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Recommended readings

I A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization:
Analysis, Algorithms, and Engineering Applications, 2001.

I A. Nemirovski, Introduction to linear optimization, 2012.
I F. Alizadeh and D. Goldfarb, “Second-order cone programming,” Math.
Program., Ser. B, 2003.

I L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Rev., 1996.
I A. Nemirovski, Interior point polynomial time methods in convex programming,
2004.
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Motivation

Example (Convex Problem)

min
x∈Rp

F (x)

s.t. gi(x) ≤ 0 , i = 1, . . . , s
Ajx− bj = 0, j = 1, . . . , t
x ∈ X

I X is a set such that the set of solutions is a nonempty set
I gi(x) are convex for i = 0, . . . , s

Approach 1 - Previous lectures
Design special purpose software
I Increased convergence speed
I Non-reusable
I Hard to design
I Solid background needed

Approach 2 - This lecture
Structured convex forms
I Less efficient per particular instance
I Readily available software
I Optimized solvers
I Minimal expertise required
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Good news

"One size fits all"

LP ⊂ QP ⊂ QCQP ⊂ SOCP ⊂ SDP

Good news: We need only one solver!

I Today - Disciplined Convex Programming (DCP)
1. DCP

I Linear programming (LP)
I Quadratic programming (QP)
I Quadratically constrained quadratic programming (QCQP)
I Second order conic programming (SOCP)
I Semidefinite programming (SDP)

2. Methods
I Simplex method
I Interior point methods
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Linear Programming (LP)

A linear program (LP) is the problem of minimizing a linear function subject to finitely
many linear equality and inequality constraints.

Definition (LP in the canonical form)
An LP in the canonical form is given by

opt = min
x

{
cT x : x ∈ Rp,Ax ≤ b

}
,

for some c ∈ Rp, A ∈ Rn×p, and b ∈ Rn.

I Any LP can be converted to an equivalent one in the canonical form.
I A linear equality constraint Bx = d is equivalent to two linear inequality
constraints Bx ≤ d and −Bx ≤ d, and can be written as[

B
−B

]
x ≤

[
d
d

]
.
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Application 1: Basis pursuit

Example (Basis pursuit [4])
Recall the Gaussian linear model b = Ax\ + w, and assume that x\ ∈ Rp is sparse.
The basis pursuit estimator for x\ is given by

x̂ ∈ arg min
x

{
‖x‖1 : x ∈ Rp,Ax = b

}
,

for some A ∈ Rn×p and b ∈ Rp.

We have used methods for constrained minimization in Lectures 11 and 12 to solve it.

LP formulation
The optimization problem is equivalent to

min
x+,x−

{
1T (x+ − x−) : x+,x− ≥ 0,A(x+ − x−) = b

}
,

which is an LP, where 1 := (1, 1, . . . , 1) ∈ Rp [4]. Another equivalent LP formulation
is given by [11]

min
x,u

{
1T u : u ≥ 0,−u ≤ x ≤ u,Ax = b

}
,

where u is the “contour” of x.
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Application 2: Dantzig selector

Example (Dantzig selector [3])
Recall the Gaussian linear model b = Ax\ + w, and assume that x\ ∈ Rp is sparse. It
is shown in [2] that the Dantzig selector defined as

x̂ ∈ arg min
x

{
‖x‖1 : x ∈ Rp,

∥∥AT (b−Ax)
∥∥
∞
≤ λ
}
,

for some properly chosen λ > 0 behaves similarly to the Lasso, and hence can be used
to estimate x\.

LP formulation
The optimization problem is equivalent to

min
x,u

{
1T u : u ≥ 0,−u ≤ x ≤ u,−λ1 ≤ AT (b−Ax) ≤ λ1

}
,

which is an LP, where we used the “contour” trick as in the previous slide.
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Application 3: Maximum flow

Example (Maximum flow)
Let G = (V, E) be a directed graph, where V denotes the set of nodes, and
E ⊆ {(u, v) : u, v ∈ V} denotes the directed edges. Let s, t ∈ E. The maximum flow
problem seeks to find the flow fu,v for all (u, v) ∈ V that maximizes the sum flow
from s to t subject to
I capacity constraint: fu,v ≤ cu,v for all (u, v) ∈ E, where cu,v are given capacity
constraints, and

I flow conservation:
∑

u:(u,v)∈E fu,v =
∑

w:(v,w)∈E fv,w for all v ∈ V \ {s, t}.

LP formulation
The maximum flow problem is equivalent to

max
xu,v

{ ∑
v:(s,v)∈E

xs,v :xu,v ≥ 0 for all (u, v) ∈ E,

capacity constraint & flow conservation
}
.

Note that this is an LP.
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The dual problem of an LP
Recall an LP in the canonical form is given by

opt = min
x

{
cT x : x ∈ Rp,Ax ≤ b

}
,

for some c ∈ Rp, A ∈ Rn×p, and b ∈ Rn.

Definition (The dual problem)
The corresponding dual problem is given by

opt∗ = min
λ

{
bTλ : λ ∈ Rn,λ ≥ 0,ATλ = −c

}
.

Intuition
The primal problem is equivalent to maximizing −cT x. Let λ ∈ Rn satisfying λ ≥ 0
and ATλ = −c. Then

−cT x = (ATλ)T x = λT (Ax) ≤ λT b.

Therefore, the dual problem minimizes an upper bound of the original (primal)
problem.
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LP duality theorem

Theorem (Weak and strong LP duality)
Consider an LP and the corresponding dual problem. Then
I Symmetry: The dual problem of the dual problem is equivalent to the primal
problem.

I Weak duality: For any pair of feasible points (x,λ), we have

G(x,λ) := bTλ− (−c)T x ≥ 0,

where G is called the duality gap.
I Strong duality: If the primal problem has a finite optimal value, so does the dual
problem, and opt∗ = opt.

Application of weak duality

I If the optimal objective value of the primal problem is −∞, then the dual
problem is not feasible.

I If the optimal objective value of the dual problem is −∞, then the primal
problem is not feasible.
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? Application of strong duality: the max-flow min-cut theorem

Let G = (V, E) be a directed graph, where V denotes the set of nodes, and
E ⊆ {(u, v) : u, v ∈ V} denotes the directed edges. Let cu,v be given capacity
constraints for each (u, v) ∈ E. Let s, t ∈ E.

Example (Minimum cut)
The minimum cut problem seeks to find a partition S, T of V that minimizes the cut
capacity

∑
(u,v)∈E:u∈S,v∈T cu,v , subject to s ∈ S, and t ∈ T .

I The minimum cut capacity poses a bottleneck of the maximum flow from s to t.

Theorem (Max-flow min-cut theorem [5])
The maximum sum flow from s to t equals the minimum cut capacity between s and t.

Sketch of the proof [18].
The minimum cut problem is the dual of the maximum flow problem. Apply strong
duality. �
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Geometry of an LP

Definition (Extreme point)
A point x in a convex set X is an extreme point, if there does not exist α ∈ (0, 1)
such that x = αu + (1− α)v for some u,v ∈ X .

Theorem (Krein-Milman theorem [8])
A non-empty bounded convex set is the convex hull of the set of all its extreme points.

Proposition
If the feasible set of an LP does not contain a line, then one of the extreme points of
the feasible set is a minimizer.

Proof.
By the Krein-Milman theorem, any point x in the feasible set can be written as
x =

∑m

i=1 αivi, αi ≥ 0,
∑m

i=1 αi = 1, where v1, . . . ,vm denote the extreme points.

Then for any linear objective function f(x) := cT x for some vector c, we have
f(x) =

∑m

i=1 αif(vi) ≤ maxi f(vi). �
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Geometry of an LP contd.

Definition (Polyhedron)
A non-empty set X ⊆ Rp is polyhedral, or a polyhedron, if

X = {x : x ∈ Rp,Ax ≤ b} ,

for some A ∈ Rn×p and b ∈ Rn.

I The feasible set of an LP of the canonical form is polyhedral.

Proposition ([11])
A point x in a polyhedron X := {x : x ∈ Rp,Ax ≤ b} is an extreme point, if and
only if it is the unique solution of AIv = bI for some I ⊆ {1, . . . , p}.

Corollary
For any polyhedron, the number of extreme points is finite.

Proof.
The number of systems of linear equations of the form AIv = bI is finite. �

I Hence we only need to compare the function values on a finite number of points.
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Simplex methods

Consider an LP of the canonical form. Assume its feasible set does not contain a line.

Definition (Face and improving edge)
A face of the feasible set is a subset of the feasible set, for which there exists a
non-empty I ⊆ {1, . . . , n} such that all of its elements satisfy AIx = bI .

An improving edge is a one-dimensional face of the feasible set, along which the
objective value decreases.

Prototype of simplex methods
A typical simplex method

1. v← an extreme point of the feasible set
2. While there is an improving edge e involving v

v← the othe end of e

3. Output v.

I The rule of finding an improving edge in Step 2 is called a pivot rule.
I The complexity of simplex methods depends on the design of the pivot rule,
which determines the number of iterations.
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Complexity of simplex methods

A long-standing open problem
Is there a pivot rule for the simplex algorithm that yields a polynomial number of
iterations? (See Problem 9 of Smale’s Mathematical Problems for the Next Century
[15])
I Analyses imply the number of iterations for simplex methods cannot be
polynomial in the worst case [1].

I Empirical performance (on non-pathological cases) yields O(n).

Partial answers
I The smallest number of iterations can be upper-bounded by O(plog n) [6].
I Simplex methods can have polynomial expected number of iterations for random

A, b, and c, while these results are not practical [16].
I Smoothed analysis: For any LP of the canonical form, for which A and b are
perturbed by a small random noise, a simplex method has polynomial expected
number of iterations [16].

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 16/ 40



Quadratically constrained quadratic programming (QCQP)

Definition (Quadratic program (QP))
A QP is an optimization problem of the form

opt = min
x

{
xT Px + 2qT x + r : x ∈ Rp,Ax ≤ b

}
,

for some A ∈ Rn×p, b ∈ Rn, P ∈ Rp×p, q ∈ Rp, and r ∈ R.

I A QP is a convex optimization problem if P � 0.

Definition (Quadratically Constrained Quadratic Program (QCQP))
A QCQP is an optimization problem of the form

opt = min
x

{
xT P0x + 2qT

0 x + r0 :

x ∈ Rp,xT Pix + 2qT
i x + ri ≤ 0 for all i = 1, . . . ,m

}
,

for some Pi ∈ Rp×p, qi ∈ Rp, and ri ∈ R.

I A QCQP is a convex optimization problem if Pi � 0 for all i.
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Application 1: Portfolio optimization

Example (Markowitz portfolio optimization (Nobel Prize) [9])
Given a collection of n possible investments with return rates r1, . . . , rn, modeled as
RVs with mean E[ri] = µi and variance σi = E[(ri − µi)2], the goal is to maximize
the return of a portfolio represented by ratio of available capital invested xi in each of
them.

The return of the portofolio is R =
∑

i
xiri := xr, E[R] =

∑
i
xiµi := xTµ, and

E[(R− E[R])2] = xT Gx, where Gi,j = ρi,jσiσj and ρi,j is the corelation between
investment return i and j.

The convex optimization formulation of this problem is:

max
x∈Rn

xTµ− κxT Gx

s.t.
n∑

i=1

xi = 1

x ≥ 0 ,

where κ is a parameter for the "risk".
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Application 2: Sequential Quadratic Programming

Definition (Sequential Quadratic Programming)
To solve a given convex program

min
x∈D

F (x)

s.t. gi(x) ≤ 0, i = 1, . . . , s
hj(x) = 0, j = 1, . . . , t

we solve a series of QPs
min
x∈D

F (x) +∇F (xk)(x− xk) +
1
2

(x− xk)T∇2F (xk)(x− xk)

s.t. gi(x) +∇gi(xk)(x− xk) ≤ 0, i = 1, . . . , s

hj(x) +∇hj(xk)(x− xk) = 0, j = 1, . . . , t
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Second-order cone programming (SOCP)

Definition (Second-order cone (Lorentz cone))
A second-order cone is a set of the form L =

{
(x, t) : x ∈ Rp, ‖x‖2 ≤ t

}
⊆ Rp+1.

Definition (Partial ordering induced by a second-order cone)
Let L be a second-order cone. The partial ordering induced by L is defined as

x �L y if and only if y− x ∈ Lp+1.

I Especially, (x, t) �L 0 if and only if ‖x‖2 ≤ t.

Definition (Second-order cone program (SOCP))
An SOCP is an optimization problem of the form

opt = min
x1,...,xm

{
m∑

i=1

cT
i xi : xi ∈ Rp,

m∑
i=1

Aixi = b,xi �L 0

}
,

for some Ai ∈ Rn×p, b ∈ Rn, and ci ∈ Rp.
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Illustration of a second-order cone

Definition (Second-order cone (Lorentz cone))
A second-order cone is a set of the form Lp+1 =

{
(x, t) : x ∈ Rp, ‖x‖2 ≤ t

}
.
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Application: Basis pursuit denoising

Example (Basis pursuit denoising)
Recall that the basis pursuit denoising estimator (Lecture 10) is given by

x̂ ∈ arg min
x

{
‖x‖1 : x ∈ Rp, ‖b−Ax‖2 ≤ σ

}
,

for some A ∈ Rn×p, b ∈ Rn, and σ > 0.

We could use methods from Lectures 11 and 12 to solve it.

SOCP formulation
The optimization problem is equivalent to

min
x+,x−,y,z

{
1T (x+ + x−) : y = b−A(x+ − x−), z = σ,

(y, z) �L 0, (0, (x+)i) �L 0, (0, (x−)i) �L 0 for all i
}
,

where (x+)i and (x−)i denote the i-th element of x+ and x−, respectively.
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Semidefinite programming (SDP)

Definition (Semidefinite program (SDP))
A semidefinite program is an optimization problem of the form

opt = min
x

{
cT x : x ∈ Rp,F0 +

p∑
i=1

xiFi � 0

}
,

for some c ∈ Rp and symmetric matrices F0, . . . ,Fp ∈ Rm×m.

Reminder
I The eigenvalue decomposition of a square matrix, A ∈ Rn×n, is given by:

A = XΛX−1

I A � 0 if all its eigenvalues are nonnegative i.e. λmin(A) ≥ 0.
I Similarly, A � 0 if all its eigenvalues are nonnegative i.e. λmin(A) > 0.
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Examples: LP and maximum eigenvalue minimization

Example (LP as SDP)
The LP in the canonical form

opt = min
x

{
cT x : x ∈ Rp,Ax ≤ b

}
is equivalent to the SDP

opt = min
x

{
cT x : x ∈ Rp, diag(b−Ax) � 0

}
.

Example (Maximum eigenvalue minimization [17])
Define A(x) := A0 +

∑p

i=1 xiAi for symmetric matrices A0, . . . ,Ap. The problem
of minimizing the maximum eigenvalue of A(x),

opt = min
x
{λmax(A(x)) : x ∈ Rp} ,

is equivalent to the SDP

opt = min
t,x
{t : t ∈ R,x ∈ Rp, tI−A(x) � 0} .
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Schur complement

Definition (Schur complement)
Consider a symmetric matrix X ∈ Rn×n given by

X =
(

A B
BT C

)
,

for some symmetric matrix A ∈ Rm×m.

If A is non-singular, then
S := C−BT A−1B

is called the Schur complement of A in X.

Useful properties:
I det(X) = det(A)det(S)
I X � 0⇔ A � 0 and S � 0
I If A � 0, then X � 0⇔ S � 0

Example:

I (Ax + b)T (Ax + b)− cT x− d ≤ 0⇔
(

I Ax + b
(Ax + b)T cT x + d

)
� 0
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QCQP as SDP

Definition (Quadratically Constrained Quadratic Program (QCQP))
A QCQP is an optimization problem of the form

opt = min
x

{
xT P0x + 2qT

0 x + r0 :

x ∈ Rp,xT Pix + 2qT
i x + ri ≤ 0 for all i = 1, . . . ,m

}
,

for some Pi ∈ Rp×p, qi ∈ Rp, and ri ∈ R.

SDP formulation
Assume that Pi � 0, and hence can be decomposed as Pi = MT

i Mi for all i. The
QCQP is equivalent to the SDP given by

opt = min
x,t

{
t : x ∈ Rp, t ∈ R,

[ I M0x
(M0x)T −2qT x− r0 + t

]
� 0,[ I Mix

(Mix)T −2qT x− ri

]
� 0
}
.
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SOCP as SDP

Definition (Second-order cone program (SOCP))
An SOCP is an optimization problem of the form

opt = min
x1,...,xm

{
m∑

i=1

cT
i xi : xi ∈ Rp,

m∑
i=1

Aixi = b,xi �L 0

}
,

for some Ai ∈ Rn×p, b ∈ Rn, and ci ∈ Rp.

SDP formulation
Write each xi as xi = (vi, ti)T for all i. The constraint xi �L 0 is equivalent to[

tiI vi

vT
i ti

]
� 0,

for all i.
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Applications: Matrix completion

Example (Matrix completion)
Let X\ ∈ Rp×p be an unknown low-rank matrix, and we want to estimate X\ given a
linear operator A : Rp×p → Rn and b := A

(
X\
)
∈ Rn. An estimator is given by

X̂ ∈ arg min
X

{
‖X‖∗ : X ∈ Rp×p,A (X) = b

}
.

We could use methods from Lectures 11 and 12 to solve it.

SDP formulation [13]
The optimization problem is equivalent to the SDP given by

min
X,Y,Z

{1
2

[Tr(Y) + Tr(Z)] : X,Y,Z ∈ Rp×p,A (X) = b,
[

Y X
XT Z

]
� 0
}
.

I The proof in [13] uses the duality of SDP. We show another proof in the next
slide.
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Applications: Matrix completion contd.

Proposition
For any matrix X ∈ Rp×p, we have

‖X‖∗ = min
Y,Z

{1
2

[Tr(Y) + Tr(Z)] : Y,Z ∈ Rp×p,

[
Y X

XT Z

]
� 0
}
.

Proof.
Consider the SVD of X, X = UΣV. If[

Y X
XT Z

]
� 0,

then we have[
UT −VT

] [ Y X
XT Z

] [
U
V

]
= UT YU + VT ZV− 2Σ � 0,

and hence

Tr(UT YU + VT ZV− 2Σ) = Tr(Y) + Tr(Z)− 2‖X‖∗ ≥ 0,

and the minimum value of (1/2) [Tr(Y) + Tr(Z)] is ‖X‖∗. �
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From simplex methods to interior point methods (IPM)

Observation
Simplex methods scans the extreme points of the feasible set, and this is why the
number of iterations can be sub-exponential in the problem dimensions. (Although
empirical performance is much better.)

Interior point method (IPM) [10, 12]
The key idea of the Interior Point Methods (IPM) is, as the name suggests, to keep
the iterates in the interior of the feasible set, and progress toward the optimum.
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A brief history of IPM

A brief history [10]
I N. Karmarkar proposed the first IPM for LP in 1984 [7].

I This is the first algorithm for LP that has both theoretical polynomial time guarantee
and good empirical performance.

I J. Renegar proposed the first path-following IPM for LP in 1986 [14].
I This establishes the foundation of the current version of IPMs.

I Y. Nesterov extended the path-following idea to general constrained convex
optimization problems in 1988 [12].
I This is achieved by the notion of self-concordant barriers.
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The path-following IPM
Let G be a closed bounded set in Rp. Consider the convex program

opt = min
x

{
cT x : x ∈ G

}
.

Definition (Barrier function)
A barrier function of G is a smooth convex function F : int(G)→ R such that
limt→∞ F (xt) =∞ for any sequence {xt : t ∈ N} converging to the boundary of G,
and ∇2F (x) � 0 for all x ∈ int(G).

Idea of a path-following IPM
Consider a family of optimization problems:

x∗(t) = arg min
x

{
tcT x + F (x) : x ∈ Rp

}
,

where F is a barrier function of G. We call x∗(t) the path.
I For every t > 0, x∗(t) uniquely exists in G, and hence is always feasible.
I For any sequence ti →∞, we have x∗(ti)→ opt.
I For any sequence xi such that xi − x∗(ti)→ 0, we have xi → opt.
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Remark: Universality of the Problem Formulation

Consider a general convex optimization problem:

opt = min
x
{f(x) : x ∈ X} (1)

for some proper closed convex function f and non-empty closed convex set X ⊆ Rp.

Set x̃ := (t,u) ∈ Rp+1, and c = (1, 0, . . . , 0) ∈ Rp+1. The convex optimization
problem (1) is equivalent to

opt = min
x̃

{
cT x̃ : u ∈ X , f(u) ≤ t

}
.
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An example of the path-following IPM

Consider an SDP given by

opt = min
x

{
cT x : x ∈ Rp,F0 +

p∑
i=1

xiFi � 0

}
,

for some c ∈ Rp and symmetric matrices F0, . . . ,Fp ∈ Rm×m.

Choice of the barrier function
The function F (x) := − ln det

(
F0 +

∑p

i=1 xiFi

)
is a (self-concordant) barrier

function of the feasible set.

I Obviously, F (x) < +∞ if and only if x is in the feasible set of the SDP.
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An example of the path-following IPM contd.

Define Ft(x) := tcT x + F (x), and

λ(Ft,x) :=
√

[∇Ft(x)]T [∇2F (x)]−1 [∇Ft(x)].

It can be proved that x is close to x∗(t) if λ(Ft,x) is small.

Basic path-following scheme [10]
Basic path-following scheme

Let T ∈ N, and γ, κ > 0.
1. Set t0,x0 such that λ(t0,x0) ≤ κ.
2. For i = 1, . . . , T

ti ←
(

1 +
γ
√
m

)
ti−1

Find xi such that λ(Fti ,xi) ≤ κ.
3. Output xT .

Theorem ([10])
The output of the basic path-following scheme satisfies cT xT − opt = O(e−T ).
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Available solvers

Warning
Kids, do not try this at home!
The following solvers have been designed by trained professionals.

Solvers

A list of solvers (commercial, academic
free license and free/open source)
categorized by application are available at

http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Solvers.Solvers
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