# Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 11: Constrained convex minimization I

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

#### EE-556 (Fall 2015)





# License Information for Mathematics of Data Slides

- This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
  - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
  - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.
- Share Alike
  - The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

lions@epfl



## Outline

- Today
  - 1. Primal-Dual methods
- Next week
  - 1. Frank-Wolfe method
  - 2. Universal primal-dual gradient methods
  - 3. ADMM



## **Recommended readings**

- Quoc Tran-Dinh and Volkan Cevher, Constrained convex minimization via model-based excessive gap. In Proc. the Neural Information Processing Systems Foundation conference (NIPS2014), pages 1-9, Montreal, Canada, December 2014.
- Y. Nesterov, Smooth Minimization of Non-smooth Functions. Math. Program., Ser. A, 103:127-152, 2005.





## Swiss army knife of convex formulations

# A primal problem prototype

$$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{K}, \ \mathbf{x} \in \mathcal{X} \right\},\tag{1}$$

- f is a proper, closed and convex function
- $\mathcal{X}$  and  $\mathcal{K}$  are nonempty, closed convex sets
- $\mathbf{A} \in \mathbb{R}^{n imes p}$  and  $\mathbf{b} \in \mathbb{R}^n$  are known
- An optimal solution  $\mathbf{x}^{\star}$  to (1) satisfies  $f(\mathbf{x}^{\star}) = f^{\star}$ ,  $\mathbf{A}\mathbf{x}^{\star} = \mathbf{b}$  and  $\mathbf{x}^{\star} \in \mathcal{X}$

An example from the sparseland

$$\min_{\mathbf{x}\in\mathbb{R}^p}\left\{\|\mathbf{x}\|_1:\|\mathbf{A}\mathbf{x}-\mathbf{b}\|_2\leq\kappa,\|\mathbf{x}\|_\infty\leq c\right\}$$
(SOCP)





## Swiss army knife of convex formulations

## A primal problem prototype

$$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{K}, \ \mathbf{x} \in \mathcal{X} \right\},\tag{1}$$

- ► *f* is a proper, closed and convex function
- $\mathcal{X}$  and  $\mathcal{K}$  are nonempty, closed convex sets
- $\mathbf{A} \in \mathbb{R}^{n imes p}$  and  $\mathbf{b} \in \mathbb{R}^n$  are known
- An optimal solution  $\mathbf{x}^{\star}$  to (1) satisfies  $f(\mathbf{x}^{\star}) = f^{\star}$ ,  $\mathbf{A}\mathbf{x}^{\star} = \mathbf{b}$  and  $\mathbf{x}^{\star} \in \mathcal{X}$

#### An example from the sparseland

$$\min_{\mathbf{x}\in\mathbb{R}^p}\left\{\|\mathbf{x}\|_1:\|\mathbf{A}\mathbf{x}-\mathbf{b}\|_2\leq\kappa,\|\mathbf{x}\|_\infty\leq c\right\}$$
(SOCP)

# Broad context for (1):

- Standard convex optimization formulations: linear programming, convex quadratic programming, second order cone programming, semidefinite programming and geometric programming.
- Reformulations of existing unconstrained problems via convex splitting: composite convex minimization, consensus optimization, ...



## Swiss army knife of convex formulations

## A primal problem prototype

$$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{K}, \ \mathbf{x} \in \mathcal{X} \right\},\tag{1}$$

- ► *f* is a proper, closed and convex function
- $\mathcal{X}$  and  $\mathcal{K}$  are nonempty, closed convex sets
- $\mathbf{A} \in \mathbb{R}^{n imes p}$  and  $\mathbf{b} \in \mathbb{R}^n$  are known
- An optimal solution  $\mathbf{x}^{\star}$  to (1) satisfies  $f(\mathbf{x}^{\star}) = f^{\star}$ ,  $\mathbf{A}\mathbf{x}^{\star} = \mathbf{b}$  and  $\mathbf{x}^{\star} \in \mathcal{X}$

## A key advantage of the unified formulation (1): Primal-dual methods

- decentralized collection & storage of data
- cheap per-iteration costs & distributed computation

# Broad context for (1):

- Standard convex optimization formulations: linear programming, convex quadratic programming, second order cone programming, semidefinite programming and geometric programming.
- Reformulations of existing unconstrained problems via convex splitting: composite convex minimization, consensus optimization, ...



# Primal-dual methods for (1):

#### Plenty ...

- Variants of the Arrow-Hurwitz's method:
  - Chambolle-Pock's algorithm [4], and its variants, e.g., He-Yuan's variant [17].
  - Primal-dual Hybrid Gradient (PDHG) method and its variants [13, 15].
  - Proximal-based decomposition (Chen-Teboulle's algorithm) [5].
- Splitting techniques from monotone inclusions:
  - Primal-dual splitting algorithms [3, 6, 28, 7, 8].
  - Three-operator splitting [9].
- Dual splitting techniques:
  - Alternating minimization algorithms (AMA) [14, 28].
  - Alternating direction methods of multipliers (ADMM) [11, 18].
  - Accelerated variants of AMA and ADMM [8, 16].
  - Preconditioned ADMM, Linearized ADMM and inexact Uzawa algorithms [4, 23].
- Second-order decomposition methods:
  - Dual (quasi) Newton methods [29].
  - Smoothing decomposition methods via barriers functions [20, 27, 30].



### Exact vs. approximate solutions

- Computing an exact solution  $\mathbf{x}^{\star}$  to (1) is impracticable
- Algorithms seek  $\mathbf{x}_{\epsilon}^{\star}$  that approximates  $\mathbf{x}^{\star}$  up to  $\epsilon$  in some sense

A performance metric: Time-to-reach  $\epsilon$ 

time-to-reach  $\epsilon$  = number of iterations to reach  $\epsilon$  imes per iteration time





### Exact vs. approximate solutions

- Computing an exact solution  $\mathbf{x}^{\star}$  to (1) is impracticable
- Algorithms seek  $\mathbf{x}_{\epsilon}^{\star}$  that approximates  $\mathbf{x}^{\star}$  up to  $\epsilon$  in some sense

#### A performance metric: Time-to-reach $\epsilon$

time-to-reach  $\epsilon$  = number of iterations to reach  $\epsilon$   $\times$  per iteration time

#### Per-iteration time:

first-order methods: Multiplication with A,  $A^T$ , and appropriate "prox-operators"





### Exact vs. approximate solutions

- Computing an exact solution  $\mathbf{x}^{\star}$  to (1) is impracticable
- Algorithms seek  $\mathbf{x}_{\epsilon}^{\star}$  that approximates  $\mathbf{x}^{\star}$  up to  $\epsilon$  in some sense

#### A performance metric: Time-to-reach $\epsilon$

time-to-reach  $\epsilon$  = number of iterations to reach  $\epsilon$   $\times$  per iteration time

#### Per-iteration time:

first-order methods: Multiplication with A,  $A^T$ , and appropriate "prox-operators"

A key issue: Number of iterations to reach  $\epsilon$ 

The notion of  $\epsilon$ -accuracy is elusive in constrained optimization!





Unconstrained case: All iterates are feasible (no advantage from infeasibility)!

$$f(\mathbf{x}_{\epsilon}^{\star}) - f^{\star} \leq \epsilon$$

$$f^{\star} = \min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x})$$





Unconstrained case: All iterates are feasible (no advantage from infeasibility)!

$$f(\mathbf{x}_{\epsilon}^{\star}) - f^{\star} \leq \epsilon$$

• Constrained case: We need to also measure the infeasibility of the iterates!

$$f^{\star} - f(\mathbf{x}_{\epsilon}^{\star}) \le \epsilon \quad !!!$$

$$f^{\star} = \min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{K}, \ \mathbf{x} \in \mathcal{X} \right\}$$





Unconstrained case: All iterates are feasible (no advantage from infeasibility)!

$$f(\mathbf{x}_{\epsilon}^{\star}) - f^{\star} \leq \epsilon$$

• Constrained case: We need to also measure the infeasibility of the iterates!

$$f^{\star} - f(\mathbf{x}_{\epsilon}^{\star}) \leq \epsilon \quad !!!$$

$$f^{\star} = \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{K}, \ \mathbf{x} \in \mathcal{X} \right\}$$

#### Our definition of $\epsilon$ -accurate solutions [25]

Given a numerical tolerance  $\epsilon \geq 0$ , a point  $\mathbf{x}_{\epsilon}^{\star} \in \mathbb{R}^{p}$  is called an  $\epsilon$ -solution of (1) if

$$\begin{cases} f(\mathbf{x}_{\epsilon}^{\star}) - f^{\star} \leq \epsilon & \text{(objective residual),} \\ \text{dist} \left(\mathbf{A}\mathbf{x}_{\epsilon}^{\star} - \mathbf{b}, \mathcal{K}\right) \leq \epsilon & \text{(feasibility gap),} \\ \mathbf{x}_{\epsilon}^{\star} \in \mathcal{X} & \text{(exact feasibility for the simple set).} \end{cases}$$

• When  $\mathbf{x}^*$  is unique, we can also obtain  $\|\mathbf{x}^*_{\epsilon} - \mathbf{x}^*\| \leq \epsilon$  (iterate residual).





Unconstrained case: All iterates are feasible (no advantage from infeasibility)!

$$f(\mathbf{x}_{\epsilon}^{\star}) - f^{\star} \leq \epsilon$$

• Constrained case: We need to also measure the infeasibility of the iterates!

$$f^{\star} - f(\mathbf{x}_{\epsilon}^{\star}) \leq \epsilon \quad !!!$$

$$f^{\star} = \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{K}, \ \mathbf{x} \in \mathcal{X} \right\}$$

#### Our definition of $\epsilon$ -accurate solutions [25]

Given a numerical tolerance  $\epsilon \geq 0$ , a point  $\mathbf{x}^{\star}_{\epsilon} \in \mathbb{R}^p$  is called an  $\epsilon$ -solution of (1) if

$$\begin{cases} f(\mathbf{x}_{\epsilon}^{\star}) - f^{\star} \leq \epsilon & \text{(objective residual),} \\ \mathsf{dist}\left(\mathbf{A}\mathbf{x}_{\epsilon}^{\star} - \mathbf{b}, \mathcal{K}\right) \leq \epsilon & \text{(feasibility gap),} \\ \mathbf{x}_{\epsilon}^{\star} \in \mathcal{X} & \text{(exact feasibility for the simple set).} \end{cases}$$

Slide 8/ 48

- When  $\mathbf{x}^*$  is unique, we can also obtain  $\|\mathbf{x}_{\epsilon}^* \mathbf{x}^*\| \leq \epsilon$  (iterate residual).
- $\blacktriangleright$  can be different for the objective, feasibility gap, or the iterate residual.





#### A performance metric: Time-to-reach $\epsilon$

time-to-reach  $\epsilon$  = number of iterations to reach  $\epsilon$  imes per iteration time

#### Finding the fastest algorithm within the zoo is tricky!

- heuristics & tuning parameters
- non-optimal rates & strict assumptions
- lack of precise characterizations



#### A performance metric: Time-to-reach $\epsilon$

time-to-reach  $\epsilon$  = number of iterations to reach  $\epsilon$  imes per iteration time

#### Finding the fastest algorithm within the zoo is tricky!

- heuristics & tuning parameters
- non-optimal rates & strict assumptions
- Iack of precise characterizations

In the sequel: Heuristic-free optimal *first-order* primal-dual / ADMM / AMA methods





# Outline

The proximal way

Establishing correctness

Efficiency considerations

Back to the primal





### The optimal solution set

### Optimality condition

The optimality condition of  $\min_{\mathbf{x}\in\mathbb{R}^p} \{f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b}\}$  (e.g., simplified (1)):

$$\begin{cases} 0 \in \mathbf{A}^T \lambda^* + \partial f(\mathbf{x}^*), \\ 0 = \mathbf{A}\mathbf{x}^* - \mathbf{b}. \end{cases}$$
(2)

 $(\textbf{Subdifferential}) \ \partial f(\mathbf{x}) := \{ \mathbf{v} \in \mathbb{R}^p \ : \ f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{v}^T(\mathbf{y} - \mathbf{x}), \ \forall \mathbf{y} \in \mathbb{R}^p \}.$ 

- This is the well-known KKT (Karush-Kuhn-Tucker) condition.
- Any point  $(\mathbf{x}^*, \lambda^*)$  satisfying (2) is called a KKT point.
- $\mathbf{x}^*$  is called a stationary point and  $\lambda^*$  is the corresponding multipliers.





# Example: Basis pursuit

## Example (Basis pursuit)

 $\min_{\mathbf{x}\in\mathbb{R}^p} \|\mathbf{x}\|_1 \text{ s.t. } \mathbf{A}\mathbf{x} = \mathbf{b}.$ 

#### Note:

- ▶  $f(\mathbf{x}) := \|\mathbf{x}\|_1$  is nonsmooth, for any  $\mathbf{v} \in \partial f(\mathbf{x})$  we have  $v_i = +1$  if  $x_i > 0$ ,  $v_i = -1$  if  $x_i < 0$  and  $v_i \in (-1, 1)$  if  $x_i = 0$ .
- Since  $\mathcal{X} \equiv \mathbb{R}^p$ , we have  $\mathcal{N}_{\mathcal{X}}(\mathbf{x}) = \{0\}$  for all  $\mathbf{x}$ .





## Example: Basis pursuit

### Example (Basis pursuit)

 $\min_{\mathbf{x}\in\mathbb{R}^p} \|\mathbf{x}\|_1 \text{ s.t. } \mathbf{A}\mathbf{x} = \mathbf{b}.$ 

#### Note:

- ▶  $f(\mathbf{x}) := \|\mathbf{x}\|_1$  is nonsmooth, for any  $\mathbf{v} \in \partial f(\mathbf{x})$  we have  $v_i = +1$  if  $x_i > 0$ ,  $v_i = -1$  if  $x_i < 0$  and  $v_i \in (-1, 1)$  if  $x_i = 0$ .
- Since  $\mathcal{X} \equiv \mathbb{R}^p$ , we have  $\mathcal{N}_{\mathcal{X}}(\mathbf{x}) = \{0\}$  for all  $\mathbf{x}$ .

#### Optimality condition

The optimality condition of (2) becomes

$$\begin{cases} 0 \in \partial f(\mathbf{x}^{\star}) + \mathbf{A}^T \lambda^{\star} \\ 0 = \mathbf{A}\mathbf{x}^{\star} - \mathbf{b}. \end{cases} \Leftrightarrow \begin{cases} (\mathbf{A}^T \lambda^{\star})_i = -1 & \text{if } x_i^{\star} > 0, \ 1 \le i \le p \\ (\mathbf{A}^T \lambda^{\star})_i = +1 & \text{if } x_i^{\star} < 0, \ 1 \le i \le p \\ (\mathbf{A}^T \lambda^{\star})_i \in (-1, 1) & \text{if } x_i^{\star} = 0, \ 1 \le i \le p \\ \mathbf{A}\mathbf{x}^{\star} = \mathbf{b}. \end{cases}$$





## Finding an optimal solution

A plausible algorithmic strategy for  $\min_{\mathbf{x}\in\mathcal{X}} \{f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b}\}$ :

A natural minimax formulation:

$$(\mathbf{x}^{\star}, \lambda^{\star}) \in \arg \max_{\lambda} \min_{\mathbf{x} \in \mathcal{X}} \{ \mathcal{L}(\mathbf{x}, \lambda) := f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle \}.$$

 $\begin{array}{ll} \text{Lagrangian subproblem:} & \mathbf{x}^*(\lambda) \in \arg\min_{\mathbf{x} \in \mathcal{X}} \mathcal{L}(\mathbf{x}, \lambda) \\ \text{Dual problem:} & \lambda^* \in \arg\max_{\lambda} \left\{ d(\lambda) := \mathcal{L}(\mathbf{x}^*(\lambda), \lambda) \right\} \end{array}$ 

- $\lambda$  is called the Lagrange multiplier.
- The function  $d(\lambda)$  is called the dual function, and it is concave!
- The optimal dual objective value is  $d^* = d(\lambda^*)$ .

A basic strategy  $\Rightarrow$  Find  $\lambda^{\star}$  and then solve for  $\mathbf{x}^{\star} = \mathbf{x}^{\star}(\lambda^{\star})$ 



## Finding an optimal solution

A plausible algorithmic strategy for  $\min_{\mathbf{x} \in \mathcal{X}} \{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b} \}$ :

A natural minimax formulation:

$$(\mathbf{x}^{\star}, \lambda^{\star}) \in \arg \max_{\lambda} \min_{\mathbf{x} \in \mathcal{X}} \{ \mathcal{L}(\mathbf{x}, \lambda) := f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle \}.$$

 $\begin{array}{ll} \text{Lagrangian subproblem:} & \mathbf{x}^*(\lambda) \in \arg\min_{\mathbf{x} \in \mathcal{X}} \mathcal{L}(\mathbf{x}, \lambda) \\ \text{Dual problem:} & \lambda^* \in \arg\max_{\lambda} \left\{ d(\lambda) := \mathcal{L}(\mathbf{x}^*(\lambda), \lambda) \right\} \end{array}$ 

- $\lambda$  is called the Lagrange multiplier.
- The function  $d(\lambda)$  is called the dual function, and it is concave!
- The optimal dual objective value is d<sup>\*</sup> = d(λ<sup>\*</sup>).

A basic strategy  $\Rightarrow$  Find  $\lambda^*$  and then solve for  $\mathbf{x}^* = \mathbf{x}^*(\lambda^*)$ 

#### Challenges for the plausible strategy above

- 1. Establishing its correctness
- 2. Computational efficiency of finding an  $\bar{\epsilon}$ -approximate optimal dual solution  $\lambda_{\bar{\epsilon}}^{\star}$
- 3. Mapping  $\lambda_{\overline{\epsilon}}^{\star} \to \mathbf{x}_{\epsilon}^{\star}$  (i.e.,  $\overline{\epsilon}(\epsilon)$ ), where  $\epsilon$  is for the original constrained problem (1)

Slide 13/ 48

lions@epfl



## Finding an optimal solution

A plausible algorithmic strategy for  $\min_{\mathbf{x} \in \mathcal{X}} \{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b} \}$ :

A natural minimax formulation:

$$(\mathbf{x}^{\star}, \lambda^{\star}) \in \arg \max_{\lambda} \min_{\mathbf{x} \in \mathcal{X}} \{ \mathcal{L}(\mathbf{x}, \lambda) := f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle \}.$$

 $\begin{array}{ll} \text{Lagrangian subproblem:} & \mathbf{x}^*(\lambda) \in \arg\min_{\mathbf{x} \in \mathcal{X}} \mathcal{L}(\mathbf{x}, \lambda) \\ \text{Dual problem:} & \lambda^* \in \arg\max_{\lambda} \left\{ d(\lambda) := \mathcal{L}(\mathbf{x}^*(\lambda), \lambda) \right\} \end{array}$ 

- $\lambda$  is called the Lagrange multiplier.
- The function  $d(\lambda)$  is called the dual function, and it is concave!
- The optimal dual objective value is  $d^* = d(\lambda^*)$ .

A basic strategy  $\Rightarrow$  Find  $\lambda^*$  and then solve for  $\mathbf{x}^* = \mathbf{x}^*(\lambda^*)$ 

#### Challenges for the plausible strategy above

- 1. Establishing its correctness: Assume  $f^\star > -\infty$  and Slater's condition for  $f^\star = d^\star$
- 2. Computational efficiency of finding an  $\bar{\epsilon}$ -approximate optimal dual solution  $\lambda_{\bar{\epsilon}}^{\star}$
- 3. Mapping  $\lambda_{\overline{\epsilon}}^{\star} \to \mathbf{x}_{\epsilon}^{\star}$  (i.e.,  $\overline{\epsilon}(\epsilon)$ ), where  $\epsilon$  is for the original constrained problem (1)



# Outline

The proximal way

#### Establishing correctness

Efficiency considerations

Back to the primal





## Back to the the minimax formulation

The dual function and the dual problem revisited

Dual function:

$$d(\lambda) := \min_{\mathbf{x} \in \mathcal{X}} \{ \mathcal{L}(\mathbf{x}, \lambda) := f(\mathbf{x}) + \lambda^T (\mathbf{A}\mathbf{x} - \mathbf{b}) \}.$$
(3)

Let  $\mathbf{x}^*(\lambda)$  be a solution of (3) then  $d(\lambda)$  is finite if  $x^*(\lambda)$  exists.  $d(\cdot)$  is concave and possibly nonsmooth.

• Dual problem: The following dual problem is convex

$$d^* := \max_{\mathbf{x} \in \mathbb{R}^n} d(\lambda) \tag{4}$$





## Back to the the minimax formulation

The dual function and the dual problem revisited

Dual function:

$$d(\lambda) := \min_{\mathbf{x} \in \mathcal{X}} \{ \mathcal{L}(\mathbf{x}, \lambda) := f(\mathbf{x}) + \lambda^T (\mathbf{A}\mathbf{x} - \mathbf{b}) \}.$$
(3)

Let  $\mathbf{x}^*(\lambda)$  be a solution of (3) then  $d(\lambda)$  is finite if  $x^*(\lambda)$  exists.  $d(\cdot)$  is concave and possibly nonsmooth.

Dual problem: The following dual problem is convex

$$d^{\star} := \max_{\mathbf{x} \in \mathbb{R}^n} d(\lambda) \tag{4}$$

The minimax formulation

$$d^{\star} = \max_{\lambda \in \mathbb{R}^{n}} d(\lambda) = \max_{\lambda \in \mathbb{R}^{n}} \min_{\mathbf{x} \in \mathcal{X}} \{f(\mathbf{x}) + \lambda^{T} (\mathbf{A}\mathbf{x} - \mathbf{b})\}$$
  
$$\leq \min_{\mathbf{x} \in \mathcal{X}} \max_{\lambda \in \mathbb{R}^{n}} \{f(\mathbf{x}) + \lambda^{T} (\mathbf{A}\mathbf{x} - \mathbf{b})\} = \begin{cases} \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) & \text{if } \mathbf{A}\mathbf{x} = \mathbf{b}, \\ +\infty & \text{otherwise} \end{cases}$$
(5)

Here, the inequality is due to the max-min theorem [24].

lions@epfl



## Example: Strictly convex quadratic programming

Strictly convex quadratic programming

$$\min_{\mathbf{x} \in \mathbb{R}^p} \quad (1/2)\mathbf{x}^T \mathbf{H} \mathbf{x} + \mathbf{h}^T \mathbf{x}$$
  
s.t.  $\mathbf{A} \mathbf{x} = \mathbf{b}.$ 

where  ${\bf H}$  is symmetric positive definite.





## Example: Strictly convex quadratic programming

Strictly convex quadratic programming

$$\min_{\mathbf{x} \in \mathbb{R}^p} \quad (1/2)\mathbf{x}^T \mathbf{H} \mathbf{x} + \mathbf{h}^T \mathbf{x}$$
  
s.t.  $\mathbf{A} \mathbf{x} = \mathbf{b}.$ 

where  ${\bf H}$  is symmetric positive definite.

Dual problem is also a strictly convex quadratic program

- Lagrange function  $\mathcal{L}(\mathbf{x}, \lambda) := (1/2)\mathbf{x}^T \mathbf{H} \mathbf{x} + (\mathbf{A}^T \lambda + \mathbf{h})^T \mathbf{x} \mathbf{b}^T \lambda$ .
- Dual function:

$$d(\lambda) = \min_{\mathbf{x} \in \mathbb{R}^p} \{ (1/2) \mathbf{x}^T \mathbf{H} \mathbf{x} + (\mathbf{A}^T \lambda + \mathbf{h})^T \mathbf{x} - \mathbf{b}^T \lambda \}$$

• Since  $\mathbf{x}^{\star}(\lambda) = -\mathbf{H}^{-1}(\mathbf{A}^T \lambda + \mathbf{h})$ , we can obtain  $d(\lambda)$  explicitly as

$$d(\lambda) = -(1/2)\lambda^T (\mathbf{A}\mathbf{H}^{-1}\mathbf{A}^T)\lambda - (\mathbf{b} + \mathbf{A}\mathbf{H}^{-1}\mathbf{h})^T \lambda.$$

Dual problem (unconstrained):

$$d^{\star} := \max_{\lambda \in \mathbb{R}^n} d(\lambda) \quad \Leftrightarrow \quad \min_{\lambda \in \mathbb{R}^n} \frac{1}{2} \lambda^T (\mathbf{A}\mathbf{H}^{-1}\mathbf{A}^T) \lambda + (\mathbf{b} + \mathbf{A}\mathbf{H}^{-1}\mathbf{h})^T \lambda.$$





#### Example: Nonsmoothness of the dual function

Consider a constrained convex problem:

$$\begin{split} \min_{\mathbf{x} \in \mathbb{R}^3} & \{f(\mathbf{x}) := x_1^2 + 2x_2\}, \\ \text{s.t.} & 2x_3 - x_1 - x_2 = 1, \\ & \mathbf{x} \in \mathcal{X} := [-2,2] \times [-2,2] \times [0,2]. \end{split}$$

The dual function is defined as

$$d(\lambda) := \min_{\mathbf{x} \in \mathcal{X}} \{ x_1^2 + 2x_2 + \lambda(2x_3 - x_1 - x_2 - 1) \}$$

is concave and nonsmooth as illustrated in the figure below.



Slide 17/48





# Saddle point

### Definition (Saddle point)

A point  $(\mathbf{x}^{\star}, \lambda^{\star}) \in \mathcal{X} \times \mathbb{R}^n$  is called a saddle point of the Lagrange function  $\mathcal{L}$  if

 $\mathcal{L}(\mathbf{x}^{\star}, \lambda) \leq \mathcal{L}(\mathbf{x}^{\star}, \lambda^{\star}) \leq \mathcal{L}(\mathbf{x}, \lambda^{\star}), \; \forall \mathbf{x} \in \mathcal{X}, \; \lambda \in \mathbb{R}^{n}.$ 

Recall the minimax form:

$$\max_{\lambda} \min_{\mathbf{x} \in \mathcal{X}} \{ \mathcal{L}(\mathbf{x}, \lambda) := f(\mathbf{x}) + \lambda^T (\mathbf{A}\mathbf{x} - \mathbf{b}) \}.$$
((3))





# Saddle point

### Definition (Saddle point)

A point  $(\mathbf{x}^{\star}, \lambda^{\star}) \in \mathcal{X} \times \mathbb{R}^n$  is called a saddle point of the Lagrange function  $\mathcal{L}$  if

 $\mathcal{L}(\mathbf{x}^{\star}, \lambda) \leq \mathcal{L}(\mathbf{x}^{\star}, \lambda^{\star}) \leq \mathcal{L}(\mathbf{x}, \lambda^{\star}), \; \forall \mathbf{x} \in \mathcal{X}, \; \lambda \in \mathbb{R}^{n}.$ 

Recall the minimax form:

$$\max_{\lambda} \min_{\mathbf{x} \in \mathcal{X}} \{ \mathcal{L}(\mathbf{x}, \lambda) := f(\mathbf{x}) + \lambda^T (\mathbf{A}\mathbf{x} - \mathbf{b}) \}.$$
((3))

Illustration of saddle point:  $\mathcal{L}(x,\lambda) := (1/2)x^2 + \lambda(x-1)$  in  $\mathbb{R}^2$ 



lions@epfl



## Slater's qualification condition

## Slater's qualification condition

Recall  ${\rm relint}(\mathcal{X})$  the relative interior of the feasible set  $\mathcal{X}.$  The Slater condition requires

relint
$$(\mathcal{X}) \cap \{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}\} \neq \emptyset.$$
 (6)





## Slater's qualification condition

#### Slater's qualification condition

Recall  ${\rm relint}(\mathcal{X})$  the relative interior of the feasible set  $\mathcal{X}.$  The Slater condition requires

relint
$$(\mathcal{X}) \cap \{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}\} \neq \emptyset.$$
 (6)

### Special cases

- If  $\mathcal{X}$  is absent, then (6)  $\Leftrightarrow \exists \bar{\mathbf{x}} : \mathbf{A}\bar{\mathbf{x}} = \mathbf{b}$ .
- If  $\mathbf{Ax} = \mathbf{b}$  is absent, then (6)  $\Leftrightarrow$  relint( $\mathcal{X}$ )  $\neq \emptyset$ .
- ▶ If Ax = b is absent and  $\mathcal{X} := \{x : h(x) \leq 0\}$ , where h is  $\mathbb{R}^p \to R^q$  is convex, then

(6) 
$$\Leftrightarrow \exists \bar{\mathbf{x}} : h(\bar{\mathbf{x}}) < 0.$$

lions@epfl



# Example: Slater's condition

# Example

Let us consider the feasible set  $\mathcal{D}_\alpha:=\mathcal{X}\cap\mathcal{A}_\alpha$  as

$$\mathcal{X} := \{ \mathbf{x} \in \mathbb{R}^2 : x_1^2 + x_2^2 \le 1 \} \ \mathcal{A}_\alpha := \{ \mathbf{x} \in \mathbb{R}^2 : x_1 + x_2 = \alpha \},\$$

where  $\alpha \in \mathbb{R}$ .





# Example: Slater's condition

## Example

Let us consider the feasible set  $\mathcal{D}_\alpha:=\mathcal{X}\cap\mathcal{A}_\alpha$  as

$$\mathcal{X} := \{ \mathbf{x} \in \mathbb{R}^2 : x_1^2 + x_2^2 \le 1 \} \ \mathcal{A}_{\alpha} := \{ \mathbf{x} \in \mathbb{R}^2 : x_1 + x_2 = \alpha \},\$$

where  $\alpha \in \mathbb{R}$ .







## Necessary and sufficient condition

Theorem (Necessary and sufficient optimality condition)

Under Slater's condition (6): relint( $\mathcal{X}$ )  $\cap$  {x : Ax = b}  $\neq \emptyset$ , the KKT condition (2)

$$\begin{cases} 0 \in \mathbf{A}^T \lambda^* + \partial f(\mathbf{x}^*) + \mathcal{N}_{\mathcal{X}}(\mathbf{x}^*), \\ 0 = \mathbf{A}\mathbf{x}^* - \mathbf{b}. \end{cases}$$

is necessary and sufficient for a point  $(\mathbf{x}^*, \lambda^*) \in \mathcal{X} \times \mathbb{R}^n$  being an optimal solution for the primal problem (1) and dual problem (4):

$$f^{\star} := \begin{cases} \min_{\mathbf{x} \in \mathbb{R}^p} & f(\mathbf{x}) \\ \text{s.t.} & \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \in \mathcal{X}, \end{cases} \quad \text{and} \quad d^{\star} := \max_{\mathbf{x} \in \mathbb{R}^n} d(\lambda).$$



# Necessary and sufficient condition

Theorem (Necessary and sufficient optimality condition)

Under Slater's condition (6): relint( $\mathcal{X}$ )  $\cap$  {x : Ax = b}  $\neq \emptyset$ , the KKT condition (2)

$$\begin{cases} 0 \in \mathbf{A}^T \lambda^* + \partial f(\mathbf{x}^*) + \mathcal{N}_{\mathcal{X}}(\mathbf{x}^*), \\ 0 = \mathbf{A}\mathbf{x}^* - \mathbf{b}. \end{cases}$$

is necessary and sufficient for a point  $(\mathbf{x}^*, \lambda^*) \in \mathcal{X} \times \mathbb{R}^n$  being an optimal solution for the primal problem (1) and dual problem (4):

$$f^{\star} := \begin{cases} \min_{\mathbf{x} \in \mathbb{R}^p} & f(\mathbf{x}) \\ \text{s.t.} & \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \in \mathcal{X}, \end{cases} \quad \text{and} \quad d^{\star} := \max_{\mathbf{x} \in \mathbb{R}^n} d(\lambda).$$

# Strong duality

- ▶ By definition of  $f^*$  and  $d^*$ , we always have  $d^* \leq f^*$  (weak duality).
- Under Slater's condition and  $\mathcal{X}^* \neq \emptyset$ , we have  $d^* = f^*$  (strong duality).
- Any solution  $(\mathbf{x}^*, \lambda^*)$  of the KKT condition (2) is also a saddle point.





# What happens if Slater's condition does not hold?

## Claim

Without Slater's condition, KKT condition is only sufficient but not necessary, i.e., if  $(x^*, \lambda^*)$  satisfies the KKT condition, then  $x^*$  is a global solution of (1) but not vice versa.

# Example (Violating Slater's condition)

Consider the following constrained convex problem:

$$\min_{\mathbf{x}\in\mathbb{R}^2} \{x_1 : x_2 = 0, x_1^2 - x_2 \le 0\}$$

In the setting (1), we have  $\mathbf{A} := [0, 1]$ ,  $\mathbf{b} = 0$ ,  $\mathcal{X} = \{\mathbf{x} \in \mathbb{R}^2 : x_1^2 - x_2 \leq 0\}$ . The feasible set  $\mathcal{D} := \{\mathbf{x} \in \mathbb{R}^2 : x_2 = 0, x_1^2 - x_2 \leq 0\} = \{(0, 0)^T\}$  contains only one point, which is also the optimal solution of the problem, i.e.,  $\mathbf{x}^* := (0, 0)^T$ .

In this case, Slater's condition is definitely violated. Let us check the KKT condition. Since  $\mathcal{N}_{\mathcal{X}}(\mathbf{x}^{\star}) = \{(0, -t)^T : t \geq 0\}$ , we can write the KKT condition as

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \lambda + \begin{bmatrix} 0 \\ -t \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \lambda \in \mathbb{R}, \ t \in \mathbb{R}_+.$$

Since this linear system has no solution due to the first equation 1 = 0, the KKT condition is inconsistent.

lions@epfl



# Violating Slater's condition



lions@epfl



# Outline

The proximal way

Establishing correctness

Efficiency considerations

Back to the primal





# Decomposability

#### Decomposable structure

The function f and the feasible set  $\mathcal{X}$  have the following structure

$$f(\mathbf{x}) := \sum_{i=1}^m f_i(\mathbf{x}_i), \quad ext{and} \quad \mathcal{X} := \mathcal{X}_1 imes \cdots imes \mathcal{X}_m.$$

where  $m \ge 1$  is the number of components,  $\mathbf{x}_i$  is a sub-vector (component) of  $\mathbf{x}$ ,  $f_i : \mathbb{R}^{p_i} \to \mathbb{R} \cup \{+\infty\}$  is convex and  $\sum_{i=1}^m p_i = p$ .







# **Dual decomposition**

# An important role of strong duality

- Strong duality is a key property in convex optimization, which creates a connection between primal problem (1) and dual problem (4).
- Under Slater's condition, strong duality holds, i.e.,  $f^* = d^*$ .
- In principle, by solving dual problem (4), we can recover a solution of primal problem (1) and vice versa.





# **Dual decomposition**

## An important role of strong duality

- Strong duality is a key property in convex optimization, which creates a connection between primal problem (1) and dual problem (4).
- Under Slater's condition, strong duality holds, i.e.,  $f^* = d^*$ .
- In principle, by solving dual problem (4), we can recover a solution of primal problem (1) and vice versa.

#### Decomposability is a key property for parallel algorithms

• Under the decomposable assumption, the dual function d can be decomposed as

$$d(\lambda) = \sum_{i=1}^{m} d_i(\lambda) - \mathbf{b}^T \lambda.$$

where

$$d_i(\lambda) = \min_{\mathbf{x}_i \in \mathcal{X}_i} \left\{ f_i(\mathbf{x}_i) + \lambda^T \mathbf{A}_i \mathbf{x}_i \right\}, \quad i = 1, \dots, g.$$

- Evaluating function  $d_i(\cdot)$  and its [sub]gradients can be computed in parallel





#### Subgradient method

 $\begin{array}{ll} \textbf{1. Choose } \lambda^0 \in \mathbb{R}^n. \\ \textbf{2. For } k=0,1,\cdots, \text{ perform:} \\ \lambda^{k+1}=\lambda^k+\alpha_k \mathbf{v}^k, \\ \text{where } \mathbf{v}^k \in \partial d(\lambda^k) \text{ and } \alpha_k \text{ is the step-size.} \end{array}$ 

### Subgradient method for the dual

#### Assume that the following conditions

- 1.  $\|\mathbf{v}\|_2 \leq G$  for all  $\mathbf{v} \in \partial d(\lambda)$ ,  $\lambda \in \mathbb{R}^n$ .
- $2. \|\lambda^0 \lambda^\star\|_2 \le R$

Let the step-size be chosen as  $\alpha_k = \frac{R}{G\sqrt{k}}.$  Then, the subgradient method satisfies

$$\min_{0 \le i \le k} d^{\star} - d(\lambda^i) \le \frac{RG}{\sqrt{k}}$$

lions@epfl





#### Subgradient method

1. Choose  $\lambda^0 \in \mathbb{R}^n$ . 2. For  $k = 0, 1, \cdots$ , perform:  $\lambda^{k+1} = \lambda^k + \alpha_k \mathbf{v}^k$ , where  $\mathbf{v}^k \in \partial d(\lambda^k)$  and  $\alpha_k$  is the step-size.

## Subgradient method for the dual

#### Assume that the following conditions

- 1.  $\|\mathbf{v}\|_2 \leq G$  for all  $\mathbf{v} \in \partial d(\lambda)$ ,  $\lambda \in \mathbb{R}^n$ .
- $2. \|\lambda^0 \lambda^\star\|_2 \le R$

Let the step-size be chosen as  $\alpha_k = \frac{R}{G\sqrt{k}}.$  Then, the subgradient method satisfies

$$\min_{0 \le i \le k} d^{\star} - d(\lambda^i) \le \frac{RG}{\sqrt{k}} \le \bar{\epsilon}$$

**SGM:**  $\mathcal{O}\left(\frac{1}{\overline{\epsilon}^2}\right) \times$  subgradient calculation





 $\label{eq:gradient method} \begin{array}{l} \textbf{I. Choose } \lambda^0 \in \mathbb{R}^n. \\ \textbf{2. For } k = 0, 1, \cdots, \text{ perform:} \\ \lambda^{k+1} = \lambda^k + \frac{1}{L} \nabla d(\lambda^k), \\ \text{where } L \text{ is the Lipschitz constant.} \end{array}$ 

# Subgradient method for the dual

Assume that the following conditions

- 1.  $\|\mathbf{v}\|_2 \leq G$  for all  $\mathbf{v} \in \partial d(\lambda)$ ,  $\lambda \in \mathbb{R}^n$ .
- $2. \|\lambda^0 \lambda^\star\|_2 \le R$

Let the step-size be chosen as  $\alpha_k = \frac{R}{G\sqrt{k}}.$  Then, the subgradient method satisfies

$$\begin{split} \min_{0 \leq i \leq k} d^{\star} - d(\lambda^{i}) \leq \frac{RG}{\sqrt{k}} \leq \bar{\epsilon} \\ \text{SGM:} \quad \mathcal{O}\left(\frac{1}{\bar{\epsilon}^{2}}\right) \times \text{subgradient calculation} \\ \text{GM:} \quad \mathcal{O}\left(\frac{1}{\bar{\epsilon}}\right) \times \text{ gradient calculation} \end{split}$$

# Impact of smoothness

(Lipschitz gradient)  $d(\lambda)$  has Lipschitz continuous gradient iff

$$\|\nabla d(\lambda) - \nabla d(\eta)\|_2 \le L \|\lambda - \eta\|_2$$

for all  $\lambda, \eta \in dom(d)$  and we indicate this structure as  $d(\lambda) \in \mathcal{F}_L$ .

For all  $d(\lambda)\in \mathcal{F}_L,$  the gradient method with step-size 1/L obeys

$$d^{\star} - d(\lambda^k) \le \frac{2LR^2}{k+4} \le \bar{\epsilon}.$$





 $\label{eq:constraint} \begin{array}{l} \mbox{Gradient method} \\ \mbox{1. Choose } \lambda^0 \in \mathbb{R}^n. \\ \mbox{2. For } k = 0, 1, \cdots, \mbox{ perform:} \\ \lambda^{k+1} = \lambda^k + \frac{1}{L} \nabla d(\lambda^k), \\ \mbox{where } L \mbox{ is the Lipschitz constant.} \end{array}$ 

# Subgradient method for the dual

Assume that the following conditions

- 1.  $\|\mathbf{v}\|_2 \leq G$  for all  $\mathbf{v} \in \partial d(\lambda)$ ,  $\lambda \in \mathbb{R}^n$ .
- $2. \|\lambda^0 \lambda^\star\|_2 \le R$

Let the step-size be chosen as  $\alpha_k = \frac{R}{G\sqrt{k}}.$  Then, the subgradient method satisfies

$$\begin{split} & \min_{0 \leq i \leq k} d^{\star} - d(\lambda^{i}) \leq \frac{RG}{\sqrt{k}} \leq \bar{\epsilon} \\ & \mathsf{SGM:} \quad \mathcal{O}\left(\frac{1}{\bar{\epsilon}^{2}}\right) \times \text{subgradient calculation} \\ & \mathsf{GM:} \quad \mathcal{O}\left(\frac{1}{\bar{\epsilon}}\right) \times \text{ gradient calculation} \end{split}$$

# Impact of smoothness

(Lipschitz gradient)  $d(\lambda)$  has Lipschitz continuous gradient iff

$$\|\nabla d(\lambda) - \nabla d(\eta)\|_2 \le L \|\lambda - \eta\|_2$$

for all  $\lambda, \eta \in dom(d)$  and we indicate this structure as  $d(\lambda) \in \mathcal{F}_L$ .

For all  $d(\lambda)\in \mathcal{F}_L,$  the gradient method with step-size 1/L obeys

$$l^{\star} - d(\lambda^k) \le \frac{2LR^2}{k+4} \le \overline{\epsilon}.$$

This is NOT the best we can do. There exists a complexity lower-bound

$$d^{\star} - d(\lambda^k) \ge \frac{3LR^2}{32(k+1)^2}, \forall d(\lambda) \in \mathcal{F}_L,$$

for any iterative method based only on function and gradient evaluations.



Accelerated gradient method 1. Choose  $\mathbf{u}^0 = \lambda^0 \in \mathbb{R}^n$ . 2. For  $k = 0, 1, \cdots$ , perform:  $\lambda^k = \mathbf{u}^k + \frac{1}{L} \nabla d(\mathbf{u}^k)$ ,  $\mathbf{u}^{k+1} = \lambda^k + \rho_k (\lambda^k - \lambda^{k-1})$ , where L is the Lipschitz constant, and  $\rho_k$  is a momentum parameter.

# Subgradient method for the dual

#### Assume that the following conditions

1.  $\|\mathbf{v}\|_2 \leq G$  for all  $\mathbf{v} \in \partial d(\lambda)$ ,  $\lambda \in \mathbb{R}^n$ . 2.  $\|\lambda^0 - \lambda^\star\|_2 < R$ 

Let the step-size be chosen as  $\alpha_k = \frac{R}{G \sqrt{k}}.$  Then, the subgradient method satisfies

 $\begin{array}{c} \min_{0 \leq i \leq k} d^{\star} - d(\lambda^{i}) \leq \frac{RG}{\sqrt{k}} \leq \bar{\epsilon} \\ \\ \text{SGM:} \quad \mathcal{O}\left(\frac{1}{\bar{\epsilon}^{2}}\right) \times \text{subgradient calculation} \\ \\ \text{GM:} \quad \mathcal{O}\left(\frac{1}{\bar{\epsilon}}\right) \times \text{gradient calculation} \\ \\ \\ \text{AGM:} \quad \mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right) \times \text{gradient calculation} \\ \\ \\ \\ \text{Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch} \\ \end{array}$ 

## Impact of smoothness

(Lipschitz gradient)  $d(\lambda)$  has Lipschitz continuous gradient iff

$$\|\nabla d(\lambda) - \nabla d(\eta)\|_2 \le L \|\lambda - \eta\|_2$$

for all  $\lambda, \eta \in \text{dom}(d)$  and we indicate this structure as  $d(\lambda) \in \mathcal{F}_L$ .

For all  $d(\lambda) \in \mathcal{F}_L$ , the accelerated gradient method with momentum  $\rho_k = \frac{k+1}{k+3}$  obeys

$$d^{\star} - d(\lambda^k) \le \frac{2LR^2}{(k+2)^2} \le \bar{\epsilon}$$

This is NEARLY the best we can do.

There exists a complexity lower-bound

$$d^{\star} - d(\lambda^k) \geq \frac{3LR^2}{32(k+1)^2}, \forall d(\lambda) \in \mathcal{F}_L,$$

for any iterative method based only on function and gradient evaluations.



# Number of iterations: From $\mathcal{O}\left(\frac{1}{\overline{\epsilon}^2}\right)$ to $\mathcal{O}\left(\frac{1}{\overline{\epsilon}}\right)$

# When can the dual function have Lipschitz gradient?

When  $f(\mathbf{x})$  is  $\gamma$ -strongly convex, the dual function  $d(\lambda)$  is  $\frac{\|\mathbf{A}\|^2}{\gamma}$ -Lipschitz gradient. (Strong convexity)  $f(\mathbf{x})$  is  $\gamma$ -strongly convex iff  $f(\mathbf{x}) - \frac{\gamma}{2} \|\mathbf{x}\|_2^2$  is convex.

$$d(\lambda) = \min_{\mathbf{x}:\mathbf{x}\in\mathcal{X}} \underbrace{f(\mathbf{x}) - \frac{\gamma}{2} \|\mathbf{x}\|_{2}^{2}}_{=} + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \underbrace{\frac{\gamma}{2} \|\mathbf{x}\|_{2}^{2}}_{=}$$

convex & possibly nonsmooth



AGM automatically obtains  $d^{\star} - d(\mathbf{x}^k) \leq \bar{\epsilon}$  with  $k = \mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right)$ 



# Number of iterations: From $\mathcal{O}\left(\frac{1}{\overline{\epsilon}^2}\right)$ to $\mathcal{O}\left(\frac{1}{\overline{\epsilon}}\right)$

#### When can the dual function have Lipschitz gradient?

When  $f(\mathbf{x})$  is  $\gamma$ -strongly convex, the dual function  $d(\lambda)$  is  $\frac{\|\mathbf{A}\|^2}{\gamma}$ -Lipschitz gradient. (Strong convexity)  $f(\mathbf{x})$  is  $\gamma$ -strongly convex iff  $f(\mathbf{x}) - \frac{\gamma}{2} \|\mathbf{x}\|_2^2$  is convex.

$$d(\lambda) = \min_{\mathbf{x}:\mathbf{x}\in\mathcal{X}} \underbrace{f(\mathbf{x}) - \frac{\gamma}{2} \|\mathbf{x}\|_{2}^{2}}_{\mathbf{x}:\mathbf{x}\in\mathcal{X}} + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \underbrace{\frac{\gamma}{2} \|\mathbf{x}\|_{2}^{2}}_{\mathbf{x}:\mathbf{x}\in\mathcal{X}}$$

convex & possibly nonsmooth



A simple idea: Apply Nesterov's smoothing [22] to the dual

$$d_{\gamma}(\lambda) = \min_{\mathbf{x}:\mathbf{x}\in\mathcal{X}} f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \frac{\gamma}{2} \|\mathbf{x}\|_{2}^{2}$$

1.  $\nabla d_{\gamma}(\lambda) = \mathbf{A}\mathbf{x}^*_{\gamma}(\lambda) - \mathbf{b}$ 

2.  $d_{\gamma}(\lambda) - \gamma \mathcal{D}_{\mathcal{X}} \leq d(\lambda) \leq d_{\gamma}(\lambda)$ , where  $\mathcal{D}_{\mathcal{X}} = \max_{\mathbf{x} \in \mathcal{X}} \frac{1}{2} \|\mathbf{x}\|_2^2$ .

3.  $\lambda^k$  of AGM on  $d_{\gamma}(\lambda)$  has  $d^{\star} - d(\lambda^k) \leq \gamma \mathcal{D}_{\mathcal{X}} + \frac{d_{\gamma}^{\star} - d_{\gamma}(\lambda^k)}{\gamma(k+2)^2} \leq \gamma \mathcal{D}_{\mathcal{X}} + \frac{2\|\mathbf{A}\|^2 R^2}{\gamma(k+2)^2}$ .

4. We minimize the upperbound wrt  $\gamma$  and obtain  $d^{\star} - d(\lambda^k) \leq \bar{\epsilon}$  with  $k = \mathcal{O}\left(\frac{1}{\bar{\epsilon}}\right)$ .



## Per-iteration time: The key role of the prox-operator

Smoothed dual:  $d_{\gamma}(\lambda) = \min_{\mathbf{x}:\mathbf{x}\in\mathcal{X}} f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \frac{\gamma}{2} \|\mathbf{x}\|_2^2$ 

$$\mathbf{x}^*(\lambda) := \operatorname{prox}_{f/\gamma}^{\mathcal{X}} \left( -\frac{1}{\gamma} \mathbf{A}^T \lambda \right)$$





## Per-iteration time: The key role of the prox-operator

Smoothed dual:  $d_{\gamma}(\lambda) = \min_{\mathbf{x}:\mathbf{x}\in\mathcal{X}} f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \frac{\gamma}{2} \|\mathbf{x}\|_2^2$ 

$$\mathbf{x}^*(\lambda) := \operatorname{prox}_{\boldsymbol{f}/\gamma}^{\mathcal{X}} \left( -\frac{1}{\gamma} \mathbf{A}^T \lambda \right)$$

Definition (Prox-operator)

$$\operatorname{prox}_{f}(\mathbf{x}) := \arg\min_{\mathbf{z}\in\mathbb{R}^{p}} \{f(\mathbf{z}) + (1/2) \|\mathbf{z} - \mathbf{x}\|^{2} \}.$$

Key properties:

- single valued & non-expansive.
- distributes when the primal problem has decomposable structure:

$$f(\mathbf{x}) := \sum_{i=1}^m f_i(\mathbf{x}_i), \quad ext{and} \quad \mathcal{X} := \mathcal{X}_1 imes \cdots imes \mathcal{X}_m.$$

where  $m \ge 1$  is the number of components.

▶ often efficient & has closed form expression. For instance, if  $f(\mathbf{z}) = \|\mathbf{z}\|_1$ , then the prox-operator performs coordinate-wise soft-thresholding by 1.





# Outline

The proximal way

Establishing correctness

Efficiency considerations

Back to the primal





# Going from the dual $\bar{\epsilon}$ to the primal $\epsilon$ -I

# Challenges for the plausible strategy above

- 1. Establishing its correctness: Assume  $f^\star > -\infty$  and Slater's condition for  $f^\star = d^\star$
- 2. Computational efficiency of finding an  $\bar{\epsilon}$ -approximate optimal dual solution  $\lambda_{\bar{\epsilon}}^{\star}$
- 3. Mapping  $\lambda_{\overline{\epsilon}}^{\star} \to \mathbf{x}_{\epsilon}^{\star}$  (i.e.,  $\overline{\epsilon}(\epsilon)$ ), where  $\epsilon$  is for the original constrained problem (1)





# Going from the dual $\bar{\epsilon}$ to the primal $\epsilon$ -I

#### Challenges for the plausible strategy above

- 1. Establishing its correctness: Assume  $f^{\star} > -\infty$  and Slater's condition for  $f^{\star} = d^{\star}$
- 2. Computational efficiency of finding an  $\bar{\epsilon}$ -approximate optimal dual solution  $\lambda_{\bar{\epsilon}}^{\star}$
- 3. Mapping  $\lambda_{\overline{\epsilon}}^{\star} \to \mathbf{x}_{\epsilon}^{\star}$  (i.e.,  $\overline{\epsilon}(\epsilon)$ ), where  $\epsilon$  is for the original constrained problem (1)

#### Measuring progress via the gap function

We can define a gap function to measure our progress for  $\mathbf{z} := (\mathbf{x}, \lambda) \in \mathcal{X} \times \mathbb{R}^n$ 

$$G(\mathbf{z}) = \underbrace{\max_{\hat{\lambda} \in \mathbb{R}^n} f(\mathbf{x}) + \langle \hat{\lambda}, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle}_{=f(\mathbf{x}) \text{ if } \mathbf{A}\mathbf{x} = \mathbf{b}, \infty \text{ o/w}} - \underbrace{\min_{\hat{\mathbf{x}} \in \mathcal{X}} f(\hat{\mathbf{x}}) + \langle \lambda, \mathbf{A}\hat{\mathbf{x}} - \mathbf{b} \rangle}_{=d(\lambda)} \ge 0$$

•  $G(\mathbf{z}^{\star}) = 0$  iff  $\mathbf{z}^{\star} := (\mathbf{x}^{\star}, \lambda^{\star})$  is a primal-dual solution of (1).

• Primal accuracy  $\epsilon$  and the dual accuracy  $\overline{\epsilon}$  can be related via the gap function.



## Going from the dual $\bar{\epsilon}$ to the primal $\epsilon$ -II







## Going from the dual $\bar{\epsilon}$ to the primal $\epsilon$ -II

A smoothed gap function measuring the primal-dual gap  
We define a smoothed version of the gap function
$$G_{\gamma\beta}(\mathbf{z}) = \underbrace{\max_{\hat{\lambda} \in \mathbb{R}^n} f(\mathbf{x}) + \langle \hat{\lambda}, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle - \frac{\beta}{2} \|\hat{\lambda}\|_2^2}_{f_{\beta}(\mathbf{x}) = f(\mathbf{x}) + \frac{1}{2\beta} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2} - \underbrace{\min_{\hat{\mathbf{x}} \in \mathcal{X}} f(\hat{\mathbf{x}}) + \langle \lambda, \mathbf{A}\hat{\mathbf{x}} - \mathbf{b} \rangle + \frac{\gamma}{2} \|\hat{\mathbf{x}}\|_2^2}_{d_{\gamma}(\lambda)}$$

Our new technique: Model-based gap reduction MGR (cf., [25]) Let  $G_k(\cdot) := G_{\gamma_k \beta_k}(\cdot)$ . We generate a sequence  $\{\mathbf{z}^k, \gamma_k, \beta_k\}_{k \ge 0}$  such that

$$G_{k+1}(\mathbf{z}^{k+1}) \le (1 - \tau_k)G_k(\mathbf{z}^k) + \psi_k$$
(MGR)

for  $\psi_k \to 0$ , rate  $\tau_k \in (0,1)$   $(\sum_k \tau_k = \infty)$ ,  $\gamma_k \beta_{k+1} < \gamma_k \beta_k$  so that  $G_{\gamma_k \beta_k}(\cdot) \to G(\cdot)$ . • Consequence:  $G(\mathbf{z}^k) \to 0^+ \Rightarrow \mathbf{z}^k \to \mathbf{z}^* = (\mathbf{x}^*, \lambda^*)$  (primal-dual solution).

MGR ties  $\bar{\epsilon}$  to  $\epsilon$  via  $f_{\beta}(\mathbf{x})$ 



## An instance of our primal-dual scheme

# The standard scheme ([21])

The accelerated scheme for maximing  $d_\gamma \in \mathcal{F}_L^{1,1}$  consists of three main steps:

$$\begin{cases}
\hat{\lambda}^{k} := (1 - \tau_{k})\lambda^{k} + \tau_{k}\tilde{\lambda}_{k} \\
\lambda^{k+1} := \hat{\lambda}^{k} + \frac{1}{L_{d\gamma}}\nabla d_{\gamma}(\hat{\lambda}^{k}) \\
\tilde{\lambda}_{k+1} := \lambda_{k}^{*} - \frac{1}{\tau_{k}}(\hat{\lambda}^{k} - \lambda^{k+1}).
\end{cases}$$
(7)

Here,  $L_{d_{\gamma}}$  is the Lipschitz constant of  $\nabla d_{\gamma}$  and  $\tau_k \in (0,1)$  is a given momentum term.

## Our primal-dual scheme (http://lions.epfl.ch/decopt)

Our approach is fundamentally the same as the accelerated gradient method:

$$\begin{cases} \hat{\lambda}^{k} := (1 - \tau_{k})\lambda^{k} + \tau_{k}\tilde{\lambda}^{k} \\ \lambda^{k+1} := \hat{\lambda}^{k} + \frac{\gamma_{k+1}}{\|\mathbf{A}\|^{2}}(\mathbf{A}\mathbf{x}^{*}_{\gamma_{k+1}}(\hat{\lambda}^{k}) - \mathbf{b}) \\ \mathbf{x}^{k+1} := (1 - \tau_{k})\mathbf{x}^{k} + \tau_{k}\mathbf{x}^{*}_{\gamma_{k+1}}(\hat{\lambda}^{k}) \\ \tilde{\lambda}^{k+1} := \frac{1}{\beta_{k+1}}(\mathbf{A}\mathbf{x}^{k+1} - \mathbf{b}). \end{cases}$$

$$(8)$$

Both smoothing parameters  $\gamma$  and  $\beta$  are updated at each iteration.

lions@epfl



# Going from the dual $\bar{\epsilon}$ to the primal $\epsilon$ -III

An uncertainty relation via MGR ([26, 25])

The product of the primal and dual convergence rates is lowerbounded by MGR:

$$\gamma_k\beta_k\geq \frac{\tau_k^2}{1-\tau_k^2}\|\mathbf{A}\|^2$$

Note that  $\tau_k^2 = \Omega\left(\frac{1}{k^2}\right)$  for the smoothed gap.

- The rate of  $\gamma_k$  controls the primal residual:  $|f(\mathbf{x}^k) f^*| \leq \mathcal{O}(\gamma_k)$
- The rate of  $\beta_k$  controls the feasibility:  $\|\mathbf{A}\mathbf{x}^k \mathbf{b}\|_2 \leq \mathcal{O}\left(\beta_k + \tau_k\right) = \mathcal{O}\left(\beta_k\right)$

• They cannot be simultaneously  $\mathcal{O}\left(\frac{1}{k^2}\right)!$ 

lions@epf



#### **Convergence** guarantee

# Theorem [26, 25]

1. When f is non-smooth, the best we can do is  $\gamma_k = \mathcal{O}\left(\frac{1}{k}\right)$  and  $\beta_k = \mathcal{O}\left(\frac{1}{k}\right)$ :

$$\begin{pmatrix} -D_{\Lambda^{\star}} \| \mathbf{A} \mathbf{x}^{k} - \mathbf{b} \| \leq & f(\mathbf{x}^{k}) - f^{\star} \leq \frac{C_{p} D_{\mathcal{X}}}{k+1}, \\ \| \mathbf{A} \mathbf{x}^{k} - \mathbf{b} \| & \leq \frac{C_{d} (D_{\Lambda^{\star}} + \sqrt{D_{\mathcal{X}}})}{k+1}, \end{cases}$$

where  $C_p$  and  $C_d$  are two given positive constants depending on different schemes.

2. When f is strongly convex with  $\mu > 0$ , we can take  $\gamma_k = \mu$  and  $\beta_k = \mathcal{O}\left(\frac{1}{k^2}\right)$ :

$$\begin{cases} -D_{\Lambda^{\star}} \|\mathbf{A}\mathbf{x}^{k} - \mathbf{b}\| \leq & f(\mathbf{x}^{k}) - f^{\star} &\leq 0\\ & \|\mathbf{A}\mathbf{x}^{k} - \mathbf{b}\| &\leq \frac{4\|\mathbf{A}\|^{2}}{(k+2)^{2}\mu} D_{\Lambda^{\star}}\\ & \|\mathbf{x}^{k} - \mathbf{x}^{\star}\| &\leq \frac{4\|\mathbf{A}\|}{(k+2)\mu} D_{\Lambda^{\star}} \end{cases}$$

where  $D_{\Lambda^{\star}} := \min\{\|\lambda^{\star}\| : \lambda^{\star} \in \Lambda^{\star}\}$  the norm of the min-norm dual solution.



### Example: An application of the convergence guarantees

Problem (Consensus optimization)

$$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x}) \right\}$$

Constrained reformulation via a product space trick with  $\mathbf{z} := [\mathbf{x}_1, \dots, \mathbf{x}_n]$ :

$$F^{\star} := \min_{\mathbf{z}:=[\mathbf{x}_1,\dots,\mathbf{x}_n] \in \mathbb{R}^{n_p}} \left\{ F(\mathbf{z}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x}_i) : \mathbf{x}_i - \mathbf{x}_j = 0, (i,j) \in E \right\}$$

for some user-defined graph  $\mathcal{G} = (V, E)$  with vertices V and edges E.





## Example: An application of the convergence guarantees

Problem (Consensus optimization)

$$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x}) \right\}$$

Constrained reformulation via a product space trick with  $\mathbf{z} := [\mathbf{x}_1, \dots, \mathbf{x}_n]$ :

$$F^{\star} := \min_{\mathbf{z}:=[\mathbf{x}_1,\dots,\mathbf{x}_n]\in\mathbb{R}^{n_p}} \left\{ F(\mathbf{z}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x}_i) : \mathbf{x}_i - \mathbf{x}_j = 0, (i,j) \in E \right\}$$

for some user-defined graph  $\mathcal{G} = (V, E)$  with vertices V and edges E.

#### Interpretation of the convergence guarantees

By using our algorithm in a decentralized but synchronized fashion, we obtain

$$|F(\mathbf{z}^k) - f^{\star}| \leq \mathcal{O}(1/k) \ \, \text{and} \ \, \sum_{(i,j)\in E} \|\mathbf{x}_i^k - \mathbf{x}_j^k\|^2 \leq \mathcal{O}(1/k^2), \ i=1,\ldots,n-1.$$

Slide 36/48

If  $f_i$ 's are strongly convex, these rates further improve.



Number of iterations: From  $\mathcal{O}\left(\frac{1}{\bar{\epsilon}^2}\right)$  to  $\mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right)$ 

#### The augmented Lagrangian (AL) smoothing

$$d_{\gamma}(\lambda) := \min_{\mathbf{x} \in \mathcal{X}} \left\{ f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \frac{\gamma}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} \right\}$$

- 1.  $d_{\gamma}$  now has Lipschitz continuous gradient with  $L_{d_{\gamma}} = \gamma^{-1}$ .
- 2.  $\nabla d_{\gamma}(\lambda) = \mathbf{A}\mathbf{x}^*_{\gamma}(\lambda) \mathbf{b}.$
- 3.  $\mathbf{x}^*_{\gamma}(\lambda)$  can be computed approximately by first-order methods.





# Augmented Lagrangian idea: The trade-offs

#### An uncertainty relation via MGR

The product of the primal and dual convergence rates is lowerbounded by MGR:

$$\gamma \beta_{k+1} \ge \tau_k^2.$$

Here, we update  $\beta_k$  as  $\beta_{k+1} = (1 - \tau_k)\beta_k$ . Then  $\beta_k = \Omega(\tau_k^2)$ . Note that  $\tau_k^2 = \Omega\left(\frac{1}{k^2}\right)$  due to Nesterov's lowerbound.

- ▶ The rate of  $\beta_k$  controls the primal residual:  $|f(\mathbf{x}^k) f^*| \leq \mathcal{O}(\beta_k)$
- The rate of β<sub>k</sub> controls the feasibility:

$$\|\mathbf{A}\mathbf{x}^k - \mathbf{b}\|_2 < \mathcal{O}\left(\beta_k\right)$$

• They can be simultaneously  $\mathcal{O}\left(\frac{1}{k^2}\right)!$ 

No free lunch: Large  $\gamma$  increases the difficulty of per-iteration time!



# Augmented Lagrangian idea: The trade-offs

## Theorem (convergence guarantee) [26, 25]

The sequence  $\{\mathbf{z}^k\}$  generated by our accelerated scheme satisfies:

$$\begin{aligned} -\frac{\gamma}{2} \|\mathbf{A}\mathbf{x}^{k} - \mathbf{b}\|^{2} - \|\mathbf{A}\mathbf{x}^{k} - \mathbf{b}\|D_{\Lambda^{\star}} &\leq \quad f(\mathbf{x}^{k}) - f^{\star} \quad \leq 0 \\ \|\mathbf{A}\mathbf{x}^{k} - \mathbf{b}\| &\leq \frac{8D_{\Lambda^{\star}}}{\gamma(k+1)^{2}} \end{aligned}$$

The worst-case iteration complexity:  $\mathcal{O}\left(\sqrt{\frac{D_{\Lambda^{\star}}}{\gamma\epsilon}}\right)$ .

- We can increase  $\gamma$  to obtain faster convergence
- However, it becomes more difficult to compute  $\mathbf{x}^*_{\gamma}(\hat{\lambda}^k)!$
- Warm starts help but we need to solve subproblems with increasing accuracy!





# Tree sparsity [19, 10, 2, 31]





Wavelet coefficients

Wavelet tree





Invalid selection of nodes





# Tree sparsity [19, 10, 2, 31]



Structure: We seek the sparsest signal with a rooted connected subtree support.

**Compressive sensing** formulation (TU-relax [12])

$$\min_{\mathbf{x} \in \mathbb{R}^p} \quad f(\mathbf{x}) := \sum_{\mathcal{G}_i \in \mathfrak{G}} \| \mathbf{x}_{\mathcal{G}_i} \|_{\infty}$$
s.t. 
$$\mathbf{A} \mathbf{x} = \mathbf{b}.$$
(9)

This problem possesses two key structures: decomposability and tractable proximity. When g = p and  $G_i = \{i\}$ , (9) reduces to the well-known basis pursuit (BP):

$$\min_{\mathbf{x}\in\mathbb{R}^p} \|\mathbf{x}\|_1 \quad \text{s.t.} \quad \mathbf{A}\mathbf{x} = \mathbf{b}.$$
 (10)

lions@epfl



## Tree sparsity example: 1:100-compressive sensing

 $(n,p) = (10^7, 10^9)$ 



Sampling: Breaking the coherence barrier [1] Recovery: Augmented Lagrangian method [26] Iterations: 113 PD gap: 1e-8 Applications of  $(\mathbf{A}, \mathbf{A}^T)$ : (684,570)

lions@epfl

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch



# Tree sparsity example: TV & TU-relax 1:15-compression [25, 1]









TV with BP









TV with TU-relax



#### Regularization:





Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch



# References |

- Ben Adcock, Anders C. Hansen, Clarice Poon, and Bogdan Roman. Breaking the coherence barrier: A new theory for compressed sensing. http://arxiv.org/abs/1302.0561, Feb. 2013.
- R.G. Baraniuk, V. Cevher, M.F. Duarte, and C. Hegde. Model-based compressive sensing. Information Theory, IEEE Transactions on, 56(4):1982–2001, 2010.
- [3] H.H. Bauschke and P. Combettes.

Convex analysis and monotone operators theory in Hilbert spaces. Springer-Verlag, 2011.

[4] A. Chambolle and T. Pock.

A first-order primal-dual algorithm for convex problems with applications to imaging.

Journal of Mathematical Imaging and Vision, 40(1):120–145, 2011.

[5] G. Chen and M. Teboulle.

A proximal-based decomposition method for convex minimization problems. *Math. Program.*, 64:81–101, 1994.

[6] P. L. Combettes and V. R. Wajs.

Signal recovery by proximal forward-backward splitting. *Multiscale Model. Simul.*, 4:1168–1200, 2005.





# References II

[7] D. Davis.

Convergence rate analysis of the forward-Douglas-Rachford splitting scheme. UCLA CAM report 14-73, 2014.

[8] D. Davis and W. Yin.

Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions.

UCLA CAM report 14-58, 2014.

[9] D. Davis and W. Yin.

A three-operator splitting scheme and its optimization applications. *Tech. Report.*, 2015.

 Marco F. Duarte, Dharmpal Davenport, Mark A. adn Takhar, Jason N. Laska, Ting Sun, Kevin F. Kelly, and Richard G. Baraniuk.
 Single-pixel imaging via compressive sampling.
 *IEEE Sig. Process. Mag.*, 25(2):83–91, March 2008.

[11] J. Eckstein and D. Bertsekas.

On the Douglas - Rachford splitting method and the proximal point algorithm for maximal monotone operators.

Math. Program., 55:293-318, 1992.



# References III

#### [12] Marwa El Halabi and Volkan Cevher.

A totally unimodular view of structured sparsity.

In 18th Int. Conf. Artificial Intelligence and Statistics, 2015.

[13] J. E. Esser.

Primal-dual algorithm for convex models and applications to image restoration, registration and nonlocal inpainting.

Phd. thesis, University of California, Los Angeles, Los Angeles, USA, 2010.

[14] D. Gabay and B. Mercier.

A dual algorithm for the solution of nonlinear variational problems via finite element approximation.

Computers & Mathematics with Applications, 2(1):17 – 40, 1976.

[15] T. Goldstein, E. Esser, and R. Baraniuk. Adaptive Primal-Dual Hybrid Gradient Methods for Saddle Point Problems. *Tech. Report.*, http://arxiv.org/pdf/1305.0546v1.pdf:1–26, 2013.

[16] T. Goldstein, B. ODonoghue, and S. Setzer. Fast Alternating Direction Optimization Methods. *SIAM J. Imaging Sci.*, 7(3):1588–1623, 2012.

lions@epfl



# References IV

#### [17] B. He and X. Yuan.

Convergence analysis of primal-dual algorithms for saddle-point problem: from contraction perspective.

SIAM J. Imaging Sciences, 5:119-149, 2012.

#### [18] B.S. He and X.M. Yuan.

On the  ${\cal O}(1/n)$  convergence rate of the Douglas-Rachford alternating direction method.

SIAM J. Numer. Anal., 50:700-709, 2012.

[19] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical sparse coding. *J. Mach. Learn. Res.*, 12:2297–2334, 2011.

#### [20] I. Necoara and J.A.K. Suykens.

Interior-point lagrangian decomposition method for separable convex optimization. *J. Optim. Theory and Appl.*, 143(3):567–588, 2009.

#### [21] Y. Nesterov.

A method for unconstrained convex minimization problem with the rate of convergence  $o(1/k^2). \label{eq:convergence}$ 

Doklady AN SSSR, 269(translated as Soviet Math. Dokl.):543-547, 1983.





## References V

[22] Yu. Nesterov. Smooth minimization of non-smooth functions. Math. Program., Ser. A, 103:127–152, 2005.

[23] Y. Ouyang, Y. Chen, G. LanG. Lan., and E. JR. Pasiliao. An accelerated linearized alternating direction method of multiplier. *Tech*, 2014.

[24] R. T. Rockafellar. Convex Analysis, volume 28 of Princeton Mathematics Series. Princeton University Press, 1970.

[25] Q. Tran-Dinh and V. Cevher.

Constrained convex minimization via model-based excessive gap. In *Proc. the Neural Information Processing Systems Foundation conference* (*NIPS2014*), pages 1–9, Montreal, Canada, December 2014.

[26] Q. Tran-Dinh and V. Cevher. A primal-dual algorithmic framework for constrained convex minimization. *Tech. Report., LIONS*, pages 1–54, 2014.

lions@epfl



# References VI

#### [27] Q. Tran-Dinh, I. Necoara, C. Savorgnan, and M. Diehl.

An Inexact Perturbed Path-Following Method for Lagrangian Decomposition in Large-Scale Separable Convex Optimization. *SIAM J. Optim.*, 23(1):95–125, 2013.

#### [28] P. Tseng.

Applications of splitting algorithm to decomposition in convex programming and variational inequalities.

SIAM J. Control Optim., 29:119-138, 1991.

#### [29] E. Wei, A. Ozdaglar, and A.Jadbabaie.

A Distributed Newton Method for Network Utility Maximization.

http://web.mit.edu/asuman/www/publications.htm, 2011.

[30] G. Zhao.

A Lagrangian dual method with self-concordant barriers for multistage stochastic convex programming.

Math. Progam., 102:1-24, 2005.

#### [31] Peng Zhao, Guilherme Rocha, and Bin Yu.

Grouped and hierarchical model selection through composite absolute penalties. *Department of Statistics, UC Berkeley, Tech. Rep,* 703, 2006.

