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Outline

I This class:
1. Frank-Wolfe method
2. Universal primal-dual gradient methods
3. ADMM

I Next class
1. Disciplined convex programming
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Recommended reading material

I M. Jaggi, Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization In
Proc. 30th International Conference on Machine Learning, 2013.

I A. Yurtsever, Q. Tran-Dinh and V. Cevher, A Universal Primal-Dual Convex
Optimization Framework In Advances in Neural Information Processing Systems
28, 2015.

I S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed Optimization
and Statistical Learning via the Alternating Direction Method of Multipliers
Foundations and Trends in Machine Learning, Vol. 3, No. 1, pp. 1–122, 2011.
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Motivation

Motivation
I Evaluating the proximal operator is costly for many real world constrained
optimization problems. This lecture covers the basics of the proximal-free
numerical methods for constrained convex minimization, which use cheaper
Fenchel-type oracles as a building block.
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Swiss army knife of convex formulations

A primal problem prototype

f? := min
x∈Rp

{
f(x) : Ax− b ∈ K, x ∈ X

}
, (1)

I f is a proper, closed and convex function
I X and K are nonempty, closed convex sets
I A ∈ Rn×p and b ∈ Rn are known
I An optimal solution x? to (1) satisfies f(x?) = f?, Ax? = b and x? ∈ X

Recall: Definition of ε-accurate solutions [6]
Given a numerical tolerance ε ≥ 0, a point x?ε ∈ Rp is called an ε-solution of (1) if f(x?ε )− f? ≤ ε (objective residual),

dist (Ax?ε − b,K) ≤ ε (feasibility gap),
x?ε ∈ X (exact feasibility for the simple set).

I When x? is unique, we can also obtain ‖x?ε − x?‖ ≤ ε (iterate residual).

I ε can be different for the objective, feasibility gap, or the iterate residual.
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Recall the proximal operator

Proximal operator
Most primal dual methods require the computation of the prox-operator of f

proxf (x) := arg min
z
{f(z) + (1/2)‖z− x‖2}.

Prox-operator helps us processing nonsmooth terms “efficiently”!

Problem: Not all nonsmooth functions are proximal-friendly!

Example (Nuclear norm)
For X ∈ Rp×p,

f(X) = ‖X‖? → proxf (X) = SingValThreshold(X, 1).

Requires computation of the singular value decomposition! → O(p3)

Can we avoid the prox-operator for something cheaper?
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Frank-Wolfe’s method: Earliest example

Problem setting

f? := min
x∈Rp

{
f(x) : x ∈ X

}
, (2)

Assumptions
I X is nonempty, convex, closed and bounded.
I f ∈ F1,1

L (Rp) (i.e., convex with Lipschitz gradient).
I Note also that Ax− b ∈ K is missing from our prototype problem.

Frank-Wolfe’s method (see [3] for a review)
Conditional gradient method (CGM)

1. Choose x0 ∈ X .
2. For k = 0, 1, . . . perform:{

x̂k := arg min
x∈X
∇f(xk)Tx,

(∗)

xk+1 := (1− γk)xk + γkx̂k,

where γk := 2
k+2 is a given relaxation parameter.

When X is nuclear-norm ball, x̂k corresponds to rank-1 updates!
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Recall: Fenchel conjugate

We need the definition of Fenchel conjugation and its basic properties to show the
correspondence between CGM and DSM.

Definition
Let Q be a predefined Euclidean space and Q∗
be its dual space. Given a proper, closed and
convex function f : Q → R ∪ {+∞}, the
function f∗ : Q∗ → R ∪ {+∞} such that

f∗(y) = sup
x∈dom(f)

{
yTx− f(x)

}
is called the Fenchel conjugate (or conjugate)
of f .

f(x)

y

T
x

x

0

(0,�f⇤(y))

x̂

y

T
x̂

f(x̂)

Friday, July 11, 14

Figure: The conjugate function f∗(y)
is the maximum gap between the linear
function xTy (red line) and f(x).

I f∗ is a convex and lower, semicontinuous function by construction (as the
supremum of affine functions of y).

I The conjugate of the conjugate of a convex function f is ... the same function f ;
i.e., f∗∗ = f for f ∈ F(Q).
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?Basic properties of Fenchel conjugation

Property 1: Fenchel-Young inequality
Let f : Q → R ∪ {+∞} and f∗ : Q∗ → R ∪ {+∞} be a function and its conjugation;
here Q∗ be the dual space of Q. Then, the following inequality holds true:

f(x) + f∗(y) ≥ xTy, ∀x ∈ Q,y ∈ Q∗.

Property 2: Subgradient property
Let y ∈ ∂f(x) for some x ∈ dom(f). Then y ∈ dom(f∗) and vise versa. Moreover,
we have

u ∈ ∂f(x)⇔ x ∈ ∂f∗(u).

Property 3: Duality of strong convexity and Lipschitz smoothness [4]
Let f be a convex and lower semi-continuos function. Then, strong convexity and
Lipschitz gradients are dual in the following sense:

f has Lipschitz continuos gradients ⇐⇒ f∗ is strongly convex

f is strongly convex ⇐⇒ f∗ has Lipschitz continuos gradients
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Towards Fenchel-type operators

Generalized sharp operators [8]
We define the (generalized) sharp operator of a convex function f as follows:

[z]]
f

:= argmin
x
{f(x)− 〈x, z〉} .

Special case:
• [indicator function] If f(x) = δX (x) → [−x]]

f
is linear minimization oracle.

Example (Nuclear norm)
Let σ, u and v represent the largest singular value and the associated right and left
singular vectors of a matrix X ∈ Rp×p respectively:

[u, σ,v] = svds(X, 1)

• If φ(X) = δX (X) with X := {X ∈ Rp×p : ‖X‖? ≤ κ}, then κuvT ∈ [X]]
φ

• If ψ(X) = 1
2‖X‖

2
?, then σuvT ∈ [X]]

ψ

Computation of [X]]
φ
and [X]]

ψ
are essentially the same.
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Revisiting Frank-Wolfe’s method

Problem setting

f? := min
x∈Rp

{
f(x) : x ∈ X

}
,

Assumptions
I X is nonempty, convex, closed and bounded.
I f ∈ F1,1

L (Rp) (i.e., convex with Lipschitz gradient).
I Note that Ax− b ∈ K is missing from our prototype problem

Frank-Wolfe’s method (see [3] for a review)
Conditional gradient method (CGM)

1. Choose x0 ∈ X .
2. For k = 0, 1, . . . perform:{

x̂k := arg min
x∈X
∇f(xk)Tx ≡ [−∇f(xk)]]

δX
,

xk+1 := (1− γk)xk + γkx̂k,

where γk := 2
k+2 is a given relaxation parameter.

[z]]
δX

:= argmin
x
{δX (x)− 〈x, z〉} .
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?CGM is dual averaging subgradient method

min
r,x
{f(x) : x = r, r ∈ X}

Dual averaging subgradient method:

=⇒ CGM

For k = 0 to kmax:
xk+1 = xk + γk∇d(λk)

λk+1 = arg max
λ

{
〈λ,xk+1〉 − βkφ(λ)

}
End for

x0 = 0, βk+1 ≤ βk, and φ is a strongly convex function (that we can choose).
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?CGM is dual averaging subgradient method

min
r,x
{f(x) : x = r, r ∈ X}

Dual averaging subgradient method:

=⇒ CGM

For k = 0 to kmax:
xk+1 = xk + γk∇d(λk)

λk+1 = arg max
λ

{
〈λ,xk+1〉 − f∗(λ)

}
End for

Choose

βk = 1,

φ = f∗ (strongly convex due to Fenchel duality, since f is smooth)
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?CGM is dual averaging subgradient method

min
r,x
{f(x) : x = r, r ∈ X}

Dual averaging subgradient method:

=⇒ CGM

For k = 0 to kmax:
xk+1 = xk + γk(x∗(λk)− r∗(λk))

λk+1 = arg max
λ

{
〈λ,xk+1〉 − f∗(λ)

}
End for

• Augment the dual:

d(λ) = min
r
{f(r)− 〈λ, r〉}︸                ︷︷                ︸

−f∗(λ)

+ min
x
{〈λ,x〉 : x ∈ X}

∇d(λk) = x∗(λk)− r∗(λk)

λk = ∇f(r∗(λk)) ⇐⇒ r∗(λk) ∈ ∂f∗(λk)

Due to Fenchel duality.
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Finding an optimal solution

A plausible algorithmic strategy for minx∈X {f(x) : Ax = b}:
A natural minimax formulation:

(x?, λ?) ∈ arg max
λ

min
x∈X
{L(x, λ) := f(x) + 〈λ,Ax− b〉}.

Lagrangian subproblem: x∗(λ) ∈ arg minx∈X L(x, λ)
Dual problem: λ? ∈ arg maxλ {d(λ) := L(x∗(λ), λ)}

I λ is called the Lagrange multiplier.
I The function d(λ) is called the dual function, and it is concave!
I The optimal dual objective value is d? = d(λ?).

Our strategy ⇒ Make progress on the dual and obtain the primal solution

For notational simplicity, we denote g(λ) = −d(λ) and consider convex minimization.

Challenges for the plausible strategy above
1. Establishing its correctness

: Assume f? > −∞ and Slater’s condition for f? = d?

2. Computational efficiency of finding an ε̄-approximate optimal dual solution λ?ε̄
3. Mapping λ?ε̄ → x?ε
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Efficiency considerations for the dual problem

If g(λ) is non-smooth (with bounded subgradients)

∃G > 0 : ‖v‖2 ≤ G, ∀v ∈ ∂g(λ), ∀λ ∈ Rn.

• Subgradient method in the dual → O
(

1
ε2

)

Our strategy: Hölder smoothness in the dual
We assume that ∇g(λ) is Hölder continuous for some ν ∈ [0, 1]:

‖∇g(λ)−∇g(η)‖2 ≤Mν‖λ− η‖ν2 , ∀λ,η ∈ Rn

• Theoretical lowerbound: O
((

1
ε

) 2
1+3ν

)
.

I ν = 0 is equivalent to the bounded (sub)gradient assumption.
I ν = 1 is equivalent to the Lipschitz gradients assumption.

If g(λ) is smooth (Lipschitz gradients)

‖∇g(λ)−∇g(η)‖2 ≤ L‖λ− η‖2, ∀λ,η ∈ Rn.

• Accelerated gradient method in the dual → O
(

1√
ε

)
.
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Brief detour: Exploring the smoothness in depth

Consider the following unconstrained convex minimization

min
x∈Rp

g(x)

Practical difficulty of using Hölder continuity
Hölder continuous (sub)gradients ensures the following basic surrogate for any
x,y ∈ X :

g(y) ≤ g(x) + 〈∇g(x),y− x〉+
Mν

1 + ν
‖x− y‖1+ν (3)

In practice, smoothness parameters ν and Mν are usually not known.

Nesterov’s universal gradient lemma [5].
Let g satisfy (3). Then for any ε > 0 and

M ≥
[1− ν

1 + ν
·

1
δ

] 1−ν
1+ν

M
2

1+ν
ν

we have
This lemma provides us the linesearch condition!
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M

2
‖x− y‖2 +

ε

2
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Practical difficulty of using Hölder continuity
Hölder continuous (sub)gradients ensures the following basic surrogate for any
x,y ∈ X :

g(y) ≤ g(x) + 〈∇g(x),y− x〉+
Mν

1 + ν
‖x− y‖1+ν (3)

In practice, smoothness parameters ν and Mν are usually not known.

Nesterov’s universal gradient lemma [5].
Let g satisfy (3). Then for any ε > 0 and

M ≥
[1− ν

1 + ν
·

1
δ

] 1−ν
1+ν

M
2

1+ν
ν

we have
g(y) ≤ g(x) + 〈∇g(x),y− x〉+

M

2
‖x− y‖2 +

ε

2

This lemma provides us the linesearch condition!
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Nesterov’s universal gradient methods

Universal primal gradient method (PGM)1
1. Choose x0 ∈ X , M−1 > 0 and accuracy ε > 0.
2. For k = 0, 1, . . . perform:

xk+1 = xk −M−1
k
∇g(xk)

using line-search to find Mk ≥ 0.5Mk−1 that satisfies:

g(xk+1) ≤ g(xk)+〈∇g(xk),xk+1−xk〉+
Mk

2
‖xk−xk+1‖2+

ε

2

Nesterov’s universal gradient method [5]
I Adapt to the unknown ν via an line-search strategy
I Universal since they ensure the best possible rate of convergence for each ν

Yes, there is an accelerated version [5].

New: Our FISTA variant.

1PGM in [5] uses the Bregman / prox setup.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 40



Nesterov’s universal gradient methods

Universal primal gradient method (PGM)1
1. Choose x0 ∈ X , M−1 > 0 and accuracy ε > 0.
2. For k = 0, 1, . . . perform:

xk+1 = xk −M−1
k
∇g(xk)

using line-search to find Mk ≥ 0.5Mk−1 that satisfies:

g(xk+1) ≤ g(xk)+〈∇g(xk),xk+1−xk〉+
Mk

2
‖xk−xk+1‖2+

ε

2

Nesterov’s universal gradient method [5]
I Adapt to the unknown ν via an line-search strategy
I Universal since they ensure the best possible rate of convergence for each ν

Yes, there is an accelerated version [5].

New: Our FISTA variant.

1PGM in [5] uses the Bregman / prox setup.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 40



Nesterov’s universal gradient methods

Universal primal gradient method (PGM)1
1. Choose x0 ∈ X , M−1 > 0 and accuracy ε > 0.
2. For k = 0, 1, . . . perform:

xk+1 = xk −M−1
k
∇g(xk)

using line-search to find Mk ≥ 0.5Mk−1 that satisfies:

g(xk+1) ≤ g(xk)+〈∇g(xk),xk+1−xk〉+
Mk

2
‖xk−xk+1‖2+

ε

2

Nesterov’s universal gradient method [5]
I Adapt to the unknown ν via an line-search strategy
I Universal since they ensure the best possible rate of convergence for each ν

Yes, there is an accelerated version [5].

New: Our FISTA variant.

1PGM in [5] uses the Bregman / prox setup.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 40



Our universal primal-dual gradient methods: The main steps

[z]]
f

:= argmin
x
{f(x)− 〈x, z〉}

Universal primal-dual gradient method (UniPDGrad)

Input initial dual point λ0 and desired accuracy ε. Then, at each iteration:

1. Solve Lagrangian subproblem (i.e., evaluate the sharp operator)

x∗(λk) ∈ arg min
x∈X

{
f(x) + 〈λk,Ax− b〉

}
≡
[
−ATλk

]]
f+δX

2. Take a gradient step in the dual (find Mk by the inexact line-search condition)

λk+1 := λk −
1
Mk
∇g(λk) = λk +

1
Mk

(
Ax∗(λk)− b

)
3. Take the weighted average for primal reconstruction

x̄k :=
( k∑
i=0

1
Mi

)−1 k∑
i=0

1
Mi

x∗(λi)
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Summary of the algorithms and convergence guarantees - I

Universal primal-dual gradient method (UniPDGrad)
Initialization: Choose λ0 ∈ Rn and ε > 0. Estimate a value M−1 < 2Mε.
Iteration: For k = 0, 1, . . . perform:

1. Primal step: x∗(λk) = [−ATλk]]
f

2. Dual gradient: ∇g(λk) = b−ATx∗(λk)
3. Line-search: Find Mk ∈ [0.5Mk−1, 2Mε] from line-search condition and:

λk+1 = λk −M−1
k
∇g(λk)

4. Primal averaging: xk := S−1
k

∑k

j=0M
−1
j x∗(λj) where Sk =

∑k

j=0M
−1
j .

g(λk+1) ≤ g(λk) + 〈∇g(λk),λk+1 − λk〉+ M
2 ‖λ

k+1 − λk‖2 + ε
2

Theorem [8]
xk obtained by UniPDGrad satisfy:

−‖Axk − b‖‖λ?‖ ≤ f(xk)− f? ≤ Mε‖λ0‖2

k+1 + ε
2 ,

‖Axk − b‖ ≤ 4Mε‖λ0−λ?‖
k+1 +

√
2Mεε
k+1 .

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 19/ 40



Summary of the algorithms and convergence guarantees - II

Accelerated universal primal-dual gradient method (AccUniPDGrad)
Initialization: Choose λ0 ∈ Rn, ε > 0. Set t0 = 1. Estimate a value M−1 < 2Mε.
Iteration: For k = 0, 1, . . . perform:

1. Primal step: x∗(λ̂k) = [−AT λ̂
k]]
f
,

2. Dual gradient: ∇g(λ̂k) = b−ATx∗(λ̂k),
3. Line-search: Find Mk ∈ [Mk−1, 2Mε] from line-search condition and:

λk+1 = λ̂
k −M−1

k
∇g(λ̂k),

4. tk+1 = 0.5[1 +
√

1 + 4t2
k
],

5. λ̂k+1 = λk+1 + tk−1
tk+1

(λk+1 − λk),

6. Primal averaging: xk := S−1
k

∑k

j=0 tjM
−1
j x∗(λj) where Sk =

∑k

j=0 tjM
−1
j .

g(λk+1) ≤ g(λ̂k) + 〈∇g(λ̂k),λk+1 − λ̂k〉+ M
2 ‖λ

k+1 − λ̂k‖2 + ε
2tk

Theorem [8]
xk obtained by AccUniProx satisfy:

−‖Axk − b‖‖λ?‖ ≤ f(xk)− f? ≤ 4Mε‖λ0‖2

(k+2)
1+3ν
1+ν

+ ε
2 ,

‖Axk − b‖ ≤ 16Mε‖λ0−λ?‖

(k+2)
1+3ν
1+ν

+
√

8Mεε

(k+2)
1+3ν
1+ν

.
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The general constraint case

Handling to the constraint Ax− b ∈ K

Only one prox change in

the universal dual accelerated gradient method:
tk := 0.5

(
1 +

√
1 + 4t2

k−1

)
λ̂k := λ̄k + tk−1−1

tk

(
λ̄k − λ̂k−1

)
λk+1 := λ̂k + 1

Mk

(
Ax∗(λ̂k)− b

)
.
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The general constraint case

Handling to the constraint Ax− b ∈ K
Only one prox change in the universal dual accelerated gradient method:

tk := 0.5
(
1 +

√
1 + 4t2

k−1

)
λ̂k := λ̄k + tk−1−1

tk

(
λ̄k − λ̂k−1

)
λk+1 := prox

M−1
k

h

(
λ̂k + 1

Mk

(
Ax∗(λ̂k)− b

))
.

Here, h is defined by h(λ) := sup
r∈K
〈λ, r〉.
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Theoretical guarantees

Universality of the method [8]
We derive the following worst-case iteration complexity results to obtain ε−accurate
solution xk in the sense

|f(xk)− f?| ≤ ε, dist(Axk − b,K) ≤ ε and xk ∈ X


UniPDGrad: O

(
D2

Λ? inf
0≤ν≤1

(
Mν

ε

) 2
1+ν
)
, optimal for ν = 0

AccUniPDGrad: O
(

(2DΛ? )
2+2ν
1+3ν inf

0≤ν≤1

(
Mν

ε

) 2
1+3ν

)
, optimal for ν ∈ [0, 1]

where DΛ? := 4
√

2‖λ?‖

−1+

√
1+8 ‖λ?‖

max{‖λ?‖,1}

.

Note:
• Both UniPDGrad and AccUniPDGrad require 2 sharp operators queries per iteration
on average.
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?Example: Phase retrieval

Phase retrieval
Aim: Recover signal x\ ∈ Cp from the measurements b ∈ Rn:

bi =
∣∣〈ai,x\〉∣∣2 + ωi.

(ai ∈ Cp are known measurement vectors, ωi models noise).
• Non-linear measurements → non-convex maximum likelihood estimators.

PhaseLift [1]
Phase retrieval can be solved as a convex matrix completion problem, following a
combination of
I semidefinite relaxation (x\x\H = X\)
I convex relaxation (rank→ ‖ · ‖∗)

albeit in terms of the lifted variable X ∈ Cp×p.
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Example: Phase retrieval - II

Problem formulation
We solve the following PhaseLift variant:

f? := min
X∈Cp×p

{1
2
‖A(X)− b‖22 : ‖X‖∗ ≤ κ, X ≥ 0

}
. (4)

Experimental setup [7]
Coded diffraction pattern measurements, b = [b1, . . . ,bL] with L = 20 different
masks

b` = |fft(dH` � x\)|2

→ � denotes Hadamard product; | · |2 applies element-wise
→ d` are randomly generated octonary masks (distributions as proposed in [1])
→ Parametric choices: λ0 = 0n; ε = 10−2; κ = mean(b).
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Example: Phase retrieval - III

p
23 25 27 29 211 213 215 217

tim
e 

(s
)

10-1

100

101

102

103

Auslender-Teboule
Frank-Wolfe
AccUniPDGrad

Test with synthetic data: Prox vs sharp
→ Synthetic data: x\ = randn(p, 1) + i · randn(p, 1).

→ Stopping criteria: ‖x
\−xk‖2
‖x\‖2

≤ 10−2.
→ Averaged over 10 Monte-Carlo iterations.

Note that the problem is p× p dimensional!
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Scalability example: Phase retrieval - IV

# iterations
100 101 102 103

∥x
♮
−

x
∥ F

/

∥x
♮ ∥

F

10-2

10-1

100
Frank-Wolfe
AccUniPDGrad

time (min)
10-1 100 101 102 103

∥x
♮
−

x
∥ F

/

∥x
♮ ∥

F

10-2

10-1

100

Test with images
We use real images of
I EPFL campus of size 1280× 720 → p2 ≈ 1012 (dashed lines)
I Milky Way galaxy of size 1920× 1080 → p2 ≈ 4 · 1012 (solid lines)
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Example: Phase retrieval - V

EPFL campus image of size 1280× 720, reconstructed in 20 minutes by 41 iterations of
AccUniPDGrad: PSNR = 45.54 dB
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Scalability example: Phase retrieval - VI

Milky Way galaxy image of size 1920× 1080, reconstructed in 42 minutes by 40 iterations of
AccUniPDGrad: PSNR = 54.44 dB

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 28/ 40



Example: Quantum tomography with Pauli operators - I

Problem formulation
Let X\ ∈ Sp+ be a density matrix which characterizes a q−qubit quantum system,
where p = 2q . Using Pauli operators A [2], we can deduce the state from
b = A(X) ∈ Cn based on the following convex optimization formulation:

ϕ? := min
X∈Sp+

{1
2
‖A(X)− b‖22 : tr(X) = 1

}
. (5)

The recovery is also robust to noise.

Perfect scalability test: tuning free constraint + Lipschitz continuous gradient

Setup
Synthetic random pure quantum state (e.g., rank-1 X\) with:
I q = 14 qubits, that corresponds to 228 = 268′435′456 dimensional problem.
I n := 2p log(p) = 138′099 number of Pauli measurements.
I Input parameters λ0 = 0n and ε = 2 · 10−4.
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Example: Quantum tomography with Pauli operators - II

# iteration
100 101 102
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# iteration
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−
ϕ
⋆
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Figure: The performance of (Acc)UniPDGrad and Frank-Wolfe algorithms for (5).
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Outline

Yet another template from source separation
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Bonus: ADMM2

Primal problem with a specific decomposition structure

f? := min
x:=(u,v)

{f(x) := g(u) + h(v) : Bu + Cv = b, u ∈ U , v ∈ V}

I X := U × V - nonempty, closed, convex and bounded.
I A := [B,C].

The Fenchel dual problem

d? := max
λ∈Rn

{
d(λ) := −g∗U (−BTλ)− h∗V (−CTλ) + 〈b, λ〉

}
I g∗U and h∗U are the Fenchel conjugate of gU := g + δU and hV := h+ δV , resp.

The dual function

d(λ) := min
u∈U

{
g(u) + 〈BTλ,u〉

}
︸                                ︷︷                                ︸

d1(λ)

+ min
v∈V

{
h(v) + 〈CTλ,v〉

}
︸                               ︷︷                               ︸

d2(λ)

−〈b, λ〉.

2Q. Tran-Dinh and V. Cevher, Splitting the Smoothed Primal-dual Gap: Optimal Alternating Direction Methods
Tech. Report, 2015, (http://arxiv.org/pdf/1507.03734.pdf) / (http://lions.epfl.ch/publications)
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Standard ADMM as the dual Douglas-Rachford method
We can derive ADMM via the Douglas-Rachford splitting on the dual:

0 ∈ B∂g∗U (−BTλ) + C∂h∗V (−CTλ) + c,

which is the optimality condition of the dual problem.

Douglas-Rachford splitting method
zkg := prox

η−1
k
g∗U (−BT ·)(λ

k)

zkh := prox
η−1
k
h∗V (−CT ·)(2zkg − λk)

λk+1 := λk + (zkg − zkh).

Standard ADMM
uk+1 := arg min

u∈U

{
g(u) + 〈λk,Bu〉+

ηk

2
‖Bu + Cvk − b‖2

}
vk+1 := arg min

v∈V

{
h(v) + 〈λk,Cv〉+

ηk

2
‖Buk+1 + Cv− b‖2

}
λk+1 := λk + ηk

(
Buk+1 + Cvk+1 − b

)
.

Here, ηk > 0 is a given penalty parameter.
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?Splitting the smoothed gap

Smoothing the gap

I The dual components d1 and d2 are nonsmooth. We smooth one, e.g., d1, using:

d1
γ(λ) := min

u∈U

{
g(u) +

γ

2
‖B(u− uc)‖2 + 〈λ,Bu〉

}
I Recall: We also approximate f by fβ as:

fβ(x) := f(x) +
1

2β
‖Ax− b‖2 → f(x) as x becomes feasible

Three key properties of d1
γ

I d1
γ is concave and smooth.

I ∇d1
γ is Lipschitz continuous with L := γ−1.

I d1
γ approximates d1 as:

d1
γ(λ)− γDU ≤ d1(λ) ≤ d1

γ(λ),

where DU := max
{

(1/2)‖B(u− uc)‖2 : u ∈ U
}
.
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?Our ADMM scheme: D-R on the smoothed gap
I Our new ADMM scheme consists of three steps:
ADMM step, acceleration step, and primal averaging.

Step 1: The main ADMM steps
ûk+1 := arg min

u∈U

{
gγk+1 (u) + 〈λ̂k,Bu〉+

ρk

2
‖Bu + Cv̂k − b‖2

}
v̂k+1 := arg min

v∈V

{
h(v) + 〈λ̂k,Cv〉+

ηk

2
‖Bûk+1 + Cv− b‖2

}
λk+1 := λ̂k + ηk

(
Bûk+1 + Cv̂k+1 − b

)
.

where gγ(·) := g(·) + γ
2 ‖B(· − uc)‖2.

?The dual accelerated and primal averaging steps

I Step 2: [Dual acceleration] λ̂k is computed as:

λ̂k := (1− τk)λk +
τk

βk
(Buk + Cvk − b).

I Step 3: [Averaging] The primal iteration xk := (uk,vk) is updated as:

uk+1 := (1− τk)uk + τkûk+1 and vk+1 := (1− τk)vk + τkv̂k+1.
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?How do we update parameters?

Duality gap and smoothed gap functions

I The duality gap: G(w) := f(x)− d(λ), where w := (x, λ).

I The smoothed gap: Gγβ(w) := fβ(x)− dγ(λ) with dγ := d1
γ + d2.

Model-based gap reduction
The gap reduction model provides conditions to derive parameter update rules:

Gγk+1βk+1 (wk+1) ≤ (1− τk)Gγkβk (wk) + τk(ηk + ρk)DX

where γk+1 < γk, βk+1 < βk and DX := max
x∈X

{
(1/2)‖Bu + Cv− b‖2

}
.

Update rules

I The smoothness parameters: γk+1 := 2γ0
k+3 and βk := 9(k+3)

γ0(k+1)(k+7) .

I The penalty parameters: ηk := γ0
k+3 and ρk := 3γ0

(k+3)(k+4) .

I The step-size τk := 3
k+4 ⇒ O

(
1
k

)
.
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?Convergence guarantee & Other cases of interest
Convergence rate guarantee
I Rate on the primal objective residual and constraint feasibility:

f(xk)− f? ≤ 2γ0DU
k+2 + 3γ0DX

2(k+3)

(
1 + 6

k+2

)
⇒ O

(
1
k

)
‖Axk − b‖ ≤ 18D∗

d
γ0(k+2) + 6

k+2

√
DU + 3(k+8)

2(k+3)DX ⇒ O
(

1
k

)
where D∗d is the diameter of the dual solution set Λ?.

I Lower bound: −D∗d‖Axk − b‖ ≤ f(xk)− f?.
I Rate on the dual objective residual:

d? − d(λk) ≤
18(D∗d)2

γ0(k + 2)
+

6D∗d
k + 2

√
DU +

3(k + 8)
2(k + 3)

DX ⇒ O
( 1
k

)
.

Special cases: cf., http://lions.epfl.ch/publications
I Full-column rank or orthogonality of A: Using smoothing term (γ/2)‖u− uc‖2.
I Strong convexity of g: We do not need to smooth d1.
I Decomposability of g and U : Using smoothing term

(γ/2)
s∑
i=1

‖Bi(ui − uc,i)‖2.
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?A comparison to the theoretical bounds

A stylized example: Square-root LASSO

f? := min
u∈U,v∈V

{
f(x) := ‖u‖2 + κ ‖v‖1 : B(v)− u = c

}
.
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Empirical convergence

Theoretical bound

I See the preprint for more examples, enhancements, ...
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