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Outline

I Today
1. Primal-Dual methods

I Next week
1. Frank-Wolfe method
2. Universal primal-dual gradient methods
3. ADMM
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Recommended readings

I Quoc Tran-Dinh and Volkan Cevher, Constrained convex minimization via
model-based excessive gap. In Proc. the Neural Information Processing Systems
Foundation conference (NIPS2014), pages 1-9, Montreal, Canada, December
2014.

I Y. Nesterov, Smooth Minimization of Non-smooth Functions. Math. Program.,
Ser. A, 103:127-152, 2005.
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Swiss army knife of convex formulations

A primal problem prototype

f? := min
x∈Rp

{
f(x) : Ax− b ∈ K, x ∈ X

}
, (1)

I f is a proper, closed and convex function
I X and K are nonempty, closed convex sets
I A ∈ Rn×p and b ∈ Rn are known
I An optimal solution x? to (1) satisfies f(x?) = f?, Ax? = b and x? ∈ X

An example from the sparseland

min
x∈Rp

{
‖x‖1 : ‖Ax− b‖2 ≤ κ, ‖x‖∞ ≤ c

}
(SOCP)

Broad context for (1):
I Standard convex optimization formulations: linear programming, convex
quadratic programming, second order cone programming, semidefinite
programming and geometric programming.

I Reformulations of existing unconstrained problems via convex splitting:
composite convex minimization, consensus optimization, . . .
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Primal-dual methods for (1):

Plenty . . .

• Variants of the Arrow-Hurwitz’s method:
I Chambolle-Pock’s algorithm [4], and its variants, e.g., He-Yuan’s variant [17].
I Primal-dual Hybrid Gradient (PDHG) method and its variants [13, 15].
I Proximal-based decomposition (Chen-Teboulle’s algorithm) [5].

• Splitting techniques from monotone inclusions:
I Primal-dual splitting algorithms [3, 6, 28, 7, 8].
I Three-operator splitting [9].

• Dual splitting techniques:
I Alternating minimization algorithms (AMA) [14, 28].
I Alternating direction methods of multipliers (ADMM) [11, 18].
I Accelerated variants of AMA and ADMM [8, 16].
I Preconditioned ADMM, Linearized ADMM and inexact Uzawa algorithms [4, 23].

• Second-order decomposition methods:
I Dual (quasi) Newton methods [29].
I Smoothing decomposition methods via barriers functions [20, 27, 30].

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 48



Performance of optimization algorithms

Exact vs. approximate solutions

I Computing an exact solution x? to (1) is impracticable
I Algorithms seek x?ε that approximates x? up to ε in some sense

A performance metric: Time-to-reach ε
time-to-reach ε = number of iterations to reach ε × per iteration time

Per-iteration time:

first-order methods: Multiplication with A, AT , and appropriate “prox-operators”

A key issue: Number of iterations to reach ε

The notion of ε-accuracy is elusive in constrained optimization!
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Numerical ε-accuracy

I Unconstrained case: All iterates are feasible (no advantage from infeasibility)!

f(x?ε )− f? ≤ ε

f? = min
x∈Rp

f(x)

I Constrained case: We need to also measure the infeasibility of the iterates!

f? − f(x?ε ) ≤ ε !!!

Our definition of ε-accurate solutions [25]
Given a numerical tolerance ε ≥ 0, a point x?ε ∈ Rp is called an ε-solution of (1) if f(x?ε )− f? ≤ ε (objective residual),

dist (Ax?ε − b,K) ≤ ε (feasibility gap),
x?ε ∈ X (exact feasibility for the simple set).

I When x? is unique, we can also obtain ‖x?ε − x?‖ ≤ ε (iterate residual).

I ε can be different for the objective, feasibility gap, or the iterate residual.
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Performance of optimization algorithms

A performance metric: Time-to-reach ε
time-to-reach ε = number of iterations to reach ε × per iteration time

Finding the fastest algorithm within the zoo is tricky!
I heuristics & tuning parameters
I non-optimal rates & strict assumptions
I lack of precise characterizations

In the sequel: Heuristic-free optimal first-order primal-dual / ADMM / AMA methods
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Outline

The proximal way

Establishing correctness

Efficiency considerations

Back to the primal
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The optimal solution set

Optimality condition
The optimality condition of minx∈Rp {f(x) : Ax = b} (e.g., simplified (1)):{

0 ∈ ATλ? + ∂f(x?),
0 = Ax? − b.

(2)

(Subdifferential) ∂f(x) := {v ∈ Rp : f(y) ≥ f(x) + vT (y− x), ∀y ∈ Rp}.
I This is the well-known KKT (Karush-Kuhn-Tucker) condition.
I Any point (x?, λ?) satisfying (2) is called a KKT point.
I x? is called a stationary point and λ? is the corresponding multipliers.
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Example: Basis pursuit

Example (Basis pursuit)

min
x∈Rp

‖x‖1 s.t. Ax = b.

Note:
I f(x) := ‖x‖1 is nonsmooth, for any v ∈ ∂f(x) we have vi = +1 if xi > 0,
vi = −1 if xi < 0 and vi ∈ (−1, 1) if xi = 0.

I Since X ≡ Rp, we have NX (x) = {0} for all x.

Optimality condition
The optimality condition of (2) becomes

{
0 ∈ ∂f(x?) + ATλ?

0 = Ax? − b.
⇔


(ATλ?)i = −1 if x?i > 0, 1 ≤ i ≤ p
(ATλ?)i = +1 if x?i < 0, 1 ≤ i ≤ p
(ATλ?)i ∈ (−1, 1) if x?i = 0, 1 ≤ i ≤ p
Ax? = b.
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Finding an optimal solution

A plausible algorithmic strategy for minx∈X {f(x) : Ax = b}:
A natural minimax formulation:

(x?, λ?) ∈ arg max
λ

min
x∈X
{L(x, λ) := f(x) + 〈λ,Ax− b〉}.

Lagrangian subproblem: x∗(λ) ∈ arg minx∈X L(x, λ)
Dual problem: λ? ∈ arg maxλ {d(λ) := L(x∗(λ), λ)}

I λ is called the Lagrange multiplier.
I The function d(λ) is called the dual function, and it is concave!
I The optimal dual objective value is d? = d(λ?).

A basic strategy ⇒ Find λ? and then solve for x? = x∗(λ?)

Challenges for the plausible strategy above
1. Establishing its correctness

: Assume f? > −∞ and Slater’s condition for f? = d?

2. Computational efficiency of finding an ε̄-approximate optimal dual solution λ?ε̄
3. Mapping λ?ε̄ → x?ε (i.e., ε̄(ε)), where ε is for the original constrained problem (1)
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Outline

The proximal way
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Back to the primal
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Back to the the minimax formulation
The dual function and the dual problem revisited
I Dual function:

d(λ) := min
x∈X
{L(x, λ) := f(x) + λT (Ax− b)}. (3)

Let x∗(λ) be a solution of (3) then d(λ) is finite if x∗(λ) exists. d(·) is concave
and possibly nonsmooth.

I Dual problem: The following dual problem is convex

d? := max
x∈Rn

d(λ) (4)

The minimax formulation

d? = max
λ∈Rn

d(λ) = max
λ∈Rn

min
x∈X
{f(x) + λT (Ax− b)}

≤ min
x∈X

max
λ∈Rn

{f(x) + λT (Ax− b)} =

{
min
x∈X

f(x) if Ax = b,

+∞ otherwise
(5)

Here, the inequality is due to the max-min theorem [24].
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Example: Strictly convex quadratic programming
Strictly convex quadratic programming

min
x∈Rp

(1/2)xTHx + hTx

s.t. Ax = b.

where H is symmetric positive definite.

Dual problem is also a strictly convex quadratic program

I Lagrange function L(x, λ) := (1/2)xTHx + (ATλ+ h)Tx− bTλ.
I Dual function:

d(λ) = min
x∈Rp

{(1/2)xTHx + (ATλ+ h)Tx− bTλ}

I Since x?(λ) = −H−1(ATλ+ h), we can obtain d(λ) explicitly as

d(λ) = −(1/2)λT (AH−1AT )λ− (b + AH−1h)Tλ.

I Dual problem (unconstrained):

d? := max
λ∈Rn

d(λ) ⇔ min
λ∈Rn

1
2
λT (AH−1AT )λ+ (b + AH−1h)Tλ.
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Example: Nonsmoothness of the dual function
Consider a constrained convex problem:

min
x∈R3

{f(x) := x2
1 + 2x2},

s.t. 2x3 − x1 − x2 = 1,
x ∈ X := [−2, 2]× [−2, 2]× [0, 2].

The dual function is defined as
d(λ) := min

x∈X
{x2

1 + 2x2 + λ(2x3 − x1 − x2 − 1)}

is concave and nonsmooth as illustrated in the figure below.
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Saddle point

Definition (Saddle point)
A point (x?, λ?) ∈ X × Rn is called a saddle point of the Lagrange function L if

L(x?, λ) ≤ L(x?, λ?) ≤ L(x, λ?), ∀x ∈ X , λ ∈ Rn.

Recall the minimax form:

max
λ

min
x∈X
{L(x, λ) := f(x) + λT (Ax− b)}. ((3))

Illustration of saddle point: L(x, λ) := (1/2)x2 + λ(x− 1) in R2

Saddle point (x?, �?)

Tuesday, July 1, 14
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Slater’s qualification condition

Slater’s qualification condition
Recall relint(X ) the relative interior of the feasible set X . The Slater condition
requires

relint(X ) ∩ {x : Ax = b} , ∅. (6)

Special cases

I If X is absent, then (6) ⇔ ∃x̄ : Ax̄ = b .

I If Ax = b is absent, then (6) ⇔ relint(X ) , ∅ .

I If Ax = b is absent and X := {x : h(x) ≤ 0}, where h is Rp → Rq is convex,
then

(6)⇔ ∃x̄ : h(x̄) < 0.
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Example: Slater’s condition

Example
Let us consider the feasible set Dα := X ∩Aα as

X := {x ∈ R2 : x2
1 + x2

2 ≤ 1} Aα := {x ∈ R2 : x1 + x2 = α},

where α ∈ R.

Slater’s condition holds and does not hold

x1

x2

0 1

1

1

2

1

2

x
1 +

x
2 = 1

2

x2
1 + x2

2  1

relative interior of D

x1

x2

0 1

1

x2
1 + x2

2  1

relative interior of D = ;

x
1 +

x
2 = p

2

Tuesday, July 1, 14

D1/2 satisfies Slater’s condition – D√2-does not satisfy Slater’s condition
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Necessary and sufficient condition

Theorem (Necessary and sufficient optimality condition)
Under Slater’s condition (6): relint(X ) ∩ {x : Ax = b} , ∅, the KKT condition (2){

0 ∈ ATλ? + ∂f(x?) +NX (x?),
0 = Ax? − b.

is necessary and sufficient for a point (x?, λ?) ∈ X × Rn being an optimal solution for
the primal problem (1) and dual problem (4):

f? :=
{

min
x∈Rp

f(x)

s.t. Ax = b, x ∈ X ,
and d? := max

x∈Rn
d(λ).

Strong duality

I By definition of f? and d?, we always have d? ≤ f? (weak duality).

I Under Slater’s condition and X ? , ∅, we have d? = f? (strong duality).
I Any solution (x?, λ?) of the KKT condition (2) is also a saddle point.
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What happens if Slater’s condition does not hold?

Claim
Without Slater’s condition, KKT condition is only sufficient but not necessary, i.e., if
(x?, λ?) satisfies the KKT condition, then x? is a global solution of (1) but not vice
versa.

Example (Violating Slater’s condition)
Consider the following constrained convex problem:

min
x∈R2

{x1 : x2 = 0, x2
1 − x2 ≤ 0}

In the setting (1), we have A := [0, 1], b = 0, X = {x ∈ R2 : x2
1 − x2 ≤ 0}. The

feasible set D := {x ∈ R2 : x2 = 0, x2
1 − x2 ≤ 0} = {(0, 0)T } contains only one

point, which is also the optimal solution of the problem, i.e., x? := (0, 0)T .
In this case, Slater’s condition is definitely violated. Let us check the KKT condition.
Since NX (x?) = {(0,−t)T : t ≥ 0}, we can write the KKT condition as[

1
0

]
+
[
0
1

]
λ+
[

0
−t

]
=
[

0
0

]
, λ ∈ R, t ∈ R+.

Since this linear system has no solution due to the first equation 1 = 0, the KKT
condition is inconsistent.
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Violating Slater’s condition

x

?
Ax = b , x2 = 0

X := {x 2 R2 : x

2
1 � x2  0}

x1

x2

NX (x?) := {(0,�t)T : t 2 R+}

f(x) = x1

f(x) #

Friday, July 18, 14
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Outline

The proximal way

Establishing correctness

Efficiency considerations

Back to the primal
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Decomposability

Decomposable structure
The function f and the feasible set X have the following structure

f(x) :=
m∑
i=1

fi(xi), and X := X1 × · · · × Xm.

where m ≥ 1 is the number of components, xi is a sub-vector (component) of x,
fi : Rpi → R ∪ {+∞} is convex and

∑m

i=1 pi = p.

f

xX1 X2 X3

X · · ·
f1 f2 f3

x3x2x1

XmXm�1

xm�1 xm

fmfm�1

Wednesday, July 23, 14
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Dual decomposition

An important role of strong duality

I Strong duality is a key property in convex optimization, which creates a
connection between primal problem (1) and dual problem (4).

I Under Slater’s condition, strong duality holds, i.e., f? = d?.
I In principle, by solving dual problem (4), we can recover a solution of primal
problem (1) and vice versa.

Decomposability is a key property for parallel algorithms

I Under the decomposable assumption, the dual function d can be decomposed as

d(λ) =
m∑
i=1

di(λ)− bTλ.

where
di(λ) = min

xi∈Xi

{
fi(xi) + λTAixi

}
, i = 1, . . . , g.

I Evaluating function di(·) and its [sub]gradients can be computed in parallel
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Efficiency considerations for the dual problem

Subgradient method
1. Choose λ0 ∈ Rn.
2. For k = 0, 1, · · · , perform:

λk+1 = λk + αkvk,
where vk ∈ ∂d(λk) and αk is the step-size.

Accelerated gradient method
1. Choose u0 = λ0 ∈ Rn.
2. For k = 0, 1, · · · , perform:

λk = uk + 1
L
∇d(uk),

uk+1 = λk + ρk(λk − λk−1),
where L is the Lipschitz constant, and
ρk is a momentum parameter.

Subgradient method for the dual
Assume that the following conditions
1. ‖v‖2 ≤ G for all v ∈ ∂d(λ), λ ∈ Rn.
2. ‖λ0 − λ?‖2 ≤ R

Let the step-size be chosen as
αk = R

G
√
k
. Then, the subgradient

method satisfies

min
0≤i≤k

d? − d(λi) ≤
RG
√
k

≤ ε̄

SGM: O
(

1
ε̄2

)
× subgradient calculation

GM: O
(

1
ε̄

)
× gradient calculation

AGM: O
(

1√
ε̄

)
× gradient calculation

Impact of smoothness
(Lipschitz gradient) d(λ) has Lipschitz
continuous gradient iff

‖∇d(λ)−∇d(η)‖2 ≤ L‖λ− η‖2

for all λ, η ∈ dom(d) and we indicate this
structure as d(λ) ∈ FL.

For all d(λ) ∈ FL, the gradient method
with step-size 1/L obeys

d? − d(λk) ≤
2LR2

k + 4
≤ ε̄.

This is NOT the best we can do.
There exists a complexity lower-bound

d? − d(λk) ≥
3LR2

32(k + 1)2 ,∀d(λ) ∈ FL,

for any iterative method based only on
function and gradient evaluations.

For all d(λ) ∈ FL, the accelerated gradient
method with momentum ρk = k+1

k+3 obeys

d? − d(λk) ≤
2LR2

(k + 2)2≤ ε̄

This is NEARLY the best we can do.
There exists a complexity lower-bound

d? − d(λk) ≥
3LR2

32(k + 1)2 ,∀d(λ) ∈ FL,

for any iterative method based only on
function and gradient evaluations.
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Number of iterations: From O
( 1

ε̄2

)
to O

( 1
ε̄

)
When can the dual function have Lipschitz gradient?
When f(x) is γ-strongly convex, the dual function d(λ) is ‖A‖

2

γ
-Lipschitz gradient.

(Strong convexity) f(x) is γ-strongly convex iff f(x)− γ
2 ‖x‖

2
2 is convex.

d(λ) = min
x:x∈X

f(x)−
γ

2
‖x‖22︸                ︷︷                ︸

convex &
possibly nonsmooth

+〈λ,Ax− b〉+
γ

2
‖x‖22︸   ︷︷   ︸

leads to d∈FL

AGM automatically obtains d? − d(xk) ≤ ε̄ with k = O
(

1√
ε̄

)

A simple idea: Apply Nesterov’s smoothing [22] to the dual

dγ(λ) = min
x:x∈X

f(x) + 〈λ,Ax− b〉+
γ

2
‖x‖22

1. ∇dγ(λ) = Ax∗γ(λ)− b

2. dγ(λ)− γDX ≤ d(λ) ≤ dγ(λ), where DX = maxx∈X
1
2‖x‖

2
2.

3. λk of AGM on dγ(λ) has d? − d(λk) ≤ γDX + d?γ − dγ(λk) ≤ γDX + 2‖A‖2R2

γ(k+2)2 .

4. We minimize the upperbound wrt γ and obtain d? − d(λk) ≤ ε̄ with k = O
(

1
ε̄

)
.
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Per-iteration time: The key role of the prox-operator

Smoothed dual: dγ(λ) = minx:x∈X f(x) + 〈λ,Ax− b〉+ γ
2 ‖x‖

2
2

x∗(λ) := proxXf/γ
(
−

1
γ

ATλ

)

Definition (Prox-operator)

proxf (x) := arg min
z∈Rp
{f(z) + (1/2)‖z− x‖2}.

Key properties:
I single valued & non-expansive.
I distributes when the primal problem has decomposable structure:

f(x) :=
m∑
i=1

fi(xi), and X := X1 × · · · × Xm.

where m ≥ 1 is the number of components.
I often efficient & has closed form expression. For instance, if f(z) = ‖z‖1, then
the prox-operator performs coordinate-wise soft-thresholding by 1.
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Outline

The proximal way

Establishing correctness

Efficiency considerations

Back to the primal
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Going from the dual ε̄ to the primal ε–I

Challenges for the plausible strategy above
1. Establishing its correctness: Assume f? > −∞ and Slater’s condition for f? = d?

2. Computational efficiency of finding an ε̄-approximate optimal dual solution λ?ε̄
3. Mapping λ?ε̄ → x?ε (i.e., ε̄(ε)), where ε is for the original constrained problem (1)

Measuring progress via the gap function
We can define a gap function to measure our progress for z := (x, λ) ∈ X × Rn

G(z) = max
λ̂∈Rn

f(x) + 〈λ̂,Ax− b〉︸                                 ︷︷                                 ︸
=f(x) if Ax=b,∞ o/w

−min
x̂∈X

f(x̂) + 〈λ,Ax̂− b〉︸                               ︷︷                               ︸
=d(λ)

≥ 0

I G(z?) = 0 iff z? := (x?, λ?) is a primal-dual solution of (1).
I Primal accuracy ε and the dual accuracy ε̄ can be related via the gap function.
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Going from the dual ε̄ to the primal ε–I

Challenges for the plausible strategy above
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Going from the dual ε̄ to the primal ε–II

A smoothed gap function measuring the primal-dual gap
We define a smoothed version of the gap function
Gγβ(z) = max

λ̂∈Rn
f(x) + 〈λ̂,Ax− b〉 −

β

2
‖λ̂‖22︸                                                ︷︷                                                ︸

fβ(x)=f(x)+ 1
2β ‖Ax−b‖22

−min
x̂∈X

f(x̂) + 〈λ,Ax̂− b〉+
γ

2
‖x̂‖22︸                                               ︷︷                                               ︸

dγ(λ)

Our new technique: Model-based gap reduction MGR (cf., [25])
Let Gk(·) := Gγkβk (·). We generate a sequence {zk, γk, βk}k≥0 such that

Gk+1(zk+1) ≤ (1− τk)Gk(zk) + ψk (MGR)

for ψk → 0, rate τk ∈ (0, 1) (
∑

k
τk =∞), γkβk+1 < γkβk so that

Gγkβk (·)→ G(·).

I Consequence: G(zk)→ 0+ ⇒ zk → z? = (x?, λ?) (primal-dual solution).

MGR ties ε̄ to ε via fβ(x)
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An instance of our primal-dual scheme

The standard scheme ([21])
The accelerated scheme for maximing dγ ∈ F1,1

L consists of three main steps:
λ̂k := (1− τk)λk + τkλ̃k

λk+1 := λ̂k + 1
Ldγ
∇dγ(λ̂k)

λ̃k+1 := λ∗k −
1
τk

(λ̂k − λk+1).

(7)

Here, Ldγ is the Lipschitz constant of ∇dγ and τk ∈ (0, 1) is a given momentum term.

Our primal-dual scheme (http://lions.epfl.ch/decopt)
Our approach is fundamentally the same as the accelerated gradient method:

λ̂k := (1− τk)λk + τkλ̃
k

λk+1 := λ̂k + γk+1
‖A‖2 (Ax∗γk+1 (λ̂k)− b)

xk+1 := (1− τk)xk + τkx∗γk+1 (λ̂k)

λ̃k+1 := 1
βk+1

(Axk+1 − b).

(8)

Both smoothing parameters γ and β are updated at each iteration.
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Going from the dual ε̄ to the primal ε–III

An uncertainty relation via MGR ([26, 25])
The product of the primal and dual convergence rates is lowerbounded by MGR:

γkβk ≥
τ2
k

1− τ2
k

‖A‖2

Note that τ2
k = Ω

(
1
k2

)
for the smoothed gap.

I The rate of γk controls the primal residual: |f(xk)− f?| ≤ O (γk)
I The rate of βk controls the feasibility: ‖Axk − b‖2 ≤ O (βk + τk) = O (βk)
I They cannot be simultaneously O

(
1
k2

)
!
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Convergence guarantee

Theorem [26, 25]
1. When f is non-smooth, the best we can do is γk = O

(
1
k

)
and βk = O

(
1
k

)
:{

−DΛ?‖Axk − b‖ ≤ f(xk)− f? ≤ CpDX
k+1 ,

‖Axk − b‖ ≤ Cd(DΛ?+
√
DX )

k+1 ,

where Cp and Cd are two given positive constants depending on different schemes.

2. When f is strongly convex with µ > 0, we can take γk = µ and βk = O
(

1
k2

)
:

−DΛ?‖Axk − b‖ ≤ f(xk)− f? ≤ 0
‖Axk − b‖ ≤ 4‖A‖2

(k+2)2µDΛ?

‖xk − x?‖ ≤ 4‖A‖
(k+2)µDΛ?

where DΛ? := min{‖λ?‖ : λ? ∈ Λ?} the norm of the min-norm dual solution.
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Example: An application of the convergence guarantees

Problem (Consensus optimization)

f? := min
x∈Rp

{
f(x) :=

1
n

n∑
i=1

fi(x)
}

Constrained reformulation via a product space trick with z := [x1, . . . ,xn]:

F ? := min
z:=[x1,...,xn]∈Rnp

{
F (z) :=

1
n

n∑
i=1

fi(xi) : xi − xj = 0, (i, j) ∈ E
}

for some user-defined graph G = (V,E) with vertices V and edges E.

Interpretation of the convergence guarantees
By using our algorithm in a decentralized but synchronized fashion, we obtain

|F (zk)− f?| ≤ O(1/k) and
∑

(i,j)∈E

‖xki − xkj ‖
2 ≤ O(1/k2), i = 1, . . . , n− 1.

If fi’s are strongly convex, these rates further improve.
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Number of iterations: From O
( 1

ε̄2

)
to O

(
1√

ε̄

)

The augmented Lagrangian (AL) smoothing

dγ(λ) := min
x∈X

{
f(x) + 〈λ,Ax− b〉+

γ

2
‖Ax− b‖22

}
1. dγ now has Lipschitz continuous gradient with Ldγ = γ−1.

2. ∇dγ(λ) = Ax∗γ(λ)− b.

3. x∗γ(λ) can be computed approximately by first-order methods.
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Augmented Lagrangian idea: The trade-offs

An uncertainty relation via MGR
The product of the primal and dual convergence rates is lowerbounded by MGR:

γβk+1 ≥ τ2
k .

Here, we update βk as βk+1 = (1− τk)βk. Then βk = Ω(τ2
k ).

Note that τ2
k = Ω

(
1
k2

)
due to Nesterov’s lowerbound.

I The rate of βk controls the primal residual: |f(xk)− f?| ≤ O (βk)
I The rate of βk controls the feasibility: ‖Axk − b‖2 ≤ O (βk)
I They can be simultaneously O

(
1
k2

)
!

No free lunch: Large γ increases the difficulty of per-iteration time!
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Augmented Lagrangian idea: The trade-offs

Theorem (convergence guarantee) [26, 25]
The sequence {zk} generated by our accelerated scheme satisfies:

− γ2 ‖Axk − b‖2 − ‖Axk − b‖DΛ? ≤ f(xk)− f? ≤ 0
‖Axk − b‖ ≤ 8DΛ?

γ(k+1)2 .

The worst-case iteration complexity: O
(√

DΛ?
γε

)
.

I We can increase γ to obtain faster convergence
I However, it becomes more difficult to compute x∗γ(λ̂k)!
I Warm starts help but we need to solve subproblems with increasing accuracy!
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Tree sparsity [19, 10, 2, 31]

Wavelet coefficients Wavelet tree Valid selection of nodes Invalid selection of nodes

f(x)-ball G = {{1, 2, 3}, {2}, {3}} valid selection of nodes
Structure: We seek the sparsest signal with a rooted connected subtree support.

Compressive sensing formulation (TU-relax [12])

min
x∈Rp

f(x) :=
∑
Gi∈G

‖xGi‖∞
s.t. Ax = b.

(9)

This problem possesses two key structures: decomposability and tractable proximity.
When g = p and Gi = {i}, (9) reduces to the well-known basis pursuit (BP):

min
x∈Rp

‖x‖1 s.t. Ax = b. (10)
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Tree sparsity example: 1:100-compressive sensing

(n, p) = (107, 109)

World [1Gpix] Lac Léman World [10Mpix]

sparse tree-sparse

PNSR = 31.83db PNSR = 32.48db

Sampling: Breaking the coherence barrier [1]
Recovery: Augmented Lagrangian method [26]
Iterations: 113
PD gap: 1e-8
Applications of (A,AT ): (684, 570)
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Tree sparsity example: TV & TU-relax 1:15-compression [25, 1]

Original tiff image [2048× 2048] Original BP

TU-relax TV

TV with BP TV with TU-relax

Regularization:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.054

0.055

0.056

0.057

0.058

0.059

0.06

0.061

α

l2
 e

rr
or

 

 

tv−BP
min error
tv−TU relax
min error
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