Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 11: Constrained convex minimization II

Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2017)
erc

License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes - unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

- This class:

1. Frank-Wolfe method
2. Universal primal-dual gradient methods
3. ADMM

- Next class

1. Disciplined convex programming

Recommended reading material

- M. Jaggi, Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization In Proc. 30th International Conference on Machine Learning, 2013.
- A. Yurtsever, Q. Tran-Dinh and V. Cevher, A Universal Primal-Dual Convex Optimization Framework In Advances in Neural Information Processing Systems 28, 2015.
- S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers Foundations and Trends in Machine Learning, Vol. 3, No. 1, pp. 1-122, 2011.

Motivation

Motivation

- Evaluating the proximal operator is costly for many real world constrained optimization problems. This lecture covers the basics of the proximal-free numerical methods for constrained convex minimization, which use cheaper Fenchel-type oracles as a building block.

Swiss army knife of convex formulations

A primal problem prototype

$$
\begin{equation*}
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A x}-\mathbf{b} \in \mathcal{K}, \mathbf{x} \in \mathcal{X}\}, \tag{1}
\end{equation*}
$$

- f is a proper, closed and convex function
- \mathcal{X} and \mathcal{K} are nonempty, closed convex sets
- $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^{n}$ are known
- An optimal solution \mathbf{x}^{\star} to (1) satisfies $f\left(\mathbf{x}^{\star}\right)=f^{\star}, \mathbf{A} \mathbf{x}^{\star}=\mathbf{b}$ and $\mathbf{x}^{\star} \in \mathcal{X}$

Swiss army knife of convex formulations

A primal problem prototype

$$
\begin{equation*}
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A x}-\mathbf{b} \in \mathcal{K}, \mathbf{x} \in \mathcal{X}\}, \tag{1}
\end{equation*}
$$

- f is a proper, closed and convex function
- \mathcal{X} and \mathcal{K} are nonempty, closed convex sets
- $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^{n}$ are known
- An optimal solution \mathbf{x}^{\star} to (1) satisfies $f\left(\mathbf{x}^{\star}\right)=f^{\star}, \mathbf{A} \mathbf{x}^{\star}=\mathbf{b}$ and $\mathbf{x}^{\star} \in \mathcal{X}$

Recall: Definition of ϵ-accurate solutions [6]

Given a numerical tolerance $\epsilon \geq 0$, a point $\mathbf{x}_{\epsilon}^{\star} \in \mathbb{R}^{p}$ is called an ϵ-solution of (1) if

$$
\left\{\begin{aligned}
f\left(\mathbf{x}_{\epsilon}^{\star}\right)-f^{\star} \leq \epsilon & \text { (objective residual) } \\
\operatorname{dist}\left(\mathbf{A} \mathbf{x}_{\epsilon}^{\star}-\mathbf{b}, \mathcal{K}\right) \leq \epsilon & \text { (feasibility gap) } \\
\mathbf{x}_{\epsilon}^{\star} \in \mathcal{X} & \text { (exact feasibility for the simple set) }
\end{aligned}\right.
$$

- When \mathbf{x}^{\star} is unique, we can also obtain $\left\|\mathbf{x}_{\epsilon}^{\star}-\mathbf{x}^{\star}\right\| \leq \epsilon$ (iterate residual).
- ϵ can be different for the objective, feasibility gap, or the iterate residual.

Recall the proximal operator

Proximal operator

Most primal dual methods require the computation of the prox-operator of f

$$
\operatorname{prox}_{f}(\mathbf{x}):=\arg \min _{\mathbf{z}}\left\{f(\mathbf{z})+(1 / 2)\|\mathbf{z}-\mathbf{x}\|^{2}\right\}
$$

Prox-operator helps us processing nonsmooth terms "efficiently"!
Problem: Not all nonsmooth functions are proximal-friendly!

Recall the proximal operator

Proximal operator

Most primal dual methods require the computation of the prox-operator of f

$$
\operatorname{prox}_{f}(\mathbf{x}):=\arg \min _{\mathbf{z}}\left\{f(\mathbf{z})+(1 / 2)\|\mathbf{z}-\mathbf{x}\|^{2}\right\}
$$

Prox-operator helps us processing nonsmooth terms "efficiently"!
Problem: Not all nonsmooth functions are proximal-friendly!

Example (Nuclear norm)

For $\mathbf{X} \in \mathbb{R}^{p \times p}$,

$$
f(\mathbf{X})=\|\mathbf{X}\|_{\star} \quad \rightarrow \quad \operatorname{prox}_{f}(\mathbf{X})=\operatorname{SingValThreshold}(\mathbf{X}, 1)
$$

Requires computation of the singular value decomposition! $\rightarrow \mathcal{O}\left(p^{3}\right)$

Recall the proximal operator

Proximal operator

Most primal dual methods require the computation of the prox-operator of f

$$
\operatorname{prox}_{f}(\mathbf{x}):=\arg \min _{\mathbf{z}}\left\{f(\mathbf{z})+(1 / 2)\|\mathbf{z}-\mathbf{x}\|^{2}\right\}
$$

Prox-operator helps us processing nonsmooth terms "efficiently"!
Problem: Not all nonsmooth functions are proximal-friendly!

Example (Nuclear norm)

For $\mathbf{X} \in \mathbb{R}^{p \times p}$,

$$
f(\mathbf{X})=\|\mathbf{X}\|_{\star} \quad \rightarrow \quad \operatorname{prox}_{f}(\mathbf{X})=\text { SingValThreshold }(\mathbf{X}, 1) .
$$

Requires computation of the singular value decomposition! $\rightarrow \mathcal{O}\left(p^{3}\right)$
Can we avoid the prox-operator for something cheaper?

Frank-Wolfe's method: Earliest example

Problem setting

$$
\begin{equation*}
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{x} \in \mathcal{X}\} \tag{2}
\end{equation*}
$$

Assumptions

- \mathcal{X} is nonempty, convex, closed and bounded.
- $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{p}\right)$ (i.e., convex with Lipschitz gradient).
- Note also that $\mathbf{A x}-\mathbf{b} \in \mathcal{K}$ is missing from our prototype problem.

Frank-Wolfe's method (see [3] for a review)

Conditional gradient method (CGM)

1. Choose $\mathbf{x}^{0} \in \mathcal{X}$.
2. For $k=0,1, \ldots$ perform:

$$
\begin{cases}\hat{\mathbf{x}}^{k} & :=\arg \min _{\mathbf{x} \in \mathcal{X}} \nabla f\left(\mathbf{x}^{k}\right)^{T} \mathbf{x} \\ \mathbf{x}^{k+1} & :=\left(1-\gamma_{k}\right) \mathbf{x}^{k}+\gamma_{k} \hat{\mathbf{x}}^{k}\end{cases}
$$

where $\gamma_{k}:=\frac{2}{k+2}$ is a given relaxation parameter.

Frank-Wolfe's method: Earliest example

Problem setting

$$
\begin{equation*}
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{x} \in \mathcal{X}\} \tag{2}
\end{equation*}
$$

Assumptions

- \mathcal{X} is nonempty, convex, closed and bounded.
- $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{p}\right)$ (i.e., convex with Lipschitz gradient).
- Note also that $\mathbf{A x}-\mathbf{b} \in \mathcal{K}$ is missing from our prototype problem.

Frank-Wolfe's method (see [3] for a review)

Conditional gradient method (CGM)

1. Choose $\mathbf{x}^{0} \in \mathcal{X}$.
2. For $k=0,1, \ldots$ perform:

$$
\begin{cases}\hat{\mathbf{x}}^{k} & :=\arg \min _{\mathbf{x} \in \mathcal{X}} \nabla f\left(\mathbf{x}^{k}\right)^{T} \mathbf{x},(*) \\ \mathbf{x}^{k+1} & :=\left(1-\gamma_{k}\right) \mathbf{x}^{k}+\gamma_{k} \hat{\mathbf{x}}^{k},\end{cases}
$$

where $\gamma_{k}:=\frac{2}{k+2}$ is a given relaxation parameter.

When \mathcal{X} is nuclear-norm ball, $\hat{\mathbf{x}}^{k}$ corresponds to rank- $\mathbf{1}$ updates!

Recall: Fenchel conjugate

We need the definition of Fenchel conjugation and its basic properties to show the correspondence between CGM and DSM.

Definition

Let \mathcal{Q} be a predefined Euclidean space and Q^{*} be its dual space. Given a proper, closed and convex function $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}$, the function $f^{*}: Q^{*} \rightarrow \mathbb{R} \cup\{+\infty\}$ such that

$$
f^{*}(\mathbf{y})=\sup _{\mathbf{x} \in \operatorname{dom}(f)}\left\{\mathbf{y}^{T} \mathbf{x}-f(\mathbf{x})\right\}
$$

is called the Fenchel conjugate (or conjugate) of f.

Figure: The conjugate function $f^{*}(\mathbf{y})$ is the maximum gap between the linear function $\mathbf{x}^{T} \mathbf{y}$ (red line) and $f(\mathbf{x})$.

- f^{*} is a convex and lower, semicontinuous function by construction (as the supremum of affine functions of \mathbf{y}).
- The conjugate of the conjugate of a convex function f is \ldots the same function f; i.e., $f^{* *}=f$ for $f \in \mathcal{F}(\mathcal{Q})$.

*Basic properties of Fenchel conjugation

Property 1: Fenchel-Young inequality

Let $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}$ and $f^{*}: Q^{*} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a function and its conjugation; here Q^{*} be the dual space of \mathcal{Q}. Then, the following inequality holds true:

$$
f(\mathbf{x})+f^{*}(\mathbf{y}) \geq \mathbf{x}^{T} \mathbf{y}, \quad \forall \mathbf{x} \in Q, \mathbf{y} \in Q^{*} .
$$

Property 2: Subgradient property

Let $\mathbf{y} \in \partial f(\mathbf{x})$ for some $\mathbf{x} \in \operatorname{dom}(f)$. Then $\mathbf{y} \in \operatorname{dom}\left(f^{*}\right)$ and vise versa. Moreover, we have

$$
\mathbf{u} \in \partial f(\mathbf{x}) \Leftrightarrow \mathbf{x} \in \partial f^{*}(\mathbf{u}) .
$$

Property 3: Duality of strong convexity and Lipschitz smoothness [4]

Let f be a convex and lower semi-continuos function. Then, strong convexity and Lipschitz gradients are dual in the following sense:

$$
\begin{aligned}
& f \text { has Lipschitz continuos gradients } \Longleftrightarrow f^{*} \text { is strongly convex } \\
& f \text { is strongly convex } \Longleftrightarrow f^{*} \text { has Lipschitz continuos gradients }
\end{aligned}
$$

Towards Fenchel-type operators

Generalized sharp operators [8]
We define the (generalized) sharp operator of a convex function f as follows:

$$
[\mathbf{z}]_{f}^{\sharp}:=\underset{\mathbf{x}}{\operatorname{argmin}}\{f(\mathbf{x})-\langle\mathbf{x}, \mathbf{z}\rangle\} .
$$

Special case:

- [indicator function] If $f(\mathbf{x})=\delta_{\mathcal{X}}(\mathbf{x}) \quad \rightarrow \quad[-\mathbf{x}]_{f}^{\sharp}$ is linear minimization oracle.

Towards Fenchel-type operators

Generalized sharp operators [8]

We define the (generalized) sharp operator of a convex function f as follows:

$$
[\mathbf{z}]_{f}^{\sharp}:=\underset{\mathbf{x}}{\operatorname{argmin}}\{f(\mathbf{x})-\langle\mathbf{x}, \mathbf{z}\rangle\} .
$$

Special case:

- [indicator function] If $f(\mathbf{x})=\delta_{\mathcal{X}}(\mathbf{x}) \quad \rightarrow \quad[-\mathbf{x}]_{f}^{\sharp}$ is linear minimization oracle.

Example (Nuclear norm)

Let σ, \mathbf{u} and \mathbf{v} represent the largest singular value and the associated right and left singular vectors of a matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ respectively:

$$
[\mathbf{u}, \sigma, \mathbf{v}]=\operatorname{svds}(\mathbf{X}, 1)
$$

- If $\phi(\mathbf{X})=\delta_{\mathcal{X}}(\mathbf{X})$ with $\mathcal{X}:=\left\{\mathbf{X} \in \mathbb{R}^{p \times p}:\|\mathbf{X}\|_{\star} \leq \kappa\right\}$, then $\kappa \mathbf{u v}^{T} \in[\mathbf{X}]_{\phi}^{\sharp}$
- If $\psi(\mathbf{X})=\frac{1}{2}\|\mathbf{X}\|_{\star}^{2}, \quad$ then $\quad \sigma \mathbf{u v}^{T} \in[\mathbf{X}]_{\psi}^{\sharp}$

Computation of $[\mathbf{X}]_{\phi}^{\sharp}$ and $[\mathbf{X}]_{\psi}^{\sharp}$ are essentially the same.

Revisiting Frank-Wolfe's method

Problem setting

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{x} \in \mathcal{X}\}
$$

Assumptions

- \mathcal{X} is nonempty, convex, closed and bounded.
- $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{p}\right)$ (i.e., convex with Lipschitz gradient).
- Note that $\mathbf{A x}-\mathbf{b} \in \mathcal{K}$ is missing from our prototype problem

Frank-Wolfe's method (see [3] for a review)

Conditional gradient method (CGM)

1. Choose $\mathbf{x}^{0} \in \mathcal{X}$.
2. For $k=0,1, \ldots$ perform:

$$
\begin{cases}\hat{\mathbf{x}}^{k} & :=\arg \min _{\mathbf{x} \in \mathcal{X}} \nabla f\left(\mathbf{x}^{k}\right)^{T} \mathbf{x} \equiv\left[-\nabla f\left(\mathbf{x}^{k}\right)\right]_{\delta \mathcal{X}}^{\sharp} \\ \mathbf{x}^{k+1} & :=\left(1-\gamma_{k}\right) \mathbf{x}^{k}+\gamma_{k} \hat{\mathbf{x}}^{k}\end{cases}
$$

where $\gamma_{k}:=\frac{2}{k+2}$ is a given relaxation parameter.

$$
[\mathbf{z}]_{\delta_{\mathcal{X}}}^{\sharp}:=\underset{\mathbf{x}}{\operatorname{argmin}}\left\{\delta_{\mathcal{X}}(\mathbf{x})-\langle\mathbf{x}, \mathbf{z}\rangle\right\} .
$$

Revisiting Frank-Wolfe's method

Problem setting

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{x} \in \mathcal{X}\}
$$

Assumptions

- \mathcal{X} is nonempty, convex, closed and bounded.
- $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{p}\right)$ (i.e., convex with Lipschitz gradient).

Next: Constrained problem $\mathbf{A x}-\mathbf{b} \in \mathcal{K}$ and nonsmooth $f(\mathbf{x})$ with the sharp-operator

Frank-Wolfe's method (see [3] for a review)

Conditional gradient method (CGM)

1. Choose $x^{0} \in \mathcal{X}$.
2. For $k=0,1, \ldots$ perform:

$$
\begin{cases}\hat{\mathbf{x}}^{k} & :=\arg \min _{\mathbf{x} \in \mathcal{X}} \nabla f\left(\mathbf{x}^{k}\right)^{T} \mathbf{x} \equiv\left[-\nabla f\left(\mathbf{x}^{k}\right)\right]_{\delta \mathcal{X}}^{\sharp}, \\ \mathbf{x}^{k+1} & :=\left(1-\gamma_{k}\right) \mathbf{x}^{k}+\gamma_{k} \hat{\mathbf{x}}^{k},\end{cases}
$$

where $\gamma_{k}:=\frac{2}{k+2}$ is a given relaxation parameter.

$$
[\mathbf{z}]_{\delta_{\mathcal{X}}}^{\sharp}:=\underset{\mathbf{x}}{\operatorname{argmin}}\left\{\delta_{\mathcal{X}}(\mathbf{x})-\langle\mathbf{x}, \mathbf{z}\rangle\right\} .
$$

* CGM is dual averaging subgradient method

$$
\min _{\mathbf{r}, \mathbf{x}}\{f(\mathbf{x}): \mathbf{x}=\mathbf{r}, \mathbf{r} \in \mathcal{X}\}
$$

Dual averaging subgradient method:
For $k=0$ to $k_{\text {max }}$:

$$
\begin{aligned}
& \mathbf{x}^{k+1}=\mathbf{x}^{k}+\gamma_{k} \nabla d\left(\boldsymbol{\lambda}^{k}\right) \\
& \boldsymbol{\lambda}^{k+1}=\arg \max _{\boldsymbol{\lambda}}\left\{\left\langle\boldsymbol{\lambda}, \mathbf{x}^{k+1}\right\rangle-\beta_{k} \phi(\boldsymbol{\lambda})\right\}
\end{aligned}
$$

End for
$\mathbf{x}^{0}=0, \beta_{k+1} \leq \beta_{k}$, and ϕ is a strongly convex function (that we can choose).

*CGM is dual averaging subgradient method

$$
\min _{\mathbf{r}, \mathbf{x}}\{f(\mathbf{x}): \mathbf{x}=\mathbf{r}, \mathbf{r} \in \mathcal{X}\}
$$

Dual averaging subgradient method:
For $k=0$ to $k_{\text {max }}$:

$$
\begin{aligned}
& \mathbf{x}^{k+1}=\mathbf{x}^{k}+\gamma_{k} \nabla d\left(\boldsymbol{\lambda}^{k}\right) \\
& \boldsymbol{\lambda}^{k+1}=\arg \max _{\boldsymbol{\lambda}}\left\{\left\langle\boldsymbol{\lambda}, \mathbf{x}^{k+1}\right\rangle-f^{*}(\boldsymbol{\lambda})\right\}
\end{aligned}
$$

End for

Choose
$\beta_{k}=1$,
$\phi=f^{*} \quad$ (strongly convex due to Fenchel duality, since f is smooth)

* CGM is dual averaging subgradient method

$$
\min _{\mathbf{r}, \mathbf{x}}\{f(\mathbf{x}): \mathbf{x}=\mathbf{r}, \mathbf{r} \in \mathcal{X}\}
$$

Dual averaging subgradient method:
For $k=0$ to $k_{\text {max }}$:

$$
\begin{aligned}
& \mathbf{x}^{k+1}=\mathbf{x}^{k}+\gamma_{k}\left(\mathbf{x}^{*}\left(\boldsymbol{\lambda}^{k}\right)-\mathbf{r}^{*}\left(\boldsymbol{\lambda}^{k}\right)\right) \\
& \boldsymbol{\lambda}^{k+1}=\arg \max _{\boldsymbol{\lambda}}\left\{\left\langle\boldsymbol{\lambda}, \mathbf{x}^{k+1}\right\rangle-f^{*}(\boldsymbol{\lambda})\right\}
\end{aligned}
$$

End for

- Augment the dual:

$$
\begin{gathered}
d(\boldsymbol{\lambda})=\min _{\mathbf{r}} \underbrace{\{f(\mathbf{r})-\langle\boldsymbol{\lambda}, \mathbf{r}\rangle\}}_{-f^{*}(\boldsymbol{\lambda})}+\min _{\mathbf{x}}\{\langle\boldsymbol{\lambda}, \mathbf{x}\rangle: \mathbf{x} \in \mathcal{X}\} \\
\nabla d\left(\boldsymbol{\lambda}^{k}\right)=\mathbf{x}^{*}\left(\boldsymbol{\lambda}^{k}\right)-\mathbf{r}^{*}\left(\boldsymbol{\lambda}^{k}\right) \\
\boldsymbol{\lambda}^{k}=\nabla f\left(\mathbf{r}^{*}\left(\boldsymbol{\lambda}^{k}\right)\right) \quad \Longleftrightarrow \quad \mathbf{r}^{*}\left(\boldsymbol{\lambda}^{k}\right) \in \partial f^{*}\left(\boldsymbol{\lambda}^{k}\right)
\end{gathered}
$$

Due to Fenchel duality.

*CGM is dual averaging subgradient method

$$
\min _{\mathbf{r}, \mathbf{x}}\{f(\mathbf{x}): \mathbf{x}=\mathbf{r}, \mathbf{r} \in \mathcal{X}\}
$$

Dual averaging subgradient method:
For $k=0$ to $k_{\text {max }}$:

$$
\begin{aligned}
& \mathbf{x}^{k+1}=\mathbf{x}^{k}+\gamma_{k}\left(\mathbf{x}^{*}\left(\boldsymbol{\lambda}^{k}\right)-\mathbf{r}^{*}\left(\boldsymbol{\lambda}^{k}\right)\right) \\
& \boldsymbol{\lambda}^{k+1}=\nabla f\left(\mathbf{x}^{k+1}\right)
\end{aligned}
$$

End for

$$
\begin{gathered}
\boldsymbol{\lambda}^{k+1}=\arg \max _{\boldsymbol{\lambda}}\left\{\left\langle\boldsymbol{\lambda}, \mathbf{x}^{k+1}\right\rangle-f^{*}(\boldsymbol{\lambda})\right\} \\
\mathrm{x}^{k+1} \in \partial f^{*}\left(\boldsymbol{\lambda}^{k+1}\right) \quad \Longleftrightarrow \quad \boldsymbol{\lambda}^{k+1}=\nabla f\left(\mathbf{x}^{k+1}\right)
\end{gathered}
$$

Due to Fenchel duality.

* CGM is dual averaging subgradient method

$$
\min _{\mathbf{r}, \mathbf{x}}\{f(\mathbf{x}): \mathbf{x}=\mathbf{r}, \mathbf{r} \in \mathcal{X}\}
$$

Dual averaging subgradient method:
For $k=0$ to $k_{\text {max }}$:

$$
\begin{aligned}
& \mathbf{x}^{k+1}=\mathbf{x}^{k}+\gamma_{k}\left(\mathbf{x}^{*}\left(\boldsymbol{\lambda}^{k}\right)-\mathbf{x}^{k}\right) \\
& \boldsymbol{\lambda}^{k+1}=\nabla f\left(\mathbf{x}^{k+1}\right)
\end{aligned}
$$

End for

$$
\begin{gathered}
\boldsymbol{\lambda}^{k+1}=\arg \max _{\boldsymbol{\lambda}}\left\{\left\langle\boldsymbol{\lambda}, \mathbf{x}^{k+1}\right\rangle-f^{*}(\boldsymbol{\lambda})\right\} \\
\mathrm{x}^{k+1} \in \partial f^{*}\left(\boldsymbol{\lambda}^{k+1}\right) \quad \Longleftrightarrow \quad \boldsymbol{\lambda}^{k+1}=\nabla f\left(\mathbf{x}^{k+1}\right)
\end{gathered}
$$

Due to Fenchel duality.

We can choose $\mathbf{r}^{*}\left(\boldsymbol{\lambda}^{k}\right)=\mathbf{x}^{k}$ since $\mathbf{r}^{*}\left(\boldsymbol{\lambda}^{k}\right) \in \partial f^{*}\left(\boldsymbol{\lambda}^{k}\right)$

Finding an optimal solution

A plausible algorithmic strategy for $\min _{\mathbf{x} \in \mathcal{X}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b}\}$:

A natural minimax formulation:

$$
\left(\mathbf{x}^{\star}, \lambda^{\star}\right) \in \arg \max _{\lambda} \min _{\mathbf{x} \in \mathcal{X}}\{\mathcal{L}(\mathbf{x}, \lambda):=f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle\} .
$$

Lagrangian subproblem: $\mathbf{x}^{*}(\lambda) \in \arg \min _{\mathbf{x} \in \mathcal{X}} \mathcal{L}(\mathbf{x}, \lambda)$
Dual problem: $\quad \lambda^{\star} \in \arg \max _{\lambda}\left\{d(\lambda):=\mathcal{L}\left(\mathbf{x}^{*}(\lambda), \lambda\right)\right\}$

- λ is called the Lagrange multiplier.
- The function $d(\lambda)$ is called the dual function, and it is concave!
- The optimal dual objective value is $d^{\star}=d\left(\lambda^{\star}\right)$.

Our strategy \Rightarrow Make progress on the dual and obtain the primal solution
For notational simplicity, we denote $g(\boldsymbol{\lambda})=-d(\boldsymbol{\lambda})$ and consider convex minimization.

Finding an optimal solution

A plausible algorithmic strategy for $\min _{\mathbf{x} \in \mathcal{X}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b}\}$:

A natural minimax formulation:

$$
\left(\mathbf{x}^{\star}, \lambda^{\star}\right) \in \arg \max _{\lambda} \min _{\mathbf{x} \in \mathcal{X}}\{\mathcal{L}(\mathbf{x}, \lambda):=f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle\} .
$$

Lagrangian subproblem: $\mathbf{x}^{*}(\lambda) \in \arg \min _{\mathbf{x} \in \mathcal{X}} \mathcal{L}(\mathbf{x}, \lambda)$
Dual problem: $\quad \lambda^{\star} \in \arg \max _{\lambda}\left\{d(\lambda):=\mathcal{L}\left(\mathbf{x}^{*}(\lambda), \lambda\right)\right\}$

- λ is called the Lagrange multiplier.
- The function $d(\lambda)$ is called the dual function, and it is concave!
- The optimal dual objective value is $d^{\star}=d\left(\lambda^{\star}\right)$.

Our strategy \Rightarrow Make progress on the dual and obtain the primal solution
For notational simplicity, we denote $g(\boldsymbol{\lambda})=-d(\boldsymbol{\lambda})$ and consider convex minimization.

Challenges for the plausible strategy above

1. Establishing its correctness
2. Computational efficiency of finding an $\bar{\epsilon}$-approximate optimal dual solution $\lambda_{\bar{\epsilon}}^{\star}$
3. Mapping $\lambda_{\epsilon}^{\star} \rightarrow \mathbf{x}_{\epsilon}^{\star}$

Finding an optimal solution

A plausible algorithmic strategy for $\min _{\mathbf{x} \in \mathcal{X}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b}\}$:

A natural minimax formulation:

$$
\left(\mathbf{x}^{\star}, \lambda^{\star}\right) \in \arg \max _{\lambda} \min _{\mathbf{x} \in \mathcal{X}}\{\mathcal{L}(\mathbf{x}, \lambda):=f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle\} .
$$

Lagrangian subproblem: $\mathbf{x}^{*}(\lambda) \in \arg \min _{\mathbf{x} \in \mathcal{X}} \mathcal{L}(\mathbf{x}, \lambda)$
Dual problem: $\quad \lambda^{\star} \in \arg \max _{\lambda}\left\{d(\lambda):=\mathcal{L}\left(\mathbf{x}^{*}(\lambda), \lambda\right)\right\}$

- λ is called the Lagrange multiplier.
- The function $d(\lambda)$ is called the dual function, and it is concave!
- The optimal dual objective value is $d^{\star}=d\left(\lambda^{\star}\right)$.

Our strategy \Rightarrow Make progress on the dual and obtain the primal solution
For notational simplicity, we denote $g(\boldsymbol{\lambda})=-d(\boldsymbol{\lambda})$ and consider convex minimization.

Challenges for the plausible strategy above

1. Establishing its correctness: Assume $f^{\star}>-\infty$ and Slater's condition for $f^{\star}=d^{\star}$
2. Computational efficiency of finding an $\bar{\epsilon}$-approximate optimal dual solution $\lambda_{\bar{\epsilon}}^{\star}$
3. Mapping $\lambda_{\epsilon}^{\star} \rightarrow \mathbf{x}_{\epsilon}^{\star}$

Efficiency considerations for the dual problem

If $g(\boldsymbol{\lambda})$ is non-smooth (with bounded subgradients)

$$
\exists G>0: \quad\|\mathbf{v}\|_{2} \leq G, \quad \forall \mathbf{v} \in \partial g(\boldsymbol{\lambda}), \forall \boldsymbol{\lambda} \in \mathbb{R}^{n}
$$

- Subgradient method in the dual $\rightarrow \mathcal{O}\left(\frac{1}{\epsilon^{2}}\right)$

Efficiency considerations for the dual problem

If $g(\boldsymbol{\lambda})$ is non-smooth (with bounded subgradients)

$$
\exists G>0: \quad\|\mathbf{v}\|_{2} \leq G, \quad \forall \mathbf{v} \in \partial g(\boldsymbol{\lambda}), \forall \boldsymbol{\lambda} \in \mathbb{R}^{n}
$$

- Subgradient method in the dual $\rightarrow \mathcal{O}\left(\frac{1}{\epsilon^{2}}\right)$

If $g(\boldsymbol{\lambda})$ is smooth (Lipschitz gradients)

$$
\|\nabla g(\boldsymbol{\lambda})-\nabla g(\boldsymbol{\eta})\|_{2} \leq L\|\boldsymbol{\lambda}-\boldsymbol{\eta}\|_{2}, \quad \forall \boldsymbol{\lambda}, \boldsymbol{\eta} \in \mathbb{R}^{n} .
$$

- Accelerated gradient method in the dual $\rightarrow \mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right)$.

Efficiency considerations for the dual problem

If $g(\boldsymbol{\lambda})$ is non-smooth (with bounded subgradients)

$$
\exists G>0: \quad\|\mathbf{v}\|_{2} \leq G, \quad \forall \mathbf{v} \in \partial g(\boldsymbol{\lambda}), \forall \boldsymbol{\lambda} \in \mathbb{R}^{n}
$$

- Subgradient method in the dual $\rightarrow \mathcal{O}\left(\frac{1}{\epsilon^{2}}\right)$

Our strategy: Hölder smoothness in the dual

We assume that $\nabla g(\boldsymbol{\lambda})$ is Hölder continuous for some $\nu \in[0,1]$:

$$
\|\nabla g(\boldsymbol{\lambda})-\nabla g(\boldsymbol{\eta})\|_{2} \leq M_{\nu}\|\boldsymbol{\lambda}-\boldsymbol{\eta}\|_{2}^{\nu}, \quad \forall \boldsymbol{\lambda}, \boldsymbol{\eta} \in \mathbb{R}^{n}
$$

- Theoretical lowerbound: $\mathcal{O}\left(\left(\frac{1}{\epsilon}\right)^{\frac{2}{1+3 \nu}}\right)$.
- $\nu=0$ is equivalent to the bounded (sub)gradient assumption.
- $\nu=1$ is equivalent to the Lipschitz gradients assumption.

If $g(\boldsymbol{\lambda})$ is smooth (Lipschitz gradients)

$$
\|\nabla g(\boldsymbol{\lambda})-\nabla g(\boldsymbol{\eta})\|_{2} \leq L\|\boldsymbol{\lambda}-\boldsymbol{\eta}\|_{2}, \quad \forall \boldsymbol{\lambda}, \boldsymbol{\eta} \in \mathbb{R}^{n} .
$$

- Accelerated gradient method in the dual $\rightarrow \mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right)$.

Brief detour: Exploring the smoothness in depth

Consider the following unconstrained convex minimization

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} g(\mathbf{x})
$$

Practical difficulty of using Hölder continuity

Hölder continuous (sub)gradients ensures the following basic surrogate for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$:

$$
\begin{equation*}
g(\mathbf{y}) \leq g(\mathbf{x})+\langle\nabla g(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{M_{\nu}}{1+\nu}\|\mathbf{x}-\mathbf{y}\|^{1+\nu} \tag{3}
\end{equation*}
$$

In practice, smoothness parameters ν and M_{ν} are usually not known.

Brief detour: Exploring the smoothness in depth

Consider the following unconstrained convex minimization

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} g(\mathbf{x})
$$

Practical difficulty of using Hölder continuity

Hölder continuous (sub)gradients ensures the following basic surrogate for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$:

$$
\begin{equation*}
g(\mathbf{y}) \leq g(\mathbf{x})+\langle\nabla g(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{M_{\nu}}{1+\nu}\|\mathbf{x}-\mathbf{y}\|^{1+\nu} \tag{3}
\end{equation*}
$$

In practice, smoothness parameters ν and M_{ν} are usually not known.

Nesterov's universal gradient lemma [5].
Let g satisfy (3). Then for any $\epsilon>0$ and

$$
M \geq\left[\frac{1-\nu}{1+\nu} \cdot \frac{1}{\delta}\right]^{\frac{1-\nu}{1+\nu}} M_{\nu}^{\frac{2}{1+\nu}}
$$

we have

$$
g(\mathbf{y}) \leq g(\mathbf{x})+\langle\nabla g(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{M}{2}\|\mathbf{x}-\mathbf{y}\|^{2}+\frac{\epsilon}{2}
$$

Brief detour: Exploring the smoothness in depth

Consider the following unconstrained convex minimization

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} g(\mathbf{x})
$$

Practical difficulty of using Hölder continuity

Hölder continuous (sub)gradients ensures the following basic surrogate for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$:

$$
\begin{equation*}
g(\mathbf{y}) \leq g(\mathbf{x})+\langle\nabla g(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{M_{\nu}}{1+\nu}\|\mathbf{x}-\mathbf{y}\|^{1+\nu} \tag{3}
\end{equation*}
$$

In practice, smoothness parameters ν and M_{ν} are usually not known.
Nesterov's universal gradient lemma [5].
Let g satisfy (3). Then for any $\epsilon>0$ and

$$
M \geq\left[\frac{1-\nu}{1+\nu} \cdot \frac{1}{\delta}\right]^{\frac{1-\nu}{1+\nu}} M_{\nu}^{\frac{2}{1+\nu}}
$$

we have

$$
g(\mathbf{y}) \leq g(\mathbf{x})+\langle\nabla g(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{M}{2}\|\mathbf{x}-\mathbf{y}\|^{2}+\frac{\epsilon}{2}
$$

This lemma provides us the linesearch condition!

Nesterov's universal gradient methods

Universal primal gradient method (PGM) ${ }^{1}$

1. Choose $\mathbf{x}^{0} \in \mathcal{X}, M_{-1}>0$ and accuracy $\epsilon>0$.
2. For $k=0,1, \ldots$ perform:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-M_{k}^{-1} \nabla g\left(\mathbf{x}^{k}\right)
$$

using line-search to find $M_{k} \geq 0.5 M_{k-1}$ that satisfies:

$$
g\left(\mathbf{x}^{k+1}\right) \leq g\left(\mathbf{x}^{k}\right)+\left\langle\nabla g\left(\mathbf{x}^{k}\right), \mathbf{x}^{k+1}-\mathbf{x}^{k}\right\rangle+\frac{M_{k}}{2}\left\|\mathbf{x}^{k}-\mathbf{x}^{k+1}\right\|^{2}+\frac{\epsilon}{2}
$$

Nesterov's universal gradient method [5]

- Adapt to the unknown ν via an line-search strategy
- Universal since they ensure the best possible rate of convergence for each ν

[^0]
Nesterov's universal gradient methods

Universal primal gradient method (PGM) ${ }^{1}$

1. Choose $\mathbf{x}^{0} \in \mathcal{X}, M_{-1}>0$ and accuracy $\epsilon>0$.
2. For $k=0,1, \ldots$ perform:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-M_{k}^{-1} \nabla g\left(\mathbf{x}^{k}\right)
$$

using line-search to find $M_{k} \geq 0.5 M_{k-1}$ that satisfies:

$$
g\left(\mathbf{x}^{k+1}\right) \leq g\left(\mathbf{x}^{k}\right)+\left\langle\nabla g\left(\mathbf{x}^{k}\right), \mathbf{x}^{k+1}-\mathbf{x}^{k}\right\rangle+\frac{M_{k}}{2}\left\|\mathbf{x}^{k}-\mathbf{x}^{k+1}\right\|^{2}+\frac{\epsilon}{2}
$$

Nesterov's universal gradient method [5]

- Adapt to the unknown ν via an line-search strategy
- Universal since they ensure the best possible rate of convergence for each ν

Yes, there is an accelerated version [5].

[^1]
Nesterov's universal gradient methods

Universal primal gradient method (PGM) ${ }^{1}$

1. Choose $\mathbf{x}^{0} \in \mathcal{X}, M_{-1}>0$ and accuracy $\epsilon>0$.
2. For $k=0,1, \ldots$ perform:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-M_{k}^{-1} \nabla g\left(\mathbf{x}^{k}\right)
$$

using line-search to find $M_{k} \geq 0.5 M_{k-1}$ that satisfies:

$$
g\left(\mathbf{x}^{k+1}\right) \leq g\left(\mathbf{x}^{k}\right)+\left\langle\nabla g\left(\mathbf{x}^{k}\right), \mathbf{x}^{k+1}-\mathbf{x}^{k}\right\rangle+\frac{M_{k}}{2}\left\|\mathbf{x}^{k}-\mathbf{x}^{k+1}\right\|^{2}+\frac{\epsilon}{2}
$$

Nesterov's universal gradient method [5]

- Adapt to the unknown ν via an line-search strategy
- Universal since they ensure the best possible rate of convergence for each ν

> Yes, there is an accelerated version [5].

New: Our FISTA variant.

[^2]
Our universal primal-dual gradient methods: The main steps

$$
[\mathbf{z}]_{f}^{\sharp}:=\underset{\mathbf{x}}{\operatorname{argmin}}\{f(\mathbf{x})-\langle\mathbf{x}, \mathbf{z}\rangle\}
$$

Universal primal-dual gradient method (UniPDGrad)

Input initial dual point $\boldsymbol{\lambda}^{0}$ and desired accuracy ϵ. Then, at each iteration:

1. Solve Lagrangian subproblem (i.e., evaluate the sharp operator)

$$
\mathbf{x}^{*}\left(\boldsymbol{\lambda}^{k}\right) \in \arg \min _{\mathbf{x} \in \mathcal{X}}\left\{f(\mathbf{x})+\left\langle\boldsymbol{\lambda}^{k}, \mathbf{A} \mathbf{x}-\mathbf{b}\right\rangle\right\} \equiv\left[-\mathbf{A}^{T} \boldsymbol{\lambda}^{k}\right]_{f+\delta \mathcal{X}}^{\sharp}
$$

2. Take a gradient step in the dual (find M_{k} by the inexact line-search condition)

$$
\boldsymbol{\lambda}^{k+1}:=\boldsymbol{\lambda}^{k}-\frac{1}{M_{k}} \nabla g\left(\boldsymbol{\lambda}^{k}\right)=\boldsymbol{\lambda}^{k}+\frac{1}{M_{k}}\left(\mathbf{A} \mathbf{x}^{*}\left(\boldsymbol{\lambda}^{k}\right)-\mathbf{b}\right)
$$

3. Take the weighted average for primal reconstruction

$$
\overline{\mathbf{x}}^{k}:=\left(\sum_{i=0}^{k} \frac{1}{M_{i}}\right)^{-1} \sum_{i=0}^{k} \frac{1}{M_{i}} \mathbf{x}^{*}\left(\boldsymbol{\lambda}^{i}\right)
$$

Summary of the algorithms and convergence guarantees - I

Universal primal-dual gradient method (UniPDGrad)
Initialization: Choose $\lambda^{0} \in \mathbb{R}^{n}$ and $\epsilon>0$. Estimate a value $M_{-1}<2 M_{\epsilon}$.
Iteration: For $k=0,1, \ldots$ perform:

1. Primal step: $\mathbf{x}^{*}\left(\boldsymbol{\lambda}^{k}\right)=\left[-\mathbf{A}^{T} \boldsymbol{\lambda}^{k}\right]_{f}^{\sharp}$
2. Dual gradient: $\quad \nabla g\left(\boldsymbol{\lambda}^{k}\right)=\mathbf{b}-\mathbf{A}^{T} \mathbf{x}^{*}\left(\boldsymbol{\lambda}^{k}\right)$
3. Line-search: Find $M_{k} \in\left[0.5 M_{k-1}, 2 M_{\epsilon}\right]$ from line-search condition and:

$$
\boldsymbol{\lambda}^{k+1}=\boldsymbol{\lambda}^{k}-M_{k}^{-1} \nabla g\left(\boldsymbol{\lambda}^{k}\right)
$$

4. Primal averaging: $\mathbf{x}^{k}:=S_{k}^{-1} \sum_{j=0}^{k} M_{j}^{-1} \mathbf{x}^{*}\left(\boldsymbol{\lambda}^{j}\right)$ where $S_{k}=\sum_{j=0}^{k} M_{j}^{-1}$.

$$
g\left(\boldsymbol{\lambda}^{k+1}\right) \leq g\left(\boldsymbol{\lambda}^{k}\right)+\left\langle\nabla g\left(\boldsymbol{\lambda}^{k}\right), \boldsymbol{\lambda}^{k+1}-\boldsymbol{\lambda}^{k}\right\rangle+\frac{M}{2}\left\|\boldsymbol{\lambda}^{k+1}-\boldsymbol{\lambda}^{k}\right\|^{2}+\frac{\epsilon}{2}
$$

Theorem [8]

\mathbf{x}^{k} obtained by UniPDGrad satisfy:

$$
\left\{\begin{aligned}
-\left\|\mathbf{A} \mathbf{x}^{k}-\mathbf{b}\right\|\left\|\boldsymbol{\lambda}^{\star}\right\| \leq & f\left(\mathbf{x}^{k}\right)-f^{\star} \leq \frac{M_{\epsilon}\left\|\boldsymbol{\lambda}^{0}\right\|^{2}}{k+1}+\frac{\epsilon}{2} \\
& \left\|\mathbf{A} \mathbf{x}^{k}-\mathbf{b}\right\| \leq \frac{4 M_{\epsilon}\left\|\boldsymbol{\lambda}^{0}-\boldsymbol{\lambda}^{\star}\right\|}{k+1}+\sqrt{\frac{2 M_{\epsilon} \epsilon}{k+1}}
\end{aligned}\right.
$$

Summary of the algorithms and convergence guarantees - II

Accelerated universal primal-dual gradient method (AccUniPDGrad)

Initialization: Choose $\lambda^{0} \in \mathbb{R}^{n}, \epsilon>0$. Set $t_{0}=1$. Estimate a value $M_{-1}<2 M_{\epsilon}$. Iteration: For $k=0,1, \ldots$ perform:

1. Primal step: $\mathbf{x}^{*}\left(\hat{\boldsymbol{\lambda}}^{k}\right)=\left[-\mathbf{A}^{T} \hat{\boldsymbol{\lambda}}^{k}\right]_{f}^{\sharp}$,
2. Dual gradient: $\nabla g\left(\hat{\boldsymbol{\lambda}}^{k}\right)=\mathbf{b}-\mathbf{A}^{T} \mathbf{x}^{*}\left(\hat{\boldsymbol{\lambda}}^{k}\right)$,
3. Line-search: Find $M_{k} \in\left[M_{k-1}, 2 M_{\epsilon}\right]$ from line-search condition and:

$$
\lambda^{k+1}=\hat{\lambda}^{k}-M_{k}^{-1} \nabla g\left(\hat{\boldsymbol{\lambda}}^{k}\right)
$$

4. $t_{k+1}=0.5\left[1+\sqrt{1+4 t_{k}^{2}}\right]$,
5. $\hat{\boldsymbol{\lambda}}_{k+1}=\boldsymbol{\lambda}_{k+1}+\frac{t_{k}-1}{t_{k+1}}\left(\boldsymbol{\lambda}_{k+1}-\lambda_{k}\right)$,
6. Primal averaging: $\mathbf{x}^{k}:=S_{k}^{-1} \sum_{j=0}^{k} t_{j} M_{j}^{-1} \mathbf{x}^{*}\left(\boldsymbol{\lambda}^{j}\right)$ where $S_{k}=\sum_{j=0}^{k} t_{j} M_{j}^{-1}$.

$$
g\left(\boldsymbol{\lambda}^{k+1}\right) \leq g\left(\hat{\boldsymbol{\lambda}}^{k}\right)+\left\langle\nabla g\left(\hat{\boldsymbol{\lambda}}^{k}\right), \boldsymbol{\lambda}^{k+1}-\hat{\boldsymbol{\lambda}}^{k}\right\rangle+\frac{M}{2}\left\|\boldsymbol{\lambda}^{k+1}-\hat{\boldsymbol{\lambda}}^{k}\right\|^{2}+\frac{\epsilon}{2 t_{k}}
$$

Theorem [8]

x^{k} obtained by AccUniProx satisfy:

$$
\left\{\begin{array}{rl}
-\left\|\mathbf{A} \mathbf{x}^{k}-\mathbf{b}\right\|\left\|\boldsymbol{\lambda}^{\star}\right\| \leq & f\left(\mathbf{x}^{k}\right)-f^{\star}
\end{array} \leq \frac{4 M_{\epsilon}\left\|\boldsymbol{\lambda}^{0}\right\|^{2}}{(k+2)^{\frac{1+3 \nu}{1+\nu}}+\frac{\epsilon}{2}}, \quad \begin{array}{ll}
& \left\|\mathbf{A} \mathbf{x}^{k}-\mathbf{b}\right\|
\end{array} \leq \frac{16 M_{\epsilon}\left\|\lambda^{0}-\lambda^{\star}\right\|}{(k+2)^{\frac{1+3 \nu}{1+2}}}+\sqrt{\frac{8 M_{\epsilon} \epsilon}{(k+2)^{\frac{1+3 \nu}{1+\nu}}}} .\right.
$$

The general constraint case

Handling to the constraint $\mathbf{A x}-\mathbf{b} \in \mathcal{K}$

the universal dual accelerated gradient method:

$$
\begin{cases}t_{k} & :=0.5\left(1+\sqrt{1+4 t_{k-1}^{2}}\right) \\ \hat{\lambda}^{k} & :=\bar{\lambda}^{k}+\frac{t_{k-1}-1}{t_{k}}\left(\bar{\lambda}^{k}-\hat{\lambda}^{k-1}\right) \\ \lambda^{k+1} & :=\hat{\lambda}^{k}+\frac{1}{M_{k}}\left(\mathbf{A x}\left(\hat{\lambda}^{k}\right)-\mathbf{b}\right) .\end{cases}
$$

The general constraint case

Handling to the constraint $\mathbf{A x}-\mathbf{b} \in \mathcal{K}$

Only one prox change in the universal dual accelerated gradient method:

$$
\begin{cases}t_{k} & :=0.5\left(1+\sqrt{1+4 t_{k-1}^{2}}\right) \\ \hat{\lambda}^{k} & :=\bar{\lambda}^{k}+\frac{t_{k-1}-1}{t_{k}}\left(\bar{\lambda}^{k}-\hat{\lambda}^{k-1}\right) \\ \lambda^{k+1} & :=\operatorname{prox}_{M_{k}^{-1} h}\left(\hat{\lambda}^{k}+\frac{1}{M_{k}}\left(\mathbf{A x}\left(\hat{\lambda}^{k}\right)-\mathbf{b}\right)\right)\end{cases}
$$

Here, h is defined by $h(\lambda):=\sup _{\mathbf{r} \in \mathcal{K}}\langle\lambda, \mathbf{r}\rangle$.

Theoretical guarantees

Universality of the method [8]

We derive the following worst-case iteration complexity results to obtain ϵ-accurate solution \mathbf{x}^{k} in the sense

$$
\left|f\left(\mathbf{x}^{k}\right)-f^{\star}\right| \leq \epsilon, \quad \operatorname{dist}\left(\mathbf{A} \mathbf{x}^{k}-\mathbf{b}, \mathcal{K}\right) \leq \epsilon \quad \text { and } \quad \mathbf{x}^{k} \in \mathcal{X}
$$

$$
\begin{aligned}
& \left\{\begin{array}{lcl}
\text { UniPDGrad: } & \mathcal{O}\left(D_{\Lambda^{\star}}^{2} \inf _{0 \leq \nu \leq 1}\left(\frac{M_{\nu}}{\epsilon}\right)^{\frac{2}{1+\nu}}\right), & \text { optimal for } \nu=0 \\
\text { AccUniPDGrad: } & \mathcal{O}\left(\left(2 D_{\Lambda^{\star}}\right)^{\frac{2+2 \nu}{1+3 \nu}} \inf _{0 \leq \nu \leq 1}\left(\frac{M_{\nu}}{\epsilon}\right)^{\frac{2}{1+3 \nu}}\right), & \text { optimal for } \nu \in[0,1]
\end{array}\right. \\
& \text { where } D_{\Lambda^{\star}}:=\frac{4 \sqrt{2}\left\|\boldsymbol{\lambda}^{\star}\right\|}{-1+\sqrt{1+8 \frac{\left\|\boldsymbol{\lambda}^{\star}\right\|}{\max \left\{\left\|\boldsymbol{\lambda}^{\star}\right\|, 1\right\}}}}
\end{aligned}
$$

Note:

- Both UniPDGrad and AccUniPDGrad require 2 sharp operators queries per iteration on average.

*Example: Phase retrieval

Phase retrieval

Aim: Recover signal $\mathbf{x}^{\natural} \in \mathbb{C}^{p}$ from the measurements $\mathbf{b} \in \mathbb{R}^{n}$:

$$
b_{i}=\left|\left\langle\mathbf{a}_{i}, \mathbf{x}^{\natural}\right\rangle\right|^{2}+\omega_{i} .
$$

($\mathbf{a}_{i} \in \mathbb{C}^{p}$ are known measurement vectors, ω_{i} models noise).

- Non-linear measurements \rightarrow non-convex maximum likelihood estimators.

PhaseLift [1]

Phase retrieval can be solved as a convex matrix completion problem, following a combination of

- semidefinite relaxation $\quad\left(\mathbf{x}^{\natural} \mathbf{x}^{\natural}{ }^{H}=\mathbf{X}^{\natural}\right)$
- convex relaxation $\quad\left(\right.$ rank $\left.\rightarrow\|\cdot\|_{*}\right)$
albeit in terms of the lifted variable $\mathbf{X} \in \mathbb{C}^{p \times p}$.

Example: Phase retrieval - II

Problem formulation

We solve the following PhaseLift variant:

$$
\begin{equation*}
f^{\star}:=\min _{\mathbf{X} \in \mathbb{C}^{p} \times p}\left\{\frac{1}{2}\|\mathcal{A}(\mathbf{X})-\mathbf{b}\|_{2}^{2}: \quad\|\mathbf{X}\|_{*} \leq \kappa, \quad \mathbf{X} \geq 0\right\} \tag{4}
\end{equation*}
$$

Experimental setup [7]

Coded diffraction pattern measurements, $\mathbf{b}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{L}\right]$ with $L=20$ different masks

$$
\mathbf{b}_{\ell}=\left|\mathrm{fft}\left(\mathbf{d}_{\ell}^{H} \odot \mathbf{x}^{\natural}\right)\right|^{2}
$$

$\rightarrow \odot$ denotes Hadamard product; $|\cdot|^{2}$ applies element-wise
$\rightarrow \mathbf{d}_{\ell}$ are randomly generated octonary masks (distributions as proposed in [1])
\rightarrow Parametric choices: $\lambda^{0}=\mathbf{0}^{n} ; \quad \epsilon=10^{-2} ; \kappa=$ mean (b).

Example: Phase retrieval - III

Test with synthetic data: Prox vs sharp
\rightarrow Synthetic data: $\mathbf{x}^{\natural}=\operatorname{randn}(p, 1)+i \cdot \operatorname{randn}(p, 1)$.
\rightarrow Stopping criteria: $\frac{\left\|\mathbf{x}^{\natural}-\mathbf{x}^{k}\right\|_{2}}{\left\|\mathbf{x}^{\natural}\right\|_{2}} \leq 10^{-2}$.
\rightarrow Averaged over 10 Monte-Carlo iterations.
Note that the problem is $p \times p$ dimensional!

Scalability example: Phase retrieval - IV

Test with images

We use real images of

- EPFL campus of size 1280×720
- Milky Way galaxy of size 1920×1080

$$
\begin{array}{ll}
\rightarrow \quad p^{2} \approx 10^{12} & \text { (dashed lines) } \\
\rightarrow \quad p^{2} \approx 4 \cdot 10^{12} & \text { (solid lines) }
\end{array}
$$

Example: Phase retrieval - V

EPFL campus image of size 1280×720, reconstructed in 20 minutes by 41 iterations of AccUniPDGrad: PSNR $=45.54 \mathrm{~dB}$

Scalability example: Phase retrieval - VI

Milky Way galaxy image of size 1920×1080, reconstructed in 42 minutes by 40 iterations of AccUniPDGrad: PSNR $=54.44 \mathrm{~dB}$

Example: Quantum tomography with Pauli operators - I

Problem formulation

Let $\mathbf{X}^{\natural} \in \mathcal{S}_{+}^{p}$ be a density matrix which characterizes a q-qubit quantum system, where $p=2^{q}$. Using Pauli operators \mathcal{A} [2], we can deduce the state from $\mathbf{b}=\mathcal{A}(\mathbf{X}) \in \mathcal{C}^{n}$ based on the following convex optimization formulation:

$$
\begin{equation*}
\varphi^{\star}:=\min _{\mathbf{X} \in \mathcal{S}_{+}^{p}}\left\{\frac{1}{2}\|\mathcal{A}(\mathbf{X})-\mathbf{b}\|_{2}^{2}: \operatorname{tr}(\mathbf{X})=1\right\} \tag{5}
\end{equation*}
$$

The recovery is also robust to noise.

Example: Quantum tomography with Pauli operators - I

Problem formulation

Let $\mathbf{X}^{\natural} \in \mathcal{S}_{+}^{p}$ be a density matrix which characterizes a q-qubit quantum system, where $p=2^{q}$. Using Pauli operators \mathcal{A} [2], we can deduce the state from $\mathbf{b}=\mathcal{A}(\mathbf{X}) \in \mathcal{C}^{n}$ based on the following convex optimization formulation:

$$
\begin{equation*}
\varphi^{\star}:=\min _{\mathbf{X} \in \mathcal{S}_{+}^{p}}\left\{\frac{1}{2}\|\mathcal{A}(\mathbf{X})-\mathbf{b}\|_{2}^{2}: \operatorname{tr}(\mathbf{X})=1\right\} \tag{5}
\end{equation*}
$$

The recovery is also robust to noise.
Perfect scalability test: tuning free constraint + Lipschitz continuous gradient

Setup

Synthetic random pure quantum state (e.g., rank-1 \mathbf{X}^{\natural}) with:

- $q=14$ qubits, that corresponds to $2^{28}=268^{\prime} 435^{\prime} 456$ dimensional problem.
- $n:=2 p \log (p)=138^{\prime} 099$ number of Pauli measurements.
- Input parameters $\lambda^{0}=\mathbf{0}^{n}$ and $\epsilon=2 \cdot 10^{-4}$.

Example: Quantum tomography with Pauli operators - II

Figure: The performance of (Acc)UniPDGrad and Frank-Wolfe algorithms for (5).

Outline

Yet another template from source separation

Bonus: ADMM ${ }^{2}$

Primal problem with a specific decomposition structure

$$
f^{\star}:=\min _{\mathbf{x}:=(\mathbf{u}, \mathbf{v})}\{f(\mathbf{x}):=g(\mathbf{u})+h(\mathbf{v}): \mathbf{B u}+\mathbf{C} \mathbf{v}=\mathbf{b}, \mathbf{u} \in \mathcal{U}, \mathbf{v} \in \mathcal{V}\}
$$

- $\mathcal{X}:=\mathcal{U} \times \mathcal{V}$ - nonempty, closed, convex and bounded.
- $\mathbf{A}:=[\mathbf{B}, \mathbf{C}]$.

The Fenchel dual problem

$$
d^{\star}:=\max _{\lambda \in \mathbb{R}^{n}}\left\{d(\lambda):=-g_{\mathcal{U}}^{*}\left(-\mathbf{B}^{T} \lambda\right)-h_{\mathcal{V}}^{*}\left(-\mathbf{C}^{T} \lambda\right)+\langle\mathbf{b}, \lambda\rangle\right\}
$$

- $g_{\mathcal{U}}^{*}$ and $h_{\mathcal{U}}^{*}$ are the Fenchel conjugate of $g_{\mathcal{U}}:=g+\delta_{\mathcal{U}}$ and $h_{\mathcal{V}}:=h+\delta_{\mathcal{V}}$, resp.

The dual function

$$
d(\lambda):=\underbrace{\min _{\mathbf{u} \in \mathcal{U}}\left\{g(\mathbf{u})+\left\langle\mathbf{B}^{T} \lambda, \mathbf{u}\right\rangle\right\}}_{d^{1}(\lambda)}+\underbrace{\min _{\mathbf{v} \in \mathcal{V}}\left\{h(\mathbf{v})+\left\langle\mathbf{C}^{T} \lambda, \mathbf{v}\right\rangle\right\}}_{d^{2}(\lambda)}-\langle\mathbf{b}, \lambda\rangle .
$$

[^3]
Standard ADMM as the dual Douglas-Rachford method

We can derive ADMM via the Douglas-Rachford splitting on the dual:

$$
0 \in \mathbf{B} \partial g_{\mathcal{U}}^{*}\left(-\mathbf{B}^{T} \lambda\right)+\mathbf{C} \partial h^{*} \mathcal{V}\left(-\mathbf{C}^{T} \lambda\right)+\boldsymbol{c}
$$

which is the optimality condition of the dual problem.

Douglas-Rachford splitting method

$$
\begin{cases}\mathbf{z}_{g}^{k} & :=\operatorname{prox}_{\eta_{k}^{-1} g_{\mathcal{U}}^{*}\left(-\mathbf{B}^{T} \cdot\right)}\left(\lambda^{k}\right) \\ \mathbf{z}_{h}^{k} & :=\operatorname{prox}_{\eta_{k}^{-1} h_{\mathcal{V}}^{*}\left(-\mathbf{C}^{T} \cdot\right)}\left(2 \mathbf{z}_{g}^{k}-\lambda^{k}\right) \\ \lambda^{k+1} & :=\lambda^{k}+\left(\mathbf{z}_{g}^{k}-\mathbf{z}_{h}^{k}\right)\end{cases}
$$

Standard ADMM

$$
\left\{\begin{aligned}
\mathbf{u}^{k+1} & :=\underset{\mathbf{u} \in \mathcal{U}}{\arg \min }\left\{g(\mathbf{u})+\left\langle\lambda^{k}, \mathbf{B u}\right\rangle+\frac{\eta_{k}}{2}\left\|\mathbf{B u}+\mathbf{C v}^{k}-\mathbf{b}\right\|^{2}\right\} \\
\mathbf{v}^{k+1} & :=\underset{\mathbf{v} \in \mathcal{V}}{\arg \min }\left\{h(\mathbf{v})+\left\langle\lambda^{k}, \mathbf{C v}\right\rangle+\frac{\eta_{k}}{2}\left\|\mathbf{B} \mathbf{u}^{k+1}+\mathbf{C v}-\mathbf{b}\right\|^{2}\right\} \\
\lambda^{k+1} & :=\lambda^{k}+\eta_{k}\left(\mathbf{B u}^{k+1}+\mathbf{C v}^{k+1}-\mathbf{b}\right)
\end{aligned}\right.
$$

Here, $\eta_{k}>0$ is a given penalty parameter.

*Splitting the smoothed gap

Smoothing the gap

- The dual components d^{1} and d^{2} are nonsmooth. We smooth one, e.g., d^{1}, using:

$$
d_{\gamma}^{1}(\lambda):=\min _{\mathbf{u} \in \mathcal{U}}\left\{g(\mathbf{u})+\frac{\gamma}{2}\left\|\mathbf{B}\left(\mathbf{u}-\mathbf{u}_{c}\right)\right\|^{2}+\langle\lambda, \mathbf{B} \mathbf{u}\rangle\right\}
$$

- Recall: We also approximate f by f_{β} as:

$$
f_{\beta}(\mathbf{x}):=f(\mathbf{x})+\frac{1}{2 \beta}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2} \rightarrow f(\mathbf{x}) \text { as } \mathbf{x} \text { becomes feasible }
$$

Three key properties of d_{γ}^{1}

- d_{γ}^{1} is concave and smooth.
- ∇d_{γ}^{1} is Lipschitz continuous with $L:=\gamma^{-1}$.
- d_{γ}^{1} approximates d^{1} as:

$$
d_{\gamma}^{1}(\lambda)-\gamma D_{\mathcal{U}} \leq d^{1}(\lambda) \leq d_{\gamma}^{1}(\lambda)
$$

where $D_{\mathcal{U}}:=\max \left\{(1 / 2)\left\|\mathbf{B}\left(\mathbf{u}-\mathbf{u}_{c}\right)\right\|^{2}: \mathbf{u} \in \mathcal{U}\right\}$.

*Our ADMM scheme: D-R on the smoothed gap

- Our new ADMM scheme consists of three steps:

ADMM step, acceleration step, and primal averaging.

Step 1: The main ADMM steps

$$
\begin{cases}\hat{\mathbf{u}}^{k+1} & :=\underset{\mathbf{u} \in \mathcal{U}}{\arg \min }\left\{g_{\gamma_{k+1}}(\mathbf{u})+\left\langle\hat{\lambda}^{k}, \mathbf{B u}\right\rangle+\frac{\rho_{k}}{2}\left\|\mathbf{B u}+\mathbf{C} \hat{\mathbf{v}}^{k}-\mathbf{b}\right\|^{2}\right\} \\ \hat{\mathbf{v}}^{k+1} & :=\underset{\mathbf{v} \in \mathcal{V}}{\arg \min }\left\{h(\mathbf{v})+\left\langle\hat{\lambda}^{k}, \mathbf{C v}\right\rangle+\frac{\eta_{k}}{2}\left\|\mathbf{B} \hat{\mathbf{u}}^{k+1}+\mathbf{C v}-\mathbf{b}\right\|^{2}\right\} \\ \lambda^{k+1} & :=\hat{\lambda}^{k}+\eta_{k}\left(\mathbf{B} \hat{\mathbf{u}}^{k+1}+\mathbf{C} \hat{\mathbf{v}}^{k+1}-\mathbf{b}\right) .\end{cases}
$$

where $g_{\gamma}(\cdot):=g(\cdot)+\frac{\gamma}{2}\left\|\mathbf{B}\left(\cdot-\mathbf{u}_{c}\right)\right\|^{2}$.
*The dual accelerated and primal averaging steps

- Step 2: [Dual acceleration] $\hat{\lambda}^{k}$ is computed as:

$$
\hat{\lambda}^{k}:=\left(1-\tau_{k}\right) \lambda_{k}+\frac{\tau_{k}}{\beta_{k}}\left(\mathbf{B u}^{k}+\mathbf{C v}^{k}-\mathbf{b}\right) .
$$

- Step 3: [Averaging] The primal iteration $\mathbf{x}^{k}:=\left(\mathbf{u}^{k}, \mathbf{v}^{k}\right)$ is updated as:

$$
\mathbf{u}^{k+1}:=\left(1-\tau_{k}\right) \mathbf{u}^{k}+\tau_{k} \hat{\mathbf{u}}^{k+1} \text { and } \mathbf{v}^{k+1}:=\left(1-\tau_{k}\right) \mathbf{v}^{k}+\tau_{k} \hat{\mathbf{v}}^{k+1}
$$

*How do we update parameters?

Duality gap and smoothed gap functions

- The duality gap: $G(\mathbf{w}):=f(\mathbf{x})-d(\lambda)$, where $\mathbf{w}:=(\mathbf{x}, \lambda)$.
- The smoothed gap: $G_{\gamma \beta}(\mathbf{w}):=f_{\beta}(\mathbf{x})-d_{\gamma}(\lambda)$ with $d_{\gamma}:=d_{\gamma}^{1}+d^{2}$.

Model-based gap reduction

The gap reduction model provides conditions to derive parameter update rules:

$$
G_{\gamma_{k+1} \beta_{k+1}}\left(\mathbf{w}^{k+1}\right) \leq\left(1-\tau_{k}\right) G_{\gamma_{k} \beta_{k}}\left(\mathbf{w}^{k}\right)+\tau_{k}\left(\eta_{k}+\rho_{k}\right) D_{\mathcal{X}}
$$

where $\gamma_{k+1}<\gamma_{k}, \beta_{k+1}<\beta_{k}$ and $D_{\mathcal{X}}:=\max _{\mathbf{x} \in \mathcal{X}}\left\{(1 / 2)\|\mathbf{B u}+\mathbf{C v}-\mathbf{b}\|^{2}\right\}$.

Update rules

- The smoothness parameters: $\gamma_{k+1}:=\frac{2 \gamma_{0}}{k+3}$ and $\beta_{k}:=\frac{9(k+3)}{\gamma_{0}(k+1)(k+7)}$.
- The penalty parameters: $\eta_{k}:=\frac{\gamma_{0}}{k+3}$ and $\rho_{k}:=\frac{3 \gamma_{0}}{(k+3)(k+4)}$.
- The step-size $\tau_{k}:=\frac{3}{k+4} \Rightarrow \mathcal{O}\left(\frac{1}{k}\right)$.

*Convergence guarantee \& Other cases of interest

Convergence rate guarantee

- Rate on the primal objective residual and constraint feasibility:

$$
\begin{array}{ll}
f\left(\mathbf{x}^{k}\right)-f^{\star} \leq \frac{2 \gamma_{0} D_{\mathcal{U}}}{k+2}+\frac{3 \gamma_{0} D_{\mathcal{X}}}{2(k+3)}\left(1+\frac{6}{k+2}\right) & \Rightarrow \mathcal{O}\left(\frac{1}{k}\right) \\
\left\|\mathbf{A} \mathbf{x}^{k}-\mathbf{b}\right\| \leq \frac{18 D_{d}^{*}}{\gamma_{0}(k+2)}+\frac{6}{k+2} \sqrt{D_{\mathcal{U}}+\frac{3(k+8)}{2(k+3)} D \mathcal{X}} & \Rightarrow \mathcal{O}\left(\frac{1}{k}\right)
\end{array}
$$

where D_{d}^{*} is the diameter of the dual solution set Λ^{\star}.

- Lower bound: $-D_{d}^{*}\left\|\mathbf{A} \mathbf{x}^{k}-\mathbf{b}\right\| \leq f\left(\mathbf{x}^{k}\right)-f^{\star}$.
- Rate on the dual objective residual:

$$
d^{\star}-d\left(\lambda^{k}\right) \leq \frac{18\left(D_{d}^{*}\right)^{2}}{\gamma_{0}(k+2)}+\frac{6 D_{d}^{*}}{k+2} \sqrt{D_{\mathcal{U}}+\frac{3(k+8)}{2(k+3)} D_{\mathcal{X}}} \Rightarrow \mathcal{O}\left(\frac{1}{k}\right)
$$

Special cases: cf., http://lions.epfl.ch/publications

- Full-column rank or orthogonality of \mathbf{A} : Using smoothing term $(\gamma / 2)\left\|\mathbf{u}-\mathbf{u}_{c}\right\|^{2}$.
- Strong convexity of g : We do not need to smooth d^{1}.
- Decomposability of g and \mathcal{U} : Using smoothing term

$$
(\gamma / 2) \sum_{i=1}^{s}\left\|\mathbf{B}_{i}\left(\mathbf{u}_{i}-\mathbf{u}_{c, i}\right)\right\|^{2}
$$

*A comparison to the theoretical bounds

A stylized example: Square-root LASSO

$$
f^{\star}:=\min _{\mathbf{u} \in \mathcal{U}, \mathbf{v} \in \mathcal{V}}\left\{f(\mathbf{x}):=\|\mathbf{u}\|_{2}+\kappa\|\mathbf{v}\|_{1}: \mathbf{B}(\mathbf{v})-\mathbf{u}=c\right\} .
$$

- See the preprint for more examples, enhancements, ...

References I

[1] Emmanuel J Candes, T. Strohmer, and V. Voroninski.
Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming.
IEEE Trans. Signal Processing, 60(5):2422-2432, 2012.
[2] David Gross, Yi-Kai Liu, Steven T. Flammia, Stephen R Becker, and Jens Eisert. Quantum state tomography via compressed sensing.
Physical Review Letters, 105(15), 2010.
[3] Martin Jaggi.
Revisiting frank-wolfe: Projection-free sparse convex optimization.
In Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28, ICML'13, 2013.
[4] Yu. Nesterov.
Smooth minimization of non-smooth functions.
Math. Program., Ser. A, 103:127-152, 2005.
[5] Yu Nesterov.
Universal gradient methods for convex optimization problems.
Math. Program., 152:381-404, 2015.

References II

[6] Quoc Tran-Dinh and Volkan Cevher.
Constrained convex minimization via model-based excessive gap.
In Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 1, NIPS'14, 2014.
[7] Alp Yurtsever, Ya-Ping Hsieh, and Volkan Cevher.
Scalable convex methods for phase retrieval.
In 6 th IEEE Intl. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2015.
[8] Alp Yurtsever, Quoc Tran-Dinh, and Volkan Cevher.
A universal primal-dual convex optimization framework.
In Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2, NIPS'15, 2015.

[^0]: ${ }^{1}$ PGM in [5] uses the Bregman / prox setup.

[^1]: ${ }^{1}$ PGM in [5] uses the Bregman / prox setup.

[^2]: ${ }^{1}$ PGM in [5] uses the Bregman / prox setup.

[^3]: ${ }^{2}$ Q. Tran-Dinh and V. Cevher, Splitting the Smoothed Primal-dual Gap: Optimal Alternating Direction Methods Tech. Report, 2015, (http://arxiv.org/pdf/1507.03734.pdf) / (http://lions.epfl.ch/publications)

