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Outline

> Today

1. Primal-Dual methods

> Next week

1. Frank-Wolfe method
2. Universal primal-dual gradient methods
3. ADMM
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Recommended readings

» Quoc Tran-Dinh and Volkan Cevher, Constrained convex minimization via
model-based excessive gap. In Proc. the Neural Information Processing Systems
Foundation conference (NIPS2014), pages 1-9, Montreal, Canada, December
2014.

> Y. Nesterov, Smooth Minimization of Non-smooth Functions. Math. Program.,
Ser. A, 103:127-152, 2005.
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Swiss army knife of convex formulations

A primal problem prototype

f*::min{f(x):Ax—bElC,XEX}, (1)

xERP

> f is a proper, closed and convex function

> X and K are nonempty, closed convex sets

» A € R"*P and b € R™ are known

> An optimal solution x* to (1) satisfies f(x*) = f*, Ax* =b and x* € X

An example from the sparseland

min {HXH1 (JAx — b2 < K, [|%X]|lec < c} (SOCP)
XERP
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Swiss army knife of convex formulations

A primal problem prototype

= min{f(x):Ax—bé/C,XEX}, (1)
xERP

> f is a proper, closed and convex function

> X and K are nonempty, closed convex sets

» A € R"*P and b € R™ are known

> An optimal solution x* to (1) satisfies f(x*) = f*, Ax* =b and x* € X

An example from the sparseland
min {HXH1 (JAx — b2 < K, [|%X]|lec < c} (SOCP)
XERP

Broad context for (1):

» Standard convex optimization formulations: linear programming, convex
quadratic programming, second order cone programming, semidefinite
programming and geometric programming.

> Reformulations of existing unconstrained problems via convex splitting:
composite convex minimization, consensus optimization, . ..
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Swiss army knife of convex formulations

A primal problem prototype

xERP

£* = min {f(x):Ax—belC,xeX}, 1)

> f is a proper, closed and convex function

> X and K are nonempty, closed convex sets

» A € R"*P and b € R™ are known

> An optimal solution x* to (1) satisfies f(x*) = f*, Ax* =b and x* € X

A key advantage of the unified formulation (1): Primal-dual methods
> decentralized collection & storage of data
> cheap per-iteration costs & distributed computation

Broad context for (1):

> Standard convex optimization formulations: linear programming, convex
quadratic programming, second order cone programming, semidefinite
programming and geometric programming.

> Reformulations of existing unconstrained problems via convex splitting:
composite convex minimization, consensus optimization, . ..
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Primal-dual methods for (1):

Plenty ...

e Variants of the Arrow-Hurwitz’s method:
» Chambolle-Pock’s algorithm [4], and its variants, e.g., He-Yuan's variant [17].
> Primal-dual Hybrid Gradient (PDHG) method and its variants [13, 15].

> Proximal-based decomposition (Chen-Teboulle's algorithm) [5].

e Splitting techniques from monotone inclusions:

» Primal-dual splitting algorithms [3, 6, 28, 7, 8].

> Three-operator splitting [9].
e Dual splitting techniques:

> Alternating minimization algorithms (AMA) [14, 28].

> Alternating direction methods of multipliers (ADMM) [11, 18].

» Accelerated variants of AMA and ADMM [8, 16].

> Preconditioned ADMM, Linearized ADMM and inexact Uzawa algorithms [4, 23].
e Second-order decomposition methods:

> Dual (quasi) Newton methods [29].

> Smoothing decomposition methods via barriers functions [20, 27, 30].
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Performance of optimization algorithms

Exact vs. approximate solutions

» Computing an exact solution x* to (1) is impracticable

> Algorithms seek x that approximates x* up to € in some sense

A performance metric: Time-to-reach ¢

time-to-reach ¢ = number of iterations to reach € X per iteration time

Slide 7/ 48 L (L
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Performance of optimization algorithms

Exact vs. approximate solutions

» Computing an exact solution x* to (1) is impracticable

> Algorithms seek x that approximates x* up to € in some sense

A performance metric: Time-to-reach ¢

time-to-reach ¢ = number of iterations to reach € X per iteration time

Per-iteration time:

first-order methods: Multiplication with A, AT, and appropriate “prox-operators”

-
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Performance of optimization algorithms

Exact vs. approximate solutions

» Computing an exact solution x* to (1) is impracticable

> Algorithms seek x that approximates x* up to € in some sense

A performance metric: Time-to-reach ¢

time-to-reach ¢ = number of iterations to reach € X per iteration time

Per-iteration time:

first-order methods: Multiplication with A, AT, and appropriate “prox-operators”

A key issue: Number of iterations to reach ¢

The notion of e-accuracy is elusive in constrained optimization!
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Numerical e-accuracy

> Unconstrained case: All iterates are feasible (no advantage from infeasibility)!

fx) —fr<e

£ = min f(x)

xXERP
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Numerical e-accuracy

> Unconstrained case: All iterates are feasible (no advantage from infeasibility)!
fxO—fr<e
> Constrained case: We need to also measure the infeasibility of the iterates!

[P <e

f* = min {f(x):Ax—beIC, xeX}

xXERP
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Numerical e-accuracy

> Unconstrained case: All iterates are feasible (no advantage from infeasibility)!
fxO—fr<e
> Constrained case: We need to also measure the infeasibility of the iterates!

[P <e

f* = min {f(x):Ax—beIC, xeX}

xXERP

Our definition of e-accurate solutions [25]

Given a numerical tolerance € > 0, a point x} € RP is called an e-solution of (1) if

f(x¥)— f* <e (objective residual),
dist (Ax} —b,K) <e (feasibility gap),
xf € X  (exact feasibility for the simple set).

> When x* is unique, we can also obtain ||x* — x*|| < € (iterate residual).

. V
ILGHEI{]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 48 -ﬂ ﬂ-




Numerical e-accuracy

> Unconstrained case: All iterates are feasible (no advantage from infeasibility)!
fxO—fr<e
> Constrained case: We need to also measure the infeasibility of the iterates!

[P <e

f* = min {f(x):Ax—beIC, xeX}

xXERP

Our definition of e-accurate solutions [25]

Given a numerical tolerance € > 0, a point x} € RP is called an e-solution of (1) if

f(x¥)— f* <e (objective residual),
dist (Ax} —b,K) <e (feasibility gap),
xf € X  (exact feasibility for the simple set).

> When x* is unique, we can also obtain ||x* — x*|| < € (iterate residual).

> € can be different for the objective, feasibility gap, or the iterate residual.
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Performance of optimization algorithms

A performance metric: Time-to-reach ¢

time-to-reach € = number of iterations to reach ¢ X per iteration time

Finding the fastest algorithm within the zoo is tricky!
> heuristics & tuning parameters
> non-optimal rates & strict assumptions

> lack of precise characterizations

-
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Performance of optimization algorithms

A performance metric: Time-to-reach ¢

time-to-reach € = number of iterations to reach ¢ X per iteration time

Finding the fastest algorithm within the zoo is tricky!

> heuristics & tuning parameters
> non-optimal rates & strict assumptions

> lack of precise characterizations

In the sequel: Heuristic-free optimal first-order primal-dual / ADMM / AMA methods
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Outline

The proximal way

V
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The optimal solution set

Optimality condition
The optimality condition of minyerr {f(x) : Ax = b} (e.g., simplified (1)):

{0 € ATX* 4 9f(x*), @)

0 = Ax*—b.

(Subdifferential) 9f(x) := {v €RP : f(y) > f(x) + vl (y — x), Yy € RP}.
> This is the well-known KKT (Karush-Kuhn-Tucker) condition.
> Any point (x*, \*) satisfying (2) is called a KKT point.

> x* is called a stationary point and A\* is the corresponding multipliers.
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Example: Basis pursuit

Example (Basis pursuit)

min ||x|1 s.t. Ax =b.
XERP

Note:

> f(x) := ||x||1 is nonsmooth, for any v € 9f(x) we have v; = +1 if ; > 0,
vi=—1lifz; <0andv; € (—1,1) if z; =0.

> Since X = RP, we have Ny (x) = {0} for all x.
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Example: Basis pursuit

Example (Basis pursuit)

min ||x]|1 s.t. Ax =b.
ERP

Note:

> f(x) := ||x||1 is nonsmooth, for any v € 9f(x) we have v; = +1 if ; > 0,
vi=—1lifz; <0andv; € (—1,1) if z; =0.

> Since X = RP, we have Ny (x) = {0} for all x.

Optimality condition

The optimality condition of (2) becomes

(ATX*); = —1 ifz¥ >0, 1<i<p

{068f(x*)+AT)\* o J AT =41 ifzr <0, 1<i<p

0= Ax* —b. (ATX); € (-1,1) ifzr=0,1<i<p
Ax* =b
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Finding an optimal solution

A plausible algorithmic strategy for mingcx{f(x) : Ax = b}:

A natural minimax formulation:
(x*,A\*) € argmax min{L(x, \) := f(x) + (A\,Ax — b)}.
A xEX
Lagrangian subproblem: x*(\) € argminyey £(x, \)
Dual problem: A* € argmaxy {d()) := L(x*(A),\)}

> )\ is called the Lagrange multiplier.
> The function d(\) is called the dual function, and it is concave!

> The optimal dual objective value is d* = d(A\*).

A basic strategy = Find A* and then solve for x* = x*(\*)
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Finding an optimal solution

A plausible algorithmic strategy for mingcx{f(x) : Ax = b}:

A natural minimax formulation:

(x*,A\*) € argmax min{L(x, \) := f(x) + (A\,Ax — b)}.
A xeX

Lagrangian subproblem: x*(\) € argminyey £(x, \)
Dual problem: A* € argmaxy {d()) := L(x*(A),\)}
> )\ is called the Lagrange multiplier.

> The function d(\) is called the dual function, and it is concave!

> The optimal dual objective value is d* = d(A\*).

A basic strategy = Find A* and then solve for x* = x*(\*)

Challenges for the plausible strategy above
1. Establishing its correctness
2. Computational efficiency of finding an é-approximate optimal dual solution AX

3. Mapping A\f — x} (i.e., €(¢)), where € is for the original constrained problem (1)
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Finding an optimal solution

A plausible algorithmic strategy for mingcx{f(x) : Ax = b}:

A natural minimax formulation:

(x*,A\*) € argmax min{L(x, \) := f(x) + (A\,Ax — b)}.
A xeX

Lagrangian subproblem: x*(\) € argminyey £(x, \)
Dual problem: A* € argmaxy {d()) := L(x*(A),\)}
> )\ is called the Lagrange multiplier.

> The function d(\) is called the dual function, and it is concave!

> The optimal dual objective value is d* = d(A\*).

A basic strategy = Find A* and then solve for x* = x*(\*)

Challenges for the plausible strategy above

1. Establishing its correctness: Assume f* > —oo and Slater’s condition for f* = d*

2. Computational efficiency of finding an é-approximate optimal dual solution AX

3. Mapping A\f — x} (i.e., €(¢)), where € is for the original constrained problem (1)
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Outline

Establishing correctness
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Back to the the minimax formulation
The dual function and the dual problem revisited

> Dual function:
d(A) = géi;}{zm A) = f(x) + AT (Ax — b)}. (3)

Let x*(X) be a solution of (3) then d(X) is finite if *()) exists. d(-) is concave
and possibly nonsmooth.

> Dual problem: The following dual problem is convex

@ = e d(\) (4)
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Back to the the minimax formulation
The dual function and the dual problem revisited

> Dual function:
d(A) = )I(rgi)r}{ﬁ(& A) = f(x) + AT (Ax — b)}. (3)

Let x*(X) be a solution of (3) then d(X) is finite if *()) exists. d(-) is concave
and possibly nonsmooth.

> Dual problem: The following dual problem is convex

d* := max d()\) (4)
xXERM

The minimax formulation

d* = d(X\) = i A(Ax—b
e d(A) = maz min{f (x) EAN(AX b))
min f(x) if Ax=b,
< min max{f(x)Jr)\T(Axfb)} = { xex (5)
SHERE N +00 otherwise

Here, the inequality is due to the max-min theorem [24].
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Example: Strictly convex quadratic programming
Strictly convex quadratic programming

min  (1/2)xTHx 4+ hTx

xERP

s.t. Ax =b.

where H is symmetric positive definite.
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Example: Strictly convex quadratic programming

Strictly convex quadratic programming

min  (1/2)xTHx 4+ hTx
x€ERP
s.t. Ax =b.

where H is symmetric positive definite.
Dual problem is also a strictly convex quadratic program

> Lagrange function £(x, ) := (1/2)xTHx + (ATX +h)Tx — b7\

> Dual function:
d(\) = min {(1/2)xTHx + (ATA + h)Tx —bT )}
XERP
> Since x*(\) = —H 1(ATX + h), we can obtain d()\) explicitly as
d\) = —(1/22AT(AHTAT)A — (b+ AH 'h)T ).
> Dual problem (unconstrained):

1
d*:= max d(A) < min =AT(AH'AT)A+ (b+ AH 'h)TA.
AER™ AER™ 2

LG
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Example: Nonsmoothness of the dual function
Consider a constrained convex problem:

min  {f(x) = 2% + 222},

x€ER3

s.t. 2x3 —x1 —x2 =1,
X € X = [-2,2] x [-2,2] x [0,2).

The dual function is defined as

d()\) == min{z? 4 2zo + A\(2x3 — x1 — x2 — 1)}
xeX

is concave and nonsmooth as illustrated in the figure below.

nonsmooth peak

— min {22 4+ 92, e
d()\)—EélE{Jl+2[2+>\(213 T —22+1)}

_30 L L L L L L
-4 -2 0 2 .4 6 8 10
A-axis
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Saddle point
Definition (Saddle point)

A point (x*,A\*) € X X R" is called a saddle point of the Lagrange function L if
L(x*,A) < L(x*,A*) < L(x,\"), Vx € X, A € R™
Recall the minimax form:

max )r(réi(ré{ﬁ(x, A) = f(x) + AT (Ax — b)}. ((3))
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Saddle point

Definition (Saddle point)

A point (x*,A\*) € X X R" is called a saddle point of the Lagrange function L if
L(x*,A) < L(x*,A*) < L(x,\"), Vx € X, A € R™

Recall the minimax form:

max )I(I‘g;cl_{ﬁ(x, A) = f(x) + AT (Ax — b)}. ((3))

lllustration of saddle point: £(z,\) := (1/2)z? + A(z — 1) in R?

e (a*,
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Slater’s qualification condition

Slater's qualification condition

Recall relint(X') the relative interior of the feasible set X'. The Slater condition
requires

‘ relint(X) N {x : Ax =b} # 0. ‘ (6)
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Slater’s qualification condition

Slater’s qualification condition

Recall relint(X') the relative interior of the feasible set X'. The Slater condition
requires

‘ relint(X) N {x : Ax =b} # 0. ‘ (6)

Special cases

> If X is absent, then (6) < .
> If Ax = b is absent, then (6) < | relint(X) # 0 |.

> If Ax = Db is absent and X := {x : h(x) < 0}, where h is RP — R is convex,

then
(6) < |3x : h(x)<O.

-
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Example: Slater’s condition

Example
Let us consider the feasible set D, := X' N A4 as

X:={x€eR? : 2} +23 <1} Ay :={x€R? : z1 +22 =0},

where o € R.

LG
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Example: Slater’s condition

Example
Let us consider the feasible set D, := X' N A4 as
X:={x€eR? : 2} +23 <1} Ay :={x€R? : z1 +22 =0},

where o € R.

Slater's condition holds and does not hold

relative intéléior of D=10

D, /o satisfies Slater's condition — D 5-does not satisfy Slater's condition

Slide 20/ 48 L (L
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Necessary and sufficient condition
Theorem (Necessary and sufficient optimality condition)
Under Slater’s condition (6): relint(X) N {x : Ax =Db} # 0, the KKT condition (2)

0 € ATXN +0f(x*) + Na(x*),
0 =Ax*—b.

is necessary and sufficient for a point (x*,A\*) € X x R™ being an optimal solution for
the primal problem (1) and dual problem (4):

. min  f(x) .
f*:=< =xerr and d* := max d()\).
s.t. Ax=Db, x€ X, xER™
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Necessary and sufficient condition
Theorem (Necessary and sufficient optimality condition)
Under Slater’s condition (6): relint(X) N {x : Ax =Db} # 0, the KKT condition (2)

0 € ATXN +0f(x*) + Na(x*),
0 =Ax*—b.

is necessary and sufficient for a point (x*,A\*) € X x R™ being an optimal solution for

the primal problem (1) and dual problem (4):

. min  f(x) .
f* =< xerp and d* := max d()\).
s.t. Ax=Db, x€ X, x€ER™

Strong duality

> By definition of f* and d*, we always have (weak duality).

> Under Slater’s condition and X* # (), we have (strong duality).

> Any solution (x*, A\*) of the KKT condition (2) is also a saddle point.
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What happens if Slater’s condition does not hold?

Claim

Without Slater’s condition, KKT condition is only sufficient but not necessary, i.e., if
(x*, \*) satisfies the KKT condition, then x* is a global solution of (1) but not vice
versa.

Example (Violating Slater's condition)

Consider the following constrained convex problem:

min {z1 : z2 = O,x% —x9 < 0}
x6R2

In the setting (1), we have A :=[0,1], b=0, ¥ = {x €R? : 22 — 25 <0}. The
feasible set D := {x € R? : 23 = 0,22 — z3 < 0} = {(0,0)T} contains only one
point, which is also the optimal solution of the problem, i.e., x* := (0,0)7.

In this case, Slater’s condition is definitely violated. Let us check the KKT condition.
Since Ny (x*) = {(0, —t)T : t > 0}, we can write the KKT condition as

m + m“ [fot} - [8]7 AER, tER,.

Since this linear system has no solution due to the first equation 1 = 0, the KKT
condition is inconsistent.

. |
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Violating Slater’s condition

X:z{xGR2

|Ax=b<:x2:O

M@ = @ —0F : e B )
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Outline

Efficiency considerations

|
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Decomposability

Decomposable structure

The function f and the feasible set X" have the following structure

f(x) = Zfz‘(xi), and X=X X - X X,

=1

where m > 1 is the number of components, x; is a sub-vector (component) of x,
fi : RPi — R U {400} is convex and Z:il pi = p.
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Dual decomposition

An important role of strong duality

> Strong duality is a key property in convex optimization, which creates a
connection between primal problem (1) and dual problem (4).

> Under Slater’s condition, strong duality holds, i.e., f* = d*.

> In principle, by solving dual problem (4), we can recover a solution of primal
problem (1) and vice versa.
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Dual decomposition

An important role of strong duality

> Strong duality is a key property in convex optimization, which creates a
connection between primal problem (1) and dual problem (4).

> Under Slater’s condition, strong duality holds, i.e., f* = d*.

> In principle, by solving dual problem (4), we can recover a solution of primal
problem (1) and vice versa.

Decomposability is a key property for parallel algorithms
> Under the decomposable assumption, the dual function d can be decomposed as
d(\) = Z d;i(\) — bT .
i=1

where
di(N) = xl;négg {fi(xi) + )‘TAixi}y i=1,...,9.

» Evaluating function d;(-) and its [sub]gradients can be computed in parallel

. )|
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Efficiency considerations for the dual problem

Subgradient method
1. Choose AU € R”.
2. For k=0,1,---, perform:
Mot = Ak vk,
where vF € 9d(A\F) and oy, is the step-size.

Subgradient method for the dual

Assume that the following conditions
1. |[v]l2 € G for all v € d(\), A € R™.
2. N = X2 <R
Let the step size be chosen as
ap = Gf Then, the subgradient
method satisfies
RG

min d* — d(\}) <
0<i<k
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Efficiency considerations for the dual problem

Subgradient method
1. Choose AU € R”.
2. For k=0,1,---, perform:
Mot = Ak vk,
where vF € 9d(A\F) and oy, is the step-size.

Subgradient method for the dual

Assume that the following conditions
1. |[v]l2 € G for all v € d(\), A € R™.
2. N = X2 <R
Let the step size be chosen as
ap = Gf Then, the subgradient
method satisfies

. RG
min d* —d(\") < <e
0<i<k vk

SGM: O (6_%) X subgradient calculation
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Efficiency considerations for the dual problem

Gradient method

1. Choose A0 ¢ R™.

2. For k=0,1,---, perform:
Mo+l = 2k Lyd(ak),

where L is the Lipschitz constant.

Subgradient method for the dual

Assume that the following conditions

1. |[v]2 < G for all v € 9d(\), A € R™.

2. A~ M2 <R

Let the step-size be chosen as
_ _R i
k= o Then, the subgradient

method satisfies

; RG
min d* —d(\') < —<¢&
0<i<k vk
SGM:

GM: (@] (%) X gradient calculation

lions@epfl

@] (e%) X subgradient calculation
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Impact of smoothness
(Lipschitz gradient) d(\) has Lipschitz
continuous gradient iff

Vd(A) = Vd(n)ll2 < LlIX = nll2
for all \,n € dom(d) and we indicate this
structure as d(\) € Fr.
For all d(\) € Fr, the gradient method
with step-size 1/L obeys
2LR?
kE+4

d* —d(\F) < <&

Slide 27/ 48

LG



Efficiency considerations for the dual problem

Gradient method

1. Choose A0 ¢ R™.

2. For k=0,1,---, perform:
Mo+l = 2k Lyd(ak),

where L is the Lipschitz constant.

Subgradient method for the dual

Assume that the following conditions

1. |[v]2 < G for all v € 9d(\), A € R™.

2. A~ M2 <R

Let the step-size be chosen as
_ _R i
k= o Then, the subgradient

method satisfies

; RG
min d* —d(\') < —<¢&
0<i<k vk
SGM:

GM: (@] (%) X gradient calculation

lions@epfl

@] (e%) X subgradient calculation
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Impact of smoothness
(Lipschitz gradient) d(\) has Lipschitz
continuous gradient iff

Vd(A) = Vd(n)ll2 < LlIX = nll2
for all \,n € dom(d) and we indicate this
structure as d(\) € Fr.
For all d(\) € Fr, the gradient method
with step-size 1/L obeys
2LR?
kE+4

d* —d(\F) < <&

This is NOT the best we can do.

There exists a complexity lower-bound

: 3LR?
d* —d(\*) >

> vaal/()‘) € Fiy

for any iterative method based only on
function and gradient evaluations.
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Efficiency considerations for the dual problem

Accelerated gradient method
1. Choose u? = XV € R™.
2. For k=0,1,---, perform:
A =P 4 1Vd(uk),
uk+1 — )\k +Pk(>\k _ )\k—l),
where L is the Lipschitz constant, and
Pk is @ momentum parameter.

Subgradient method for the dual

Assume that the following conditions
1. |[v]l2 € G for all v € d(\), A € R™.
2. N = X2 <R

Let the step size be chosen as
ap = Gf Then, the subgradient

method satisfies

RG

min d* —d(\) < —< ¢

0<i<k A = NI
SGM: O (512) X subgradient calculation
GM: (% X gradient calculation

AGM: O ) X gradient calculation

lions@epf| VR emat

s of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Impact of smoothness
(Lipschitz gradient) d(\) has Lipschitz
continuous gradient iff

Vd(A) = Vd(n)ll2 < LlIX = nll2

for all \,n € dom(d) and we indicate this
structure as d()\) € Fr.

For all d(X\) € Fr,, the accelerated gradient

method with momentum pg = kT—ii obeys
: 2LR?
d* —d(\*) < <e
(k+2)2

This is NEARLY the best we can do.
There exists a complexity lower-bound
y 3LR?
d* —d\*) > —/——
32(k+1)2°
for any iterative method based only on
function and gradient evaluations.

,Vd(X) € Fr,
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Number of iterations: From O (%) to O (1)

When can the dual function have Lipschitz gradient?
2
When f(x) is y-strongly convex, the dual function d(}) is M-Lipschitz gradient.
v
Strong convexity) f(x) is y-strongly convex iff f(x) — Z||x||2 is convex.
2 2

q v 2l
d(A) = min  f(x) - SlIxll3 +\Ax—b)+ x|l
xX:XEX 2 2

N

convex & leads to dE€F,

possibly nonsmooth

AGM automatically obtains d* — d(x*) < € with k = O (%)

Slide 28/ 48 !ﬁl’!l!
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Number of iterations: From O (%) to O (1)

When can the dual function have Lipschitz gradient?

2
N
Y

When f(x) is y-strongly convex, the dual function d(\) i -Lipschitz gradient.

(Strong convexity) f(x) is y-strongly convex iff f(x) — X ||x||2 is convex.

q v 2l
d(A) = min  f(x) - SlIxll3 +\Ax—b)+ x|l
xX:XEX 2 2

N—
convex & leads to dE€F,

possibly nonsmooth

A simple idea: Apply Nesterov's smoothing [22] to the dual

I g 1 0y 2
’Y()‘) I:IHEHX f( ) <>\7 > 2 H HZ

1. Vd,(A) = Ax5(\) — b
2. dy(A) —yDx < d(X) < dy(A), where Dy = maxxcx %||x||§

2| A[2R?

3. A* of AGM on d(}) has d* — d(A¥) < yDx +df — d\(A\*) < yDx + L
!

4. We minimize the upperbound wrt v and obtain d* — d(\F) < € with k = O (%)

. V
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Per-iteration time: The key role of the prox-operator

Smoothed dual: d(\) = mingxex f(x) + (A, Ax — b) + %||x[|3

. 1
x*(A) == proxjf/W (—;AT)\)

. )|
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Per-iteration time: The key role of the prox-operator

Smoothed dual: d(\) = mingxex f(x) + (A, Ax — b) + %||x[|3

. 1
x*(A) == proxjf/W (—;AT)\)

Definition (Prox-operator)

prox (x) := arg min {f(z) + (1/2)lz - x|}

Key properties:
> single valued & non-expansive.

» distributes when the primal problem has decomposable structure:

F69 =D filx), and X=X x X X,
=1

where m > 1 is the number of components.

> often efficient & has closed form expression. For instance, if f(z) = ||z||1, then
the prox-operator performs coordinate-wise soft-thresholding by 1.

. V
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Outline

Back to the primal
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Going from the dual € to the primal I

Challenges for the plausible strategy above
1. Establishing its correctness: Assume f* > —oo and Slater’s condition for f* = d*
2. Computational efficiency of finding an €-approximate optimal dual solution AX

3. Mapping A\f — x} (i.e., €(¢)), where € is for the original constrained problem (1)

3 V
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Going from the dual € to the primal I

Challenges for the plausible strategy above
1. Establishing its correctness: Assume f* > —oo and Slater’s condition for f* = d*
2. Computational efficiency of finding an €-approximate optimal dual solution AX

3. Mapping A\f — x} (i.e., €(¢)), where € is for the original constrained problem (1)

Measuring progress via the gap function

We can define a gap function to measure our progress for z := (x,A\) € X x R™

G(z) = max f(x) + (A, Ax — b) — min f(%) + (\, AXx —b) >0
AER™ XEX

=f(x) if Ax=Db,0c0 o/w =d(X)

> G(z*) = 0 iff z* := (x*, \*) is a primal-dual solution of (1).

> Primal accuracy € and the dual accuracy € can be related via the gap function.

-
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Going from the dual € to the primal eIl

A smoothed gap function measuring the primal-dual gap

We define a smoothed version of the gap function
3 Bs N . Y e
Gp(2z) = max f(x) + (A, Ax — b) — Z||A|3 — min £(X) + (A, Ax — b) + ~[|%]13
=4 2 xXEX 2

F8G)=1(x)+ 55 | Ax—b]3 dy(N)

3 V
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Going from the dual € to the primal eIl

A smoothed gap function measuring the primal-dual gap

We define a smoothed version of the gap function
3 Bs N . Y e
Gp(2z) = max f(x) + (A, Ax — b) — Z||A|3 — min £(X) + (A, Ax — b) + ~[|%]13
=4 2 xXEX 2

F8G)=1(x)+ 55 | Ax—b]3 dy(N)

Our new technique: Model-based gap reduction MGR (cf., [25])
Let Gi(-) := G, g, (-). We generate a sequence {zk,'yk,ﬂk}kzo such that

‘ Gr1(ZFT) < (1 — )G (2") + v, ‘ (MGR)

for 1, — 0, rate 7, € (0,1) (Ek Tk = 00), VkBr+1 < VkBr so that
Grpsa () = GO).

» Consequence: ‘ G(z*) = 0t = ZF =27 = (x*,\) ‘ (primal-dual solution).

MGR ties € to € via fg(x)

3 )
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An instance of our primal-dual scheme

The standard scheme ([21])

The accelerated scheme for maximing dy € }'i’l consists of three main steps:

5\k = (1 — Tk))\k —+ Tk;\k

Nt = 3 71w, () @)
&

Aetr = Ap = - (AF = AL,

Here, L, is the Lipschitz constant of Vdy and 74, € (0,1) is a given momentum term.

Our primal-dual scheme (http://lions.epfl.ch/decopt)

Our approach is fundamentally the same as the accelerated gradient method:

Ak = (1-— 'rk))\k + TkS\k
k+1 . \k Yk+1 * 3k
2\F+ o= NP b TA|Z (Ax7k+l(A ) —b) )
xkFHl = (1 — )xF + XS, (\F)
Nl = L (AxFHl — D).
Br+1

Both smoothing parameters v and 3 are updated at each iteration.

. V
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http://lions.epfl.ch/decopt

Going from the dual € to the primal e-lll

An uncertainty relation via MGR ([26, 25])

The product of the primal and dual convergence rates is lowerbounded by MGR:

2

1— 2

Ve Br > A2

Note that ‘r,% =Q (,712) for the smoothed gap.

> The rate of 7} controls the primal residual: |f(x*) — f*| < O (yx)
> The rate of (B controls the feasibility: |Ax* —b|l2 < O (B + ) = O (Br)

> They cannot be simultaneously O (k%)’

3 V
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Convergence guarantee

Theorem [26, 25]
1. When f is non-smooth, the best we can do is v = O (%) and B = O (%)

Cp,D
—Dp+||Ax* —b|| < f(xF) - f* < K
Cy(Dpx++/Dx)
||Axk —-bl| < %7

where C)p, and Cy are two given positive constants depending on different schemes.

2. When f is strongly convex with ;> 0, we can take v, = p and By = O (,712)

—Da«||Ax* —b|| < f(xF)—f* <0
4)A(2
laxt —bl| < 8l Das
3 4]|A
l* —c*|| < Zh5 Das
where Dp« := min{||[A*|| : A* € A*} the norm of the min-norm dual solution.
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Example: An application of the convergence guarantees

Problem (Consensus optimization)

£ o= min {169 = iﬂ(x)}
=il

Constrained reformulation via a product space trick with z := [X1,...,Xn]:
1 n
F* = min {F(z) == E fi(xi) :x; —x; =0,(4,7) € E}
z:=[x1,...,Xn] ERTP n £ .
=

for some user-defined graph G = (V, E) with vertices V and edges E.
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Example: An application of the convergence guarantees

Problem (Consensus optimization)

£ o= min {169 = iﬂ(x)}
=il

Constrained reformulation via a product space trick with z := [X1,...,Xn]:
1 n
F* = min {F(z) == E fi(xi) :x; —x; =0,(4,7) € E}
z:=[x1,...,Xn] ERTP n £ .
=

for some user-defined graph G = (V, E) with vertices V and edges E.
Interpretation of the convergence guarantees
By using our algorithm in a decentralized but synchronized fashion, we obtain

|F(z*) — *| < O(1/k) and Z Ik — x52 < 0 /k?), i=1,...,n - 1.
(i) €E

If f;'s are strongly convex, these rates further improve.
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Number of iterations: From O (%) to O ( 1_)

S

The augmented Lagrangian (AL) smoothing

&) = min { 769 + (\ Ax — b} + T [ Ax— b}

1. dy now has Lipschitz continuous gradient with Lgq, =~
2. Vdy(A) = AxI(N) —b.

3. xTy()\) can be computed approximately by first-order methods.

. |
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Augmented Lagrangian idea: The trade-offs

An uncertainty relation via MGR

The product of the primal and dual convergence rates is lowerbounded by MGR:
> -2
’Yﬁk+1 = T -

Here, we update 8j, as Br+1 = (1 — 7% )Bk. Then B, = Q(T,?)
Note that Tl? =Q (k%) due to Nesterov's lowerbound.

> The rate of 3;, controls the primal residual: |f(x*) — f*| < O (Bx)
> The rate of By, controls the feasibility: |Ax* — b2 < O (Br)

> They can be simultaneously O (A%)l

No free lunch: Large « increases the difficulty of per-iteration time!

-
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Augmented Lagrangian idea: The trade-offs

Theorem (convergence guarantee) [26, 25]
The sequence {z*} generated by our accelerated scheme satisfies:

—3lAx* —b|? — [Ax*F —b|Dyx < F(xF) - f* <0

| Axk —b]| st

S St

The worst-case iteration complexity: O ( DWA* )

> We can increase « to obtain faster convergence
> However, it becomes more difficult to compute xi‘/(j\k)|

> Warm starts help but we need to solve subproblems with increasing accuracy!

L]



Tree sparsity [19, 10, 2, 31]

|

Wavelet coefficients Wavelet tree Valid selection of nodes Invalid selection of nodes
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Tree sparsity [19, 10, 2, 31]

>

f(x)-ball

Structure: We seek the sparsest signal with a rooted connected subtree support.

Compressive sensing formulation (TU-relax [12])

min  f(9) 1= Yg, e X0l

9
s.t. Ax = b. ©

This problem possesses two key structures: decomposability and tractable proximity.
When g = p and G; = {i}, (9) reduces to the well-known basis pursuit (BP):

min [|x]l1 s.t. Ax=Db. (10)
xERP

3 |
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Tree sparsity example: 1:100-compressive sensing
(n,p) = (107,10%)
Lac Léman

World [1Gpix] World [10Mpix]

sparse

tree-sparse

PNSR = 31.83db PNSR = 32.48db

Sampling: Breaking the coherence barrier [1]
Recovery: Augmented Lagrangian method [26]

Iterations: 113
PD gap: 1e-8
Applications of (A, AT): (684,570)
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Tree sparsity example: TV & TU-relax 1:15-compression [25, 1]

Original tiff image [2048 x 2048]

TU-relax

TV with BP TV w

‘=*

ith TU-relax

Regularization:

—tv-BP
* min error
—tv-TU relax
* min error

(L]
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