b}$ and $\mathbf{x}^{\star} \in \mathcal{X}$

An example from the sparseland

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{1}:\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2} \leq \kappa,\|\mathbf{x}\|_{\infty} \leq c\right\} \tag{SOCP}
\end{equation*}
$$

Swiss army knife of convex formulations

A primal problem prototype

$$
\begin{equation*}
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A x}-\mathbf{b} \in \mathcal{K}, \mathbf{x} \in \mathcal{X}\}, \tag{1}
\end{equation*}
$$

- f is a proper, closed and convex function
- \mathcal{X} and \mathcal{K} are nonempty, closed convex sets
- $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^{n}$ are known
- An optimal solution \mathbf{x}^{\star} to (1) satisfies $f\left(\mathbf{x}^{\star}\right)=f^{\star}, \mathbf{A} \mathbf{x}^{\star}=\mathbf{b}$ and $\mathbf{x}^{\star} \in \mathcal{X}$

An example from the sparseland

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{1}:\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2} \leq \kappa,\|\mathbf{x}\|_{\infty} \leq c\right\} \tag{SOCP}
\end{equation*}
$$

Broad context for (1):

- Standard convex optimization formulations: linear programming, convex quadratic programming, second order cone programming, semidefinite programming and geometric programming.
- Reformulations of existing unconstrained problems via convex splitting: composite convex minimization, consensus optimization, ...

Swiss army knife of convex formulations

primal problem prototype

$$
\begin{equation*}
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A x}-\mathbf{b} \in \mathcal{K}, \mathbf{x} \in \mathcal{X}\}, \tag{1}
\end{equation*}
$$

- f is a proper, closed and convex function
- \mathcal{X} and \mathcal{K} are nonempty, closed convex sets
- $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^{n}$ are known
- An optimal solution \mathbf{x}^{\star} to (1) satisfies $f\left(\mathbf{x}^{\star}\right)=f^{\star}, \mathbf{A} \mathbf{x}^{\star}=\mathbf{b}$ and $\mathbf{x}^{\star} \in \mathcal{X}$

A key advantage of the unified formulation (1): Primal-dual methods

- decentralized collection \& storage of data
- cheap per-iteration costs \& distributed computation

Broad context for (1):

- Standard convex optimization formulations: linear programming, convex quadratic programming, second order cone programming, semidefinite programming and geometric programming.
- Reformulations of existing unconstrained problems via convex splitting: composite convex minimization, consensus optimization, ...

Performance of optimization algorithms

Exact vs. approximate solutions

- Computing an exact solution x^{\star} to (1) is impracticable
- Algorithms seek $\mathbf{x}_{\epsilon}^{\star}$ that approximates x^{\star} up to ϵ in some sense

```
A performance metric: Time-to-reach \epsilon
time-to-reach \epsilon = number of iterations to reach \epsilon }\times\mathrm{ per iteration time
```


Performance of optimization algorithms

Exact vs. approximate solutions

- Computing an exact solution x^{\star} to (1) is impracticable
- Algorithms seek $\mathbf{x}_{\epsilon}^{\star}$ that approximates x^{\star} up to ϵ in some sense

```
A performance metric: Time-to-reach \epsilon
time-to-reach \epsilon = number of iterations to reach \epsilon }\times\mathrm{ per iteration time
```

Per-iteration time:
first-order methods: Multiplication with $\mathbf{A}, \mathbf{A}^{T}$, and appropriate "prox-operators"

Performance of optimization algorithms

Exact vs. approximate solutions

- Computing an exact solution x^{\star} to (1) is impracticable
- Algorithms seek $\mathbf{x}_{\epsilon}^{\star}$ that approximates x^{\star} up to ϵ in some sense

A performance metric: Time-to-reach ϵ
time-to-reach $\epsilon=$ number of iterations to reach $\epsilon \times$ per iteration time

Per-iteration time:
first-order methods: Multiplication with $\mathbf{A}, \mathbf{A}^{T}$, and appropriate "prox-operators"

A key issue: Number of iterations to reach ϵ
The notion of ϵ-accuracy is elusive in constrained optimization!

Numerical ϵ-accuracy

- Unconstrained case: All iterates are feasible (no advantage from infeasibility)!

$$
f\left(\mathbf{x}_{\epsilon}^{\star}\right)-f^{\star} \leq \epsilon
$$

$$
f^{\star}=\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})
$$

Numerical ϵ-accuracy

- Unconstrained case: All iterates are feasible (no advantage from infeasibility)!

$$
f\left(\mathbf{x}_{\epsilon}^{\star}\right)-f^{\star} \leq \epsilon
$$

- Constrained case: We need to also measure the infeasibility of the iterates!

$$
\begin{gathered}
f^{\star}-f\left(\mathbf{x}_{\epsilon}^{\star}\right) \leq \epsilon!!! \\
f^{\star}=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}-\mathbf{b} \in \mathcal{K}, \mathbf{x} \in \mathcal{X}\}
\end{gathered}
$$

Numerical ϵ-accuracy

- Unconstrained case: All iterates are feasible (no advantage from infeasibility)!

$$
f\left(\mathbf{x}_{\epsilon}^{\star}\right)-f^{\star} \leq \epsilon
$$

- Constrained case: We need to also measure the infeasibility of the iterates!

$$
\begin{gathered}
f^{\star}-f\left(\mathbf{x}_{\epsilon}^{\star}\right) \leq \epsilon!!! \\
f^{\star}=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}-\mathbf{b} \in \mathcal{K}, \mathbf{x} \in \mathcal{X}\}
\end{gathered}
$$

Our definition of ϵ-accurate solutions [19]

Given a numerical tolerance $\epsilon \geq 0$, a point $\mathbf{x}_{\epsilon}^{\star} \in \mathbb{R}^{p}$ is called an ϵ-solution of (1) if

$$
\left\{\begin{aligned}
f\left(\mathbf{x}_{\epsilon}^{\star}\right)-f^{\star} \leq \epsilon & \text { (objective residual) } \\
\operatorname{dist}\left(\mathbf{A} \mathbf{x}_{\epsilon}^{\star}-\mathbf{b}, \mathcal{K}\right) \leq \epsilon & \text { (feasibility gap) } \\
\mathbf{x}_{\epsilon}^{\star} \in \mathcal{X} & \text { (exact feasibility for the simple set) }
\end{aligned}\right.
$$

- When \mathbf{x}^{\star} is unique, we can also obtain $\left\|\mathbf{x}_{\epsilon}^{\star}-\mathbf{x}^{\star}\right\| \leq \epsilon$ (iterate residual).

Numerical ϵ-accuracy

- Unconstrained case: All iterates are feasible (no advantage from infeasibility)!

$$
f\left(\mathbf{x}_{\epsilon}^{\star}\right)-f^{\star} \leq \epsilon
$$

- Constrained case: We need to also measure the infeasibility of the iterates!

$$
\begin{gathered}
f^{\star}-f\left(\mathbf{x}_{\epsilon}^{\star}\right) \leq \epsilon!!! \\
f^{\star}=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}-\mathbf{b} \in \mathcal{K}, \mathbf{x} \in \mathcal{X}\}
\end{gathered}
$$

Our definition of ϵ-accurate solutions [19]

Given a numerical tolerance $\epsilon \geq 0$, a point $\mathbf{x}_{\epsilon}^{\star} \in \mathbb{R}^{p}$ is called an ϵ-solution of (1) if

$$
\left\{\begin{aligned}
f\left(\mathbf{x}_{\epsilon}^{\star}\right)-f^{\star} \leq \epsilon & \text { (objective residual) } \\
\operatorname{dist}\left(\mathbf{A} \mathbf{x}_{\epsilon}^{\star}-\mathbf{b}, \mathcal{K}\right) \leq \epsilon & \text { (feasibility gap), } \\
\mathbf{x}_{\epsilon}^{\star} \in \mathcal{X} & \text { (exact feasibility for the simple set) }
\end{aligned}\right.
$$

- When \mathbf{x}^{\star} is unique, we can also obtain $\left\|\mathbf{x}_{\epsilon}^{\star}-\mathbf{x}^{\star}\right\| \leq \epsilon$ (iterate residual).
- ϵ can be different for the objective, feasibility gap, or the iterate residual.

Primal-dual methods for (1):

Plenty ...

- Variants of the Arrow-Hurwitz's method:
- Chambolle-Pock's algorithm [2], and its variants, e.g., He-Yuan's variant [13].
- Primal-dual Hybrid Gradient (PDHG) method and its variants [9, 11].
- Proximal-based decomposition (Chen-Teboulle's algorithm) [3].
- Splitting techniques from monotone inclusions:
- Primal-dual splitting algorithms [1, 4, 21, 5, 6].
- Three-operator splitting [7].
- Dual splitting techniques:
- Alternating minimization algorithms (AMA) [10, 21].
- Alternating direction methods of multipliers (ADMM) [8, 14].
- Accelerated variants of AMA and ADMM [6, 12].
- Preconditioned ADMM, Linearized ADMM and inexact Uzawa algorithms [2, 17].
- Second-order decomposition methods:
- Dual (quasi) Newton methods [22].
- Smoothing decomposition methods via barriers functions [15, 20, 23].

Performance of optimization algorithms

```
A performance metric: Time-to-reach \epsilon
time-to-reach \epsilon= number of iterations to reach \epsilon }\times\mathrm{ per iteration time
```

Finding the fastest algorithm within the zoo is tricky!

- heuristics \& tuning parameters
- non-optimal rates \& strict assumptions
- lack of precise characterizations

The optimal solution set

Optimality condition

The optimality condition of $\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A x}=\mathbf{b}\}$ (e.g., simplified (1)):

$$
\begin{cases}0 & \in \mathbf{A}^{T} \lambda^{\star}+\partial f\left(\mathbf{x}^{\star}\right) \tag{2}\\ 0 & =\mathbf{A} \mathbf{x}^{\star}-\mathbf{b}\end{cases}
$$

(Subdifferential) $\partial f(\mathbf{x}):=\left\{\mathbf{v} \in \mathbb{R}^{p}: f(\mathbf{y}) \geq f(\mathbf{x})+\mathbf{v}^{T}(\mathbf{y}-\mathbf{x}), \forall \mathbf{y} \in \mathbb{R}^{p}\right\}$.

- This is the well-known KKT (Karush-Kuhn-Tucker) condition.
- Any point ($\mathbf{x}^{\star}, \lambda^{\star}$) satisfying (2) is called a KKT point.
- \mathbf{x}^{\star} is called a stationary point and λ^{\star} is the corresponding multipliers.

Finding an optimal solution

A plausible algorithmic strategy for $\min _{\mathbf{x} \in \mathcal{X}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b}\}$:
A natural minimax formulation:

$$
\left(\mathbf{x}^{\star}, y^{\star}\right) \in \arg \min _{x} \max _{y \in \mathcal{Y}}\{\mathcal{L}(x, y):=f(x)+\langle y, A x-b\rangle\} .
$$

Dual subproblem: $y^{*}(x) \in \arg \max _{y \in \mathcal{Y}} \mathcal{L}(x, y)$
Primal problem: $\quad x^{\star} \in \arg \min _{x}\left\{\mathcal{L}\left(y^{*}(x), x\right)\right\}$
A basic strategy \Rightarrow Find x^{\star} by using $y^{*}(x)$

- We will discuss two approaches in the sequel

Primal, Dual and Lagrangian

Using the max-form of the indicator function, primal problem can be written as

$$
F^{\star}:=\min _{x} \max _{y}\{\mathcal{L}(x, y):=f(x)+\langle A x-b, y\rangle\}
$$

Dual problem is

$$
\begin{align*}
D^{\star}:=\max _{y} \min _{x}\{\mathcal{L}(x, y): & =f(x)+\langle A x-b, y\rangle\} \\
D^{\star}=\max _{y} \min _{x}\{f(x)+\langle A x-b, y\rangle\} & \leq \min _{x} \max _{y}\{f(x)+\langle A x-b, y\rangle\} \\
& =\left\{\begin{array}{cc}
\min _{x} f(x) & \text { if } A x=b, \\
+\infty & \text { otherwise }
\end{array}\right. \tag{3}
\end{align*}
$$

Here, the inequality is due to the max-min theorem [18].

Saddle point

Definition (Saddle point)

A point $\left(x^{\star}, y^{\star}\right) \in \mathcal{X} \times \mathbb{R}^{n}$ is called a saddle point of the Lagrange function \mathcal{L} if

$$
\mathcal{L}\left(x^{\star}, y\right) \leq \mathcal{L}\left(x^{\star}, y^{\star}\right) \leq \mathcal{L}\left(x, y^{\star}\right), \forall x \in \mathcal{X}, y \in \mathbb{R}^{n} .
$$

Recall the minimax form:

$$
\min _{x \in \mathcal{X}} \max _{y \in \mathcal{Y}}\{\mathcal{L}(x, y):=f(x)+\langle y, A x-b\rangle\} .
$$

Saddle point

Definition (Saddle point)

A point $\left(x^{\star}, y^{\star}\right) \in \mathcal{X} \times \mathbb{R}^{n}$ is called a saddle point of the Lagrange function \mathcal{L} if

$$
\mathcal{L}\left(x^{\star}, y\right) \leq \mathcal{L}\left(x^{\star}, y^{\star}\right) \leq \mathcal{L}\left(x, y^{\star}\right), \forall x \in \mathcal{X}, y \in \mathbb{R}^{n} .
$$

Recall the minimax form:

$$
\min _{x \in \mathcal{X}} \max _{y \in \mathcal{Y}}\{\mathcal{L}(x, y):=f(x)+\langle y, A x-b\rangle\} .
$$

Illustration of saddle point: $\mathcal{L}(x, y):=(1 / 2) x^{2}+y(x-1)$ in \mathbb{R}^{2}

*Slater's qualification condition

Slater's qualification condition

Recall relint (\mathcal{X}) the relative interior of the feasible set \mathcal{X}. The Slater condition requires

$$
\begin{equation*}
\operatorname{relint}(\mathcal{X}) \cap\{\mathbf{x}: \mathbf{A x}=\mathbf{b}\} \neq \emptyset \tag{4}
\end{equation*}
$$

*Slater's qualification condition

Slater's qualification condition

Recall relint (\mathcal{X}) the relative interior of the feasible set \mathcal{X}. The Slater condition requires

$$
\begin{equation*}
\operatorname{relint}(\mathcal{X}) \cap\{\mathbf{x}: \quad \mathbf{A} \mathbf{x}=\mathbf{b}\} \neq \emptyset \tag{4}
\end{equation*}
$$

Special cases

- If \mathcal{X} is absent, then $(4) \Leftrightarrow \exists \overline{\mathbf{x}}: \mathbf{A} \overline{\mathbf{x}}=\mathbf{b}$.
- If $\mathbf{A} \mathbf{x}=\mathbf{b}$ is absent, then $(4) \Leftrightarrow \operatorname{relint}(\mathcal{X}) \neq \emptyset$.
- If $\mathbf{A x}=\mathbf{b}$ is absent and $\mathcal{X}:=\{\mathbf{x}: h(\mathbf{x}) \leq 0\}$, where h is $\mathbb{R}^{p} \rightarrow R^{q}$ is convex, then

$$
(4) \Leftrightarrow \exists \overline{\mathbf{x}}: h(\overline{\mathbf{x}})<0
$$

A composite reformulation

- Focus the following template in the sequel:

$$
\min _{x}\{f(x): A x=b, x \in \mathcal{X}\}
$$

- Fundamentally the same as the composite form:

$$
\min _{x \in \mathcal{X}} f(x)+g(A x)
$$

Lasso	$\mathcal{X}=\mathbb{R}^{p}$	$f(x)=\lambda\\|x\\|_{1}$	$g(z)=\frac{1}{n}\\|z-b\\|_{2}^{2}$
Square-root Lasso	$\mathcal{X}=\mathbb{R}^{p}$	$f(x)=\lambda\\|x\\|_{1}$	$g(z)=\frac{1}{\sqrt{n}}\\|z-b\\|_{2}$
SDP	$\mathcal{X}=\left\{x \succeq 0, x^{\prime}=x\right\}$	$f(x)=\operatorname{tr}(b x)$	$g(z)= \begin{cases}0 & \text { if } z=b \\ +\infty & \text { otherwise }\end{cases}$

Lasso is essentially "easy"

$$
\min _{x \in \mathcal{X}} f(x)+g(A x)
$$

- Revelation: Lasso can be solved as if the problem is fully smooth!
- not with subgradient descent!
- Structures in the composite form
- g has Lipschitz gradient in ℓ_{2}-norm (i.e., $\|\nabla g(u)-\nabla g(v)\|_{2} \leq L\|u-v\|_{2}$)

Lasso: $g(x)=\frac{1}{2}\|x\|_{2}^{2} \Rightarrow L=1$.

- $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ has a "tractable" proximal operator

$$
\operatorname{prox}_{f}(x):=\arg \min _{u \in \mathcal{X}} f(u)+\frac{1}{2}\|u-x\|_{2}^{2}
$$

Lasso: $f(x)=\|x\|_{1}, \mathcal{X}=\mathbb{R}^{p} \Rightarrow \operatorname{prox}_{f}$ is soft thresholding.

Famous Algorithms I

$$
\min _{x \in \mathcal{X}} f(x)+g(A x)
$$

- FISTA (aka. accelerated proximal gradient method, aka. Nesterov acceleration):

At iteration k :

$$
\begin{aligned}
x^{k+1} & =\operatorname{prox}_{f / L\|A\|^{2}}\left(y^{k}-\frac{1}{L\|A\|^{2}} A^{\top} \nabla g\left(A y^{k}\right)\right) \\
y^{k+1} & =x^{k+1}+\frac{k+1}{k+3}\left(x^{k+1}-x^{k}\right)
\end{aligned}
$$

- Convergence: We have

$$
f\left(x^{k}\right)+g\left(A x^{k}\right)-\left(f\left(x^{\star}\right)+g\left(A x^{\star}\right)\right) \leq \frac{4 L\|A\|^{2}\left\|x^{\star}-x^{0}\right\|_{2}^{2}}{(k+1)^{2}}
$$

Conjugation of functions

Definition

Let \mathcal{Q} be a predefined Euclidean space and Q^{*} be its dual space. Given a proper, closed and convex function $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}$, the function $f^{*}: Q^{*} \rightarrow \mathbb{R} \cup\{+\infty\}$ such that

$$
f^{*}(\mathbf{y})=\sup _{\mathbf{x} \in \operatorname{dom}(f)}\left\{\mathbf{y}^{T} \mathbf{x}-f(\mathbf{x})\right\}
$$

is called the Fenchel conjugate (or conjugate) of f.

Figure: The conjugate function $f^{*}(\mathbf{y})$ is the maximum gap between the linear function $\mathbf{x}^{T} \mathbf{y}$ (red line) and $f(\mathbf{x})$.

- f^{*} is a convex and lower, semicontinuous function by construction (as the supremum of affine functions of \mathbf{y}).
- The conjugate of the conjugate of a convex function f is \ldots the same function f; i.e., $f^{* *}=f$ for $f \in \mathcal{F}(\mathcal{Q})$.

A useful minimax reformulation for the general case

$$
\min _{x \in \mathcal{X}} f(x)+g(A x)
$$

- If $0 \in \operatorname{ri}(\operatorname{dom} g-A \operatorname{dom} f)$ then the optimization problem is equivalent to

$$
\max _{y \in \mathcal{Y}} \min _{x \in \mathcal{X}} f(x)+\langle y, A x\rangle-g^{*}(y)
$$

where g^{*} is the Fenchel conjugate of $g: g^{*}(y):=\max _{x}\langle x, y\rangle-g(x)$.

- Constrained case: $g(z)=\left\{\begin{array}{ll}0 & \text { if } z=c \\ +\infty & \text { otherwise }\end{array}\right.$, and hence, $g^{*}(y)=\langle c, y\rangle$

Duality gap

- The duality gap:

$$
\begin{aligned}
G(x, y) & =f(x)+g(A x)+g^{*}(y)+f^{*}\left(-A^{\top} y\right) \\
& =\max _{\bar{y} \in \mathcal{Y}}\left(f(x)+\langle\bar{y}, A x\rangle-g^{*}(\bar{y})\right)-\min _{\bar{x} \in \mathcal{X}}\left(-g^{*}(y)+\left\langle\bar{x}, A^{\top} y\right\rangle+f(\bar{x})\right)
\end{aligned}
$$

- Note the symmetric roles between (f, g, A) and $\left(-g^{*},-f^{*}, A^{\top}\right)$
- Useful properties:
- Convex as a function of (x, y)
- $G(x, y)=0$ iff $(x, y)=\left(x^{\star}, y^{\star}\right)$

*Famous algorithms II

- Chambolle-Pock method (dual perspective):

At iteration k :

$$
\begin{aligned}
& x^{k+1}=\arg \min _{x \in \mathcal{X}} f(x)+\left\langle y^{k}, A x-c\right\rangle+\frac{\beta}{2}\left\|x-x^{k}\right\|^{2} \\
& y^{k+1}=y^{k}+\frac{\beta-\epsilon}{\|A\|_{\mathcal{X}, \mathcal{Y}}^{2}}\left(A\left(2 x^{k+1}-x^{k}\right)-c\right)
\end{aligned}
$$

- Convergence: We have

$$
G\left(x^{k}, y^{k}\right) \leq \frac{1}{k}\left(\frac{\beta}{2} D_{\mathcal{X}}^{2}+\frac{\|A\|^{2}}{2(\beta-\epsilon)} D_{\mathcal{Y}}^{2}\right)
$$

where $D_{\mathcal{X}}$ is the diameter of $\operatorname{dom} f$ and $D_{\mathcal{Y}}$ is the diameter of $\operatorname{dom} g^{*}$.

A Primer on Smoothing

- Assuming that g admits max-form

$$
\begin{equation*}
g(z)=\max _{y \in \mathcal{Y}}\left(\langle z, y\rangle-g^{*}(y)\right) \tag{5}
\end{equation*}
$$

- A smoothed estimate of g by Nesterov around a center point \dot{y} :

$$
g_{\beta}(z ; \dot{y})=\max _{y \in \mathcal{Y}}\left(\langle z, y\rangle-g^{*}(y)-\frac{\beta}{2}\|y-\dot{y}\|^{2}\right)
$$

- The approximation guarantee

$$
\begin{equation*}
g_{\beta}(z ; \dot{y}) \leq g(z) \leq g_{\beta}(z ; \dot{y})+\frac{\beta}{2} D^{2} \tag{6}
\end{equation*}
$$

where $D=\max _{y \in \operatorname{dom}\left(g^{*}\right)}\|y-\dot{y}\|$.

Examples

- Absolute value function in max-form

$$
g(x)=|x|=\max _{-1 \leq y \leq 1} x y
$$

- Let $\dot{y}=0$,

$$
g_{\beta}(x)=\max _{-1 \leq y \leq 1}\left(x y-\frac{\beta}{2} y^{2}\right)= \begin{cases}\frac{x^{2}}{2 \beta}, & |x| \leq \beta \\ |x|-\frac{\beta}{2}, & |x|>\beta\end{cases}
$$

- Smoothed ℓ_{1}-norm is the so-called Huber loss.

Examples

- Constrained case i.e. when g is an indicator function:

$$
g(z)=\delta_{\{c\}}(z)=\left\{\begin{array}{ll}
0 & \text { if } z=c \\
+\infty & \text { otherwise }
\end{array}, \text { and hence, } g^{*}(y)=\langle c, y\rangle\right.
$$

- g_{β} is differentiable wrt z and $\nabla_{z} g_{\beta}$ is $\frac{1}{\beta}$-Lipschitz
- $g_{\beta}\left(A x^{k}, \dot{y}\right)=\left\langle\dot{y}, A x^{k}-c\right\rangle+\frac{1}{2 \beta}\left\|A x^{k}-c\right\|^{2}$

Efficiency considerations from the dual problem

Subgradient method

1. Choose $x^{0} \in \mathbb{R}^{n}$.
2. For $k=0,1, \cdots$, perform:

$$
y^{k+1}=y^{k}+\alpha_{k} \mathbf{v}^{k}
$$

where $\mathbf{v}^{k} \in \partial d\left(y^{k}\right)$ and α_{k} is the step-size.

Subgradient method for the nonsmooth problem

Assume that the following conditions

$$
\text { 1. }\|\mathbf{v}\|_{2} \leq G \text { for all } \mathbf{v} \in \partial d(y), y \in \mathbb{R}^{n} \text {. }
$$

2. $\left\|y^{0}-y^{\star}\right\|_{2} \leq R$

Let the step-size be chosen as
$\alpha_{k}=\frac{R}{G \sqrt{k}}$. Then, the subgradient
method satisfies

$$
\min _{0 \leq i \leq k}^{d} d^{\star}-d\left(y^{i}\right) \leq \frac{R G}{\sqrt{k}}
$$

Efficiency considerations from the dual problem

Subgradient method

1. Choose $x^{0} \in \mathbb{R}^{n}$.
2. For $k=0,1, \cdots$, perform:

$$
y^{k+1}=y^{k}+\alpha_{k} \mathbf{v}^{k}
$$

where $\mathbf{v}^{k} \in \partial d\left(y^{k}\right)$ and α_{k} is the step-size.

Subgradient method for the nonsmooth problem

Assume that the following conditions

1. $\|\mathbf{v}\|_{2} \leq G$ for all $\mathbf{v} \in \partial d(y), y \in \mathbb{R}^{n}$.
2. $\left\|y^{0}-y^{\star}\right\|_{2} \leq R$

Let the step-size be chosen as
$\alpha_{k}=\frac{R}{G \sqrt{k}}$. Then, the subgradient
method satisfies

$$
\min _{0 \leq i \leq k} d^{\star}-d\left(y^{i}\right) \leq \frac{R G}{\sqrt{k}} \leq \bar{\epsilon}
$$

SGM: $\mathcal{O}\left(\frac{1}{\bar{\epsilon}^{2}}\right) \times$ subgradient calculation

Efficiency considerations from the dual problem

Gradient method

1. Choose $y^{0} \in \mathbb{R}^{n}$.
2. For $k=0,1, \cdots$, perform:

$$
y^{k+1}=y^{k}+\frac{1}{L} \nabla d\left(y^{k}\right)
$$

where L is the Lipschitz constant.

Subgradient method for the nonsmooth problem

Assume that the following conditions

1. $\|\mathbf{v}\|_{2} \leq G$ for all $\mathbf{v} \in \partial d(y), y \in \mathbb{R}^{n}$.
2. $\left\|y^{0}-y^{\star}\right\|_{2} \leq R$

Let the step-size be chosen as $\alpha_{k}=\frac{R}{G \sqrt{k}}$. Then, the subgradient method satisfies

$$
\min _{0 \leq i \leq k}^{\text {d satisfies }} d^{\star}-d\left(y^{i}\right) \leq \frac{R G}{\sqrt{k}} \leq \bar{\epsilon}
$$

SGM: $\mathcal{O}\left(\frac{1}{\bar{\epsilon}^{2}}\right) \times$ subgradient calculation
GM: $\mathcal{O}\left(\frac{1}{\bar{\epsilon}}\right) \times$ gradient calculation

Impact of smoothness

(Lipschitz gradient) $d(y)$ has Lipschitz continuous gradient iff

$$
\|\nabla d(y)-\nabla d(\eta)\|_{2} \leq L\|y-\eta\|_{2}
$$

for all $y, \eta \in \operatorname{dom}(d)$ and we indicate this structure as $d(y) \in \mathcal{F}_{L}$.

For all $d(y) \in \mathcal{F}_{L}$, the gradient method with step-size $1 / L$ obeys

$$
d^{\star}-d\left(y^{k}\right) \leq \frac{2 L R^{2}}{k+4} \leq \bar{\epsilon}
$$

Efficiency considerations from the dual problem

Gradient method

1. Choose $y^{0} \in \mathbb{R}^{n}$.
2. For $k=0,1, \cdots$, perform:

$$
y^{k+1}=y^{k}+\frac{1}{L} \nabla d\left(y^{k}\right)
$$

where L is the Lipschitz constant.

Subgradient method for the nonsmooth problem

Assume that the following conditions

1. $\|\mathbf{v}\|_{2} \leq G$ for all $\mathbf{v} \in \partial d(y), y \in \mathbb{R}^{n}$.
2. $\left\|y^{0}-y^{\star}\right\|_{2} \leq R$

Let the step-size be chosen as $\alpha_{k}=\frac{R}{G \sqrt{k}}$. Then, the subgradient method satisfies

$$
\min _{0 \leq i \leq k}^{\text {d satisfies }} d^{\star}-d\left(y^{i}\right) \leq \frac{R G}{\sqrt{k}} \leq \bar{\epsilon}
$$

SGM: $\mathcal{O}\left(\frac{1}{\bar{\epsilon}^{2}}\right) \times$ subgradient calculation
GM: $\mathcal{O}\left(\frac{1}{\bar{\epsilon}}\right) \times$ gradient calculation

Impact of smoothness

(Lipschitz gradient) $d(y)$ has Lipschitz continuous gradient iff

$$
\|\nabla d(y)-\nabla d(\eta)\|_{2} \leq L\|y-\eta\|_{2}
$$

for all $y, \eta \in \operatorname{dom}(d)$ and we indicate this structure as $d(y) \in \mathcal{F}_{L}$.

For all $d(y) \in \mathcal{F}_{L}$, the gradient method with step-size $1 / L$ obeys

$$
d^{\star}-d\left(y^{k}\right) \leq \frac{2 L R^{2}}{k+4} \leq \bar{\epsilon}
$$

This is NOT the best we can do.
There exists a complexity lower-bound

$$
d^{\star}-d\left(y^{k}\right) \geq \frac{3 L R^{2}}{32(k+1)^{2}}, \forall d(y) \in \mathcal{F}_{L},
$$

for any iterative method based only on function and gradient evaluations.

Efficiency considerations from the dual problem

Accelerated gradient method

1. Choose $\mathbf{u}^{0}=y^{0} \in \mathbb{R}^{n}$.
2. For $k=0,1, \cdots$, perform:

$$
\begin{gathered}
y^{k}=u^{k}+\frac{1}{L} \nabla d\left(u^{k}\right) \\
u^{k+1}=y^{k}+\rho_{k}\left(y^{k}-y^{k-1}\right)
\end{gathered}
$$

where L is the Lipschitz constant, and ρ_{k} is a momentum parameter.

Subgradient method for the

 nonsmooth problemAssume that the following conditions

1. $\|\mathbf{v}\|_{2} \leq G$ for all $\mathbf{v} \in \partial d(y), y \in \mathbb{R}^{n}$.
2. $\left\|y^{0}-y^{\star}\right\|_{2} \leq R$

Let the step-size be chosen as $\alpha_{k}=\frac{R}{G \sqrt{k}}$. Then, the subgradient method satisfies

$$
\min _{0 \leq i \leq k}^{\text {d satisfies }} d^{\star}-d\left(y^{i}\right) \leq \frac{R G}{\sqrt{k}} \leq \bar{\epsilon}
$$

SGM: $\mathcal{O}\left(\frac{1}{\bar{\epsilon}^{2}}\right) \times$ subgradient calculation
GM: $\mathcal{O}\left(\frac{1}{\bar{\epsilon}}\right) \times$ gradient calculation
AGM: $\mathcal{O}\left(\frac{1}{\sqrt{\bar{\epsilon}}}\right) \times$ gradient calculation

Impact of smoothness

(Lipschitz gradient) $d(y)$ has Lipschitz continuous gradient iff

$$
\|\nabla d(y)-\nabla d(\eta)\|_{2} \leq L\|y-\eta\|_{2}
$$

for all $y, \eta \in \operatorname{dom}(d)$ and we indicate this structure as $d(y) \in \mathcal{F}_{L}$.

For all $d(y) \in \mathcal{F}_{L}$, the accelerated gradient method with momentum $\rho_{k}=\frac{k+1}{k+3}$ obeys

$$
d^{\star}-d\left(y^{k}\right) \leq \frac{2 L R^{2}}{(k+2)^{2}} \leq \bar{\epsilon}
$$

This is NEARLY the best we can do. There exists a complexity lower-bound

$$
g^{\star}-d\left(y^{k}\right) \geq \frac{3 L R^{2}}{32(k+1)^{2}}, \forall d(y) \in \mathcal{F}_{L}
$$

for any iterative method based only on function and gradient evaluations.

Number of iterations: From $\mathcal{O}\left(\frac{1}{\bar{\epsilon}^{2}}\right)$ to $\mathcal{O}\left(\frac{1}{\bar{\epsilon}}\right)$

When can the function have Lipschitz gradient?

When $g^{*}(y)$ is γ-strongly convex, the conjugate function $g(A x)$ is $\frac{\|\mathbf{A}\|^{2}}{\gamma}$-Lipschitz gradient.
(Strong convexity) $g^{*}(y)$ is γ-strongly convex iff $g^{*}(y)-\frac{\gamma}{2}\|y\|_{2}^{2}$ is convex.

Number of iterations: From $\mathcal{O}\left(\frac{1}{\bar{\epsilon}^{2}}\right)$ to $\mathcal{O}\left(\frac{1}{\bar{\epsilon}}\right)$

When can the function have Lipschitz gradient?

When $g^{*}(y)$ is γ-strongly convex, the conjugate function $g(A x)$ is $\frac{\|\mathbf{A}\|^{2}}{\gamma}$-Lipschitz gradient.
(Strong convexity) $g^{*}(y)$ is γ-strongly convex iff $g^{*}(y)-\frac{\gamma}{2}\|y\|_{2}^{2}$ is convex.

A simple idea: Apply Nesterov's smoothing [16]

$$
g_{\gamma}(A x)=\max _{y}\langle A x, y\rangle-g^{*}(y)-\frac{\gamma}{2}\|y\|_{2}^{2}
$$

1. $\nabla g_{\gamma}(A x)=A^{\top} y_{\gamma}^{*}(A x)$
2. $g_{\gamma}(A x) \leq g(A x) \leq g_{\gamma}(A x)+\gamma \mathcal{D} \mathcal{Y}$, where $\mathcal{D}_{\mathcal{Y}}=\max _{y \in \mathcal{Y}} \frac{1}{2}\|y\|_{2}^{2}$.
3. x^{k} of AGM on $g_{\gamma}(A x)$ has

$$
g^{\star}-g\left(A x^{k}\right) \leq \gamma \mathcal{D} \mathcal{Y}+g_{\gamma}^{\star}-g_{\gamma}\left(A x^{k}\right) \leq \gamma \mathcal{D} \mathcal{Y}+\frac{2\|A\|^{2} R^{2}}{\gamma(k+2)^{2}}
$$

4. We minimize the upperbound wrt γ and obtain $g^{\star}-g\left(A x^{k}\right) \leq \bar{\epsilon}$ with $k=\mathcal{O}\left(\frac{1}{\bar{\epsilon}}\right)$.

Per-iteration time: The key role of the prox-operator

Smoothed function: $g_{\gamma}(A x)=\max _{y}\langle A x, y\rangle-g^{*}(y)-\frac{\gamma}{2}\|y\|_{2}^{2}$

$$
y_{\gamma}^{*}(A x):=\operatorname{prox}_{g^{*} / \gamma}^{\chi}\left(-\frac{1}{\gamma} A x\right)
$$

Per-iteration time: The key role of the prox-operator

Smoothed function: $g_{\gamma}(A x)=\max _{y}\langle A x, y\rangle-g^{*}(y)-\frac{\gamma}{2}\|y\|_{2}^{2}$

$$
y_{\gamma}^{*}(A x):=\operatorname{prox}_{g^{*} / \gamma}^{\mathcal{X}}\left(-\frac{1}{\gamma} A x\right)
$$

Definition (Prox-operator)

$$
\operatorname{prox}_{f}(\mathbf{x}):=\underset{\mathbf{z} \in \mathbb{R}^{p}}{\arg \min ^{p}}\left\{f(\mathbf{z})+(1 / 2)\|\mathbf{z}-\mathbf{x}\|^{2}\right\} .
$$

Key properties:

- single valued \& non-expansive.
- distributes when the primal problem has decomposable structure:

$$
f(\mathbf{x}):=\sum_{i=1}^{m} f_{i}\left(\mathbf{x}_{i}\right), \quad \text { and } \quad \mathcal{X}:=\mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m} .
$$

where $m \geq 1$ is the number of components.

- often efficient \& has closed form expression. For instance, if $f(\mathbf{z})=\|\mathbf{z}\|_{1}$, then the prox-operator performs coordinate-wise soft-thresholding by 1 .

Decomposability

Decomposable structure

The function f and the feasible set \mathcal{X} have the following structure

$$
f(\mathbf{x}):=\sum_{i=1}^{m} f_{i}\left(\mathbf{x}_{i}\right), \quad \text { and } \quad \mathcal{X}:=\mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m} .
$$

where $m \geq 1$ is the number of components, \mathbf{x}_{i} is a sub-vector (component) of \mathbf{x}, $f_{i}: \mathbb{R}^{p_{i}} \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex and $\sum_{i=1}^{m} p_{i}=p$.

A first attempt

- Nesterov's smooth minimization of non-smooth functions approach:

Choose $\beta>0$ and \dot{y}.

Run FISTA on $x \mapsto f(x)+g_{\beta}(A x, \dot{y})$ as a proxy for $f(x)+g(A x)$.

- Convergence:

$$
\begin{aligned}
& f\left(x^{k}\right)+g_{\beta}\left(A x^{k}, \dot{y}\right)-\left(f\left(x^{\star}\right)+g_{\beta}\left(A x^{\star}\right)\right) \leq \frac{4\|A\|^{2}\left\|x^{0}-x^{\star}\right\|^{2}}{\beta(k+1)^{2}} \\
& f\left(x^{k}\right)+g\left(A x^{k}\right)-\left(f\left(x^{\star}\right)+g\left(A x^{\star}\right)\right) \leq \frac{4\|A\|^{2}\left\|x^{0}-x^{\star}\right\|^{2}}{\beta(k+1)^{2}}+\beta D \mathcal{Y}
\end{aligned}
$$

Our fundamental theorem

- Recall the duality gap:

$$
\begin{aligned}
G(x, y) & =f(x)+g(A x)+g^{*}(y)+f^{*}\left(-A^{\top} y\right) \\
& =\max _{\bar{y} \in \mathcal{Y}}\left(f(x)+\langle\bar{y}, A x\rangle-g^{*}(\bar{y})\right)-\min _{\bar{x} \in \mathcal{X}}\left(-g^{*}(y)+\left\langle\bar{x}, A^{\top} y\right\rangle+f(\bar{x})\right)
\end{aligned}
$$

- Denote the (primal) smoothed gap function at y^{\star} as

$$
S_{\beta}(x, \dot{y}):=f(x)+g_{\beta}(A x ; \dot{y})-f\left(x^{\star}\right)
$$

Theorem

If β and $S_{\beta}(x, \dot{y})$ are small, we have an approximate solution:

$$
\begin{aligned}
\|A x-c\| & \leq \beta\left[\left\|y^{\star}-\dot{y}\right\|+\left(\left\|y^{\star}-\dot{y}\right\|^{2}+2 \beta^{-1} S_{\beta}(x ; \dot{y})\right)^{1 / 2}\right] \\
f(x)-f\left(x^{\star}\right) & \geq-\left\|y^{\star}\right\|\|A x-c\| \\
f(x)-f\left(x^{\star}\right) & \leq S_{\beta}(x, \dot{y})+\left\|y^{\star}\right\|\|A x-c\|+\frac{\beta}{2}\left\|y^{\star}-\dot{y}\right\|^{2}
\end{aligned}
$$

Accelerated Smoothed GAp ReDuction algorithm (ASGARD)

Idea: FISTA on $f(x)+g_{\beta}(A x ; \dot{y})$ and continuation on β

For $k=0$ to $k_{\text {max }}$:

$$
\begin{aligned}
& \begin{array}{l}
y_{\beta_{k+1}}^{*}\left(A \hat{x}^{k} ; \dot{y}\right)=\arg \max _{y \in \mathcal{Y}}\left\langle A \hat{x}^{k}, y\right\rangle-g^{*}(\hat{y})-\frac{\beta_{k+1}}{2}\|y-\dot{y}\|^{2} \\
\bar{x}^{k+1}=\operatorname{prox}_{\beta_{k+1}\|A\|^{-2} f}\left(\hat{x}^{k}-\beta_{k+1}\|A\|^{-2} A^{\top} y_{\beta_{k+1}}^{*}\left(A \hat{x}^{k} ; \dot{y}\right)\right) \\
\hat{x}^{k+1}=\bar{x}^{k+1}+\frac{\tau_{k+1}\left(1-\tau_{k}\right)}{\tau_{k}}\left(\bar{x}^{k+1}-\bar{x}^{k}\right) \\
\tau_{k+1} \in(0,1) \text { root of } \tau^{3}+\tau^{2}+\tau_{k}^{2} \tau-\tau_{k}^{2}=0 \\
\beta_{k+2}
\end{array}=\frac{\beta_{k+1}}{1+\tau_{k+1}} \\
& \text { End for }
\end{aligned}
$$

Convergence theorem

Theorem

The iterates of ASGARD drive the smoothed gap to zero: $S_{\beta_{k}}\left(\bar{x}^{k}, \dot{y}\right)=\mathcal{O}(1 / k)$, and also provides a $\mathcal{O}(1 / k)$ convergence guarantee in function value as well as feasibility:

$$
\begin{aligned}
\left\|A \bar{x}^{k}-c\right\| & \leq \frac{\beta_{1}}{k+1}\left[\left\|y^{\star}-\dot{y}\right\|+\sqrt{\left\|y^{\star}-\dot{y}\right\|^{2}+\frac{\|A\|^{2}}{\beta_{1}^{2}}\left\|\bar{x}^{0}-x^{\star}\right\|^{2}}\right] \\
f\left(\bar{x}^{k}\right)-f\left(x^{\star}\right) & \geq-\left\|y^{\star}\right\|\|A x-c\| \\
f\left(\bar{x}^{k}\right)-f\left(x^{\star}\right) & \leq \frac{1}{k} \frac{\|A\|^{2}}{2 \beta_{1}}\left\|\bar{x}^{0}-x^{\star}\right\|^{2}+\left\|y^{\star}\right\|\left\|A \bar{x}^{k}-c\right\|+\frac{\beta_{1}}{k+1}\left\|y^{\star}-\dot{y}\right\|^{2}
\end{aligned}
$$

Square-root Lasso: A comparison with Nesterov's smoothing

$$
\begin{aligned}
& \min _{x} F(x):=\frac{1}{\sqrt{m}}\|A x-b\|_{2}+\lambda\|x\|_{1} \\
& \text { Tune } \beta \text { using }\left\|x^{\star}\right\|_{2} \leq \frac{\|b\|_{2}}{\lambda \sqrt{m}}
\end{aligned}
$$

A degenerate LP problem: Guarantees matter

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{n}} & 2 x_{n} \\
\text { s.t. } & x_{n} \geq 0, \quad \sum_{k=1}^{n-1} x_{k}=1 \\
& x_{n}-\sum_{k=1}^{n-1} x_{k}=0 \quad(2 \leq j \leq d) \\
(n=10, & d=200)
\end{array}
$$

A versatile framework

- Extensions
- Restart
- Augmented Lagrangian smoother
- ADSGARD: The dual perspective
- Linearization of smooth parts of the objective
- Line search
- Use of old gradients (aka gradient sliding)
- Splitting the smoothed gap (ADMM-version)
- Random coordinate descent updates with continuation

Accelerated Augmented Lagragian method

Idea \#1: Smooth the dual (i.e., f^{*}) with $\|x\|_{\mathcal{X}}=\|A x\|_{\mathcal{Y}, *}$ and $\dot{x}=x^{\star}$.
Idea $\# 2$: FISTA on $-g^{*}(y)-f_{\beta}^{*}\left(-A^{\top} y\right)$ and continuation on β
Algorithm ASALGARD: FISTA in disguise for the dual \& averaging for the primal

$$
\begin{aligned}
\hat{y}^{k} & =\left(1-\tau_{k}\right) \bar{y}^{k}+\tau_{k} y_{\beta_{k}}^{*}\left(A \bar{x}^{k} ; \dot{y}\right) \\
\hat{x}_{\gamma_{0}}^{*}\left(\hat{y}^{k}\right) & =\arg \min _{x \in \mathcal{X}}\left\{f(x)+\left\langle\hat{y}^{k}, A x-c\right\rangle+\frac{\gamma_{0}}{2}\|A x-c\|_{\mathcal{Y}, *}^{2}\right\} \\
\bar{y}^{k+1} & =\hat{y}^{k}+\gamma_{0}\left(A \hat{x}_{\gamma_{0}}^{*}\left(\hat{y}^{k}\right)-c\right) \\
\bar{x}^{k+1} & =\left(1-\tau_{k}\right) \bar{x}^{k}+\tau_{k} \hat{x}_{\gamma_{0}}^{*}\left(\hat{y}^{k}\right) \\
\tau_{k+1} & \in(0,1) \text { root of } \tau^{2}+\tau_{k}^{2} \tau-\tau_{k}^{2}=0 \\
\beta_{k+2} & =\left(1-\tau_{k+1}\right) \beta_{k+1}
\end{aligned}
$$

Convergence: We have

$$
\begin{aligned}
-\frac{8\left\|y^{\star}\right\|_{\mathcal{Y}}\left\|y^{\star}-\dot{y}\right\|_{\mathcal{Y}}}{\gamma_{0}(k+2)^{2}} \leq f\left(\bar{x}^{k}\right)-f^{\star} \leq \frac{8\left\|y^{\star}\right\|_{\mathcal{Y}}\left\|y^{\star}-\dot{y}\right\|_{\mathcal{Y}}+2\left\|y^{\star}-\dot{y}\right\|^{2}}{\gamma_{0}(k+2)^{2}} \\
\left\|A \bar{x}^{k}-c\right\|_{\mathcal{Y}, *} \leq \frac{8\left\|y^{\star}-\dot{y}\right\|_{\mathcal{Y}}}{\gamma_{0}(k+2)^{2}}
\end{aligned}
$$

ASALGARD on the same degenerate LP problem

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{n}} & 2 x_{n} \\
\text { s.t. } & x_{n} \geq 0, \quad \sum_{k=1}^{n-1} x_{k}=1 \\
& x_{n}-\sum_{k=1}^{n-1} x_{k}=0 \quad(2 \leq j \leq d) \\
(n=10, & d=200)
\end{array}
$$

Tree sparsity example: 1:100-compressive sensing

World [10Mpix]

wavelet sparse

wavelet tree-sparse

ASALGARD:

Iterations: 113
PD gap: 1e-8
Applications of $\left(\mathbf{A}, \mathbf{A}^{T}\right):(684,570)$
min
$x \in \mathbb{R}^{p}$
s.t. $\quad A x=c$.
$f(x):=\sum_{\mathcal{G}_{i} \in \mathfrak{G}}\left\|x_{\mathcal{G}_{i}}\right\|_{\infty}$

References I

[1] H.H. Bauschke and P. Combettes.
Convex analysis and monotone operators theory in Hilbert spaces.
Springer-Verlag, 2011.
[2] A. Chambolle and T. Pock.
A first-order primal-dual algorithm for convex problems with applications to imaging.
Journal of Mathematical Imaging and Vision, 40(1):120-145, 2011.
[3] G. Chen and M. Teboulle.
A proximal-based decomposition method for convex minimization problems. Math. Program., 64:81-101, 1994.
[4] P. L. Combettes and V. R. Wajs.
Signal recovery by proximal forward-backward splitting.
Multiscale Model. Simul., 4:1168-1200, 2005.
[5] D. Davis.
Convergence rate analysis of the forward-Douglas-Rachford splitting scheme.
UCLA CAM report 14-73, 2014.

References II

[6] D. Davis and W. Yin.
Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions.
UCLA CAM report 14-58, 2014.
[7] D. Davis and W. Yin.
A three-operator splitting scheme and its optimization applications.
Tech. Report., 2015.
[8] J. Eckstein and D. Bertsekas.
On the Douglas - Rachford splitting method and the proximal point algorithm for maximal monotone operators.
Math. Program., 55:293-318, 1992.
[9] J. E. Esser.
Primal-dual algorithm for convex models and applications to image restoration, registration and nonlocal inpainting.
Phd. thesis, University of California, Los Angeles, Los Angeles, USA, 2010.
[10] D. Gabay and B. Mercier.
A dual algorithm for the solution of nonlinear variational problems via finite element approximation.
Computers \& Mathematics with Applications, 2(1):17-40, 1976.

References III

[11] T. Goldstein, E. Esser, and R. Baraniuk.
Adaptive Primal-Dual Hybrid Gradient Methods for Saddle Point Problems.
Tech. Report., http://arxiv.org/pdf/1305.0546v1.pdf:1-26, 2013.
[12] T. Goldstein, B. ODonoghue, and S. Setzer.
Fast Alternating Direction Optimization Methods.
SIAM J. Imaging Sci., 7(3):1588-1623, 2012.
[13] B. He and X. Yuan.
Convergence analysis of primal-dual algorithms for saddle-point problem: from contraction perspective.
SIAM J. Imaging Sciences, 5:119-149, 2012.
[14] B.S. He and X.M. Yuan.
On the $O(1 / n)$ convergence rate of the Douglas-Rachford alternating direction method.
SIAM J. Numer. Anal., 50:700-709, 2012.
[15] I. Necoara and J.A.K. Suykens.
Interior-point lagrangian decomposition method for separable convex optimization.
J. Optim. Theory and Appl., 143(3):567-588, 2009.

References IV

[16] Y. Nesterov.
Smooth minimization of non-smooth functions.
Math. Program., 103(1):127-152, 2005.
[17] Y. Ouyang, Y. Chen, G. LanG. Lan., and E. JR. Pasiliao.
An accelerated linearized alternating direction method of multiplier.
Tech, 2014.
[18] R. T. Rockafellar.
Convex Analysis, volume 28 of Princeton Mathematics Series.

Princeton University Press, 1970.

[19] Q. Tran-Dinh and V. Cevher.
Constrained convex minimization via model-based excessive gap.
In Proc. the Neural Information Processing Systems Foundation conference (NIPS2014), pages 1-9, Montreal, Canada, December 2014.
[20] Q. Tran-Dinh, I. Necoara, C. Savorgnan, and M. Diehl.
An Inexact Perturbed Path-Following Method for Lagrangian Decomposition in Large-Scale Separable Convex Optimization.
SIAM J. Optim., 23(1):95-125, 2013.

References V

[21] P. Tseng.
Applications of splitting algorithm to decomposition in convex programming and variational inequalities.
SIAM J. Control Optim., 29:119-138, 1991.
[22] E. Wei, A. Ozdaglar, and A.Jadbabaie.
A Distributed Newton Method for Network Utility Maximization.
http://web. mit. edu/asuman/www/ publications.htm, 2011.
[23] G. Zhao.
A Lagrangian dual method with self-concordant barriers for multistage stochastic convex programming.
Math. Progam., 102:1-24, 2005.

