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Recommended readings

> A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization:
Analysis, Algorithms, and Engineering Applications, 2001.

» A. Nemirovski, Introduction to linear optimization, 2012.

> F. Alizadeh and D. Goldfarb, “Second-order cone programming,” Math.
Program., Ser. B, 2003.

> L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Rev., 1996.

> A. Nemirovski, Interior point polynomial time methods in convex programming,
2004.
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Motivation

Example (Convex Problem)

min  F(x)

xERP

s.t. gi(x) <0 ,i=1,...,s
Ajx—b;=0,j=1,...,t
xeX

> X is a set such that the set of solutions is a nonempty set

> gi(x) are convex for i =0,...,s
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Motivation

Example (Convex Problem)

min  F(x)
xERP
s.t. gi(x) <0

i= 1.,

., 8

Ajx—b;=0,j=1,....,¢

xeX

> X is a set such that the set of solutions is a nonempty set

> gi(x) are convex for i =0,...,s

Approach 1 - Previous lectures
Design special purpose software

> Increased convergence speed

> Non-reusable

> Hard to design

> Solid background needed
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Motivation

Example (Convex Problem)

min  F(x)

xERP

s.t. gi(x) <0 ,i=1,...,s
Ajx—b;=0,j=1,...,t
xeX

> X is a set such that the set of solutions is a nonempty set

> gi(x) are convex for i =0,...,s
Approach 1 - Previous lectures Approach 2 - This lecture
Design special purpose software Structured convex forms
> Increased convergence speed > Less efficient per particular instance
> Non-reusable > Readily available software
> Hard to design > Optimized solvers
> Solid background needed > Minimal expertise required
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Good news

"One size fits all"

LP c QP c QCQP c SOCP c SDP

Good news: we need one solver!

» Today - Disciplined Convex Programming (DCP)

1. DCP
> Linear programming (LP)
> Quadratic programming (QP)
> Quadratically constrained quadratic programming (QCQP)
> Second order conic programming (SOCP)
> Semidefinite programming (SDP)

2. Methods
> Simplex method
> Interior point methods
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Linear Programming (LP)

A linear program (LP) is the problem of minimizing a linear function subject to finitely
many linear equality and inequality constraints.

Definition (LP in the canonical form)

An LP in the canonical form is given by

opt = min{ch:x €RP,Ax < b},
xX
for some c € RP, A € R**P, and b € R™.

> Any LP can be converted to an equivalent one in the canonical form.

> A linear equality constraint Bx = d is equivalent to two linear inequality
constraints Bx < d and —Bx < d, and can be written as

[ s ]x=[a]

e
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Application 1: Basis pursuit

Example (Basis pursuit [4])
Recall the Gaussian linear model b = Ax! + w, and assume that x € R? is sparse.
The basis pursuit estimator for x is given by

ﬁEargmin{Hle :XGRP,AX:b},
X

for some A € R"*P and b € RP.

We have used methods for constrained minimization in Lectures 11 and 12 to solve it.

LP formulation

The optimization problem is equivalent to

min {1T (x4 —x—) x4, %x— >0, A(xy —x_) = b},

X4, X
which is an LP, where 1 := (1,1,...,1) € R? [4]. Another equivalent LP formulation
is given by [11]

min{lTu:UZO,—ugxg u,Ax:b},

x,u

where u denotes the “contour” of x.

. V
ILGHEI{]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 7/ 39 -ﬂ ﬂ.



Application 2: Dantzig selector

Example (Dantzig selector [3])
Recall the Gaussian linear model b = Ax! + w, and assume that xI ERP is sparse. It
is shown in [2] that the Dantzig selector defined as

X € argmxin{Hle :x €ERP AT(b—Ax)HOO < >\},

for some properly chosen A > 0 behaves similarly to the Lasso, and hence can be used
to estimate xU.

LP formulation

The optimization problem is equivalent to

min{lTu:UZO,fugxg u, -1 < AT(b - Ax) < ,\1},
x,u

which is an LP, where we used the “contour” trick as in the previous slide.

-
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Application 3: Maximum flow

Example (Maximum flow)

Let G = (V, &) be a directed graph, where V denotes the set of nodes, and

E C {(u,v) : u,v € V} denotes the directed edges. Let s,t € £. The maximum flow
problem seeks to find the flow fy . for all (u,v) € V that maximizes the sum flow
from s to t subject to

> capacity constraint: fy o, < cy v for all (u,v) € &, where cy,v are given capacity
constraints, and

> flow conservation: Zu:(u v)eE oo = Zw:@ w)ee fo,w forall v e V\ {s,t}.

LP formulation

The maximum flow problem is equivalent to

max{ E Ts,w i Tu,w > 0 for all (u,v) € &,
Ty, v

vi(s,v)eE

capacity constraint & flow conservation}.

Note that this is an LP.

o
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The dual problem of an LP

Recall an LP in the canonical form is given by

opt = min{ch x ERP Ax < b} ,
xX
for some ¢ € RP, A € R®"*P, and b € R".

Definition (The dual problem)

The corresponding dual problem is given by

opt* = min {bTA SAERMA>0,ATA = 7c} .

Intuition

The primal problem is equivalent to maximizing —c’x. Let A € R™ satisfying A > 0
and ATX = —c. Then

—cTx = (ATA)Tx = AT(Ax) < AThb.

Therefore, the dual problem minimizes an upper bound of the original (primal)
problem.

. V
ILGHEI{]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 39 -ﬂ ﬂ.



LP duality theorem

Theorem (Weak and strong LP duality)

Consider an LP and the corresponding dual problem. Then

> Symmetry: The dual problem of the dual problem is equivalent to the primal
problem.

> Weak duality: For any pair of feasible points (x,\), we have
G(x,A) :=bTA - (—e)Tx >0,

where G is called the duality gap.

> Strong duality: If the primal problem has a finite optimal value, so does the dual
problem, and opt™ = opt.

Application of weak duality

> |If the optimal objective value of the primal problem is —oo, then the dual
problem is not feasible.

> If the optimal objective value of the dual problem is —oo, then the primal
problem is not feasible.
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* Application of strong duality: the max-flow min-cut theorem

Let G = (V,€) be a directed graph, where V denotes the set of nodes, and

E C {(u,v) : u,v € V} denotes the directed edges. Let c,, be given capacity
constraints for each (u,v) € €. Let s,t € £.

Example (Minimum cut)

The minimum cut problem seeks to find a partition S,7 of V that minimizes the cut

capacity Z(u,v)e&ues,veT Cu,v, Subject to s € S, and t € T.

> The minimum cut capacity poses a bottleneck of the maximum flow from s to ¢.

Theorem (Max-flow min-cut theorem [5])
The maximum sum flow from s to t equals the minimum cut capacity between s and t.

Sketch of the proof [18].

The minimum cut problem is the dual of the maximum flow problem. Apply strong
duality. o
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Geometry of an LP

Definition (Extreme point)

A point x in a convex set X is an extreme point, if there does not exist a € (0, 1)
such that x = au + (1 — a)v for some u,v € X.

Theorem (Krein-Milman theorem [8])
A non-empty bounded convex set is the convex hull of the set of all its extreme points.

Proposition

If the feasible set of an LP does not contain a line, then one of the extreme points of
the feasible set is a minimizer.

Proof.

By the Krein-Milman theorem, any point x in the feasible set can be written as
m m .

X = 21:1 a;vi, o > 0, Zi:l a; = 1, where vy, ..., vy, denote the extreme points.

Then for any linear objective function f(x) := ¢Tx for some vector ¢, we have

Fe) =31 @if(vi) < max; f(vi). o

i=
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Geometry of an LP contd.

Definition (Polyhedron)

A non-empty set X C RP is polyhedral, or a polyhedron, if
X ={x:x €RP,Ax < b},

for some A € R"*P and b € R™.

> The feasible set of an LP of the canonical form is polyhedral.

Proposition ([11])
A point x in a polyhedron X := {x : x € RP, Ax < b} is an extreme point, if and
only if it is the unique solution of Azv = bz for some Z C {1,...,p}.

Corollary

For any polyhedron, the number of extreme points is finite.

Proof.

The number of systems of linear equations of the form Azv = bz is finite. m}

> Hence we only need to compare the function values on a finite number of points.

o
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Simplex methods
Consider an LP of the canonical form. Assume its feasible set does not contain a line.
Definition (Face and improving edge)

A face of the feasible set is a subset of the feasible set, for which there exists a
non-empty Z C {1,...,n} such that all of its elements satisfy Azx = bz.

An improving edge is a one-dimensional face of the feasible set, along which the
objective value decreases.

Prototype of simplex methods

A typical simplex method
1. v + an extreme point of the feasible set
2. While there is an improving edge e involving v

v < the othe end of e

3. Output v.

> The rule of finding an improving edge in Step 2 is called a pivot rule.

» The complexity of simplex methods depends on the design of the pivot rule,
which determines the number of iterations.
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Complexity of simplex methods

A long-standing open problem

> Analyses imply the number of iterations for simplex methods cannot be
polynomial in the worst case [1].

> Empirical performance (on non-pathological cases) yields O(n).

Is there a pivot rule for the simplex algorithm that yields a polynomial number of
iterations? (See Problem 9 of Smale’s Mathematical Problems for the Next Century

[15])

Partial answers

> The smallest number of iterations can be upper-bounded by O(p'°e™) [6].

> Simplex methods can have polynomial expected number of iterations for random
A, b, and ¢, while these results are not practical [16].

> Smoothed analysis: For any LP of the canonical form, for which A and b are
perturbed by a small random noise, a simplex method has polynomial expected
number of iterations [16].
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Quadratically constrained quadratic programming (QCQP)

Definition (Quadratic program (QP))

A QP is an optimization problem of the form
opt:min{xTPx—Q—QqTx—i—r:xe]Rp,Axgb}7
X
for some A € R"*P, b € R", P € RPXP, q € R?, and r € R.

> A QP is a convex optimization problem if P > 0.

Definition (Quadratically Constrained Quadratic Program (QCQP))
A QCQP is an optimization problem of the form
opt = m}in {xTPox + qux + 7o :
X € ]Rp,xTPix—l—QqZTx—i—ri <O0foralli= 1,...,m},
for some P; € RP*P, q; € RP, and r; € R.

> A QCQP is a convex optimization problem if P; > 0 for all 3.

-
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Application 1: Portfolio optimization

Example (Markowitz portfolio optimization (Nobel Prize) [9])
Given a collection of n possible investments with return rates rq,...,r,, modeled as
RVs with mean E[r;] = p; and variance o; = E[(r; — u)?], the goal is to maximize

the return of a portfolio represented by ratio of available capital invested x; in each of
n

them. The return of the portofolio is R = Zmiri and E[R] = xT'p,

i=1
E[(R — E[R])?] = xTGx, where G; j = pi joio; and p; ; is the corelation between
investment return ¢ and j.

The convex optimization formulation of this problem is:

min x%p — kxT Gx

xXER™
n
s.t. le =1
=1
x>0,

where «k is a parameter for the "risk".

o
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Application 2: Sequential Quadratic Programming

Definition (Sequential Quadratic Programming)

To solve a given convex program
mln F(x)

s.t.gi(x)io, i=1,...,s

we solve a series of QPs 1
min F(x) + VF(x?)(x — x*) + E(X — x"TV2F(xF)(x — x¥)
xeD

st gi(x) + Vg (x¥)(x —x¥) <0, i=1,...,s

hj(x) + Vhj(xF)(x —x¥) =0, j=1,...,t

AN

o 1
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Second-order cone programming (SOCP)

Definition (Second-order cone (Lorentz cone))

A second-order cone is a set of the form £ = {(x7 t):x €RP, x|, < t} C Rrtl,

Definition (Partial ordering induced by a second-order cone)

Let £ be a second-order cone. The partial ordering induced by L is defined as
x <, y if and only if y — x € £PT1,
> Especially, (x,t) <, 0 if and only if ||x||, < t.

Definition (Second-order cone program (SOCP))

An SOCP is an optimization problem of the form

m m
opt = min E clTxi 1 x; €ERP, E A;x; =b,x; X0 ,,
X193 Xm
i=1 i=1

for some A; € R"*P, b € R™, and ¢; € RP.

. V
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lllustration of a second-order cone

Definition (Second-order cone (Lorentz cone))

A second-order cone is a set of the form £P1! = {(x,t) i X ERP, x|, < t}.

3 )|
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Application: Basis pursuit denoising

Example (Basis pursuit denoising)

Recall that the basis pursuit denoising estimator (Lecture ?) is given by
X € argmin{Hle :x €RP,[|b— Ax||, < o'} ,
xX

for some A € R"*P, b € R?, and o > 0.

We could use methods from Lectures 11 and 12 to solve it.

SOCP formulation

The optimization problem is equivalent to

min {].T(X++X_)Iy:bfA(X+7X_),Z=O',
X4, XY,z

(2,¥) 22 0,((x4)i,0) Z£ 0,((x-)i,0) = 0 for all i},

where (x4); and (x—); denote the i-th element of x4 and x_, respectively.

3 |
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Semidefinite programming (SDP)

Definition (Semidefinite program (SDP))

A semidefinite program is an optimization problem of the form
P
opt = min<{ ¢T'x : x € RP, Fg + E x;F; =0 3,
X
i=1

for some ¢ € RP and symmetric matrices Fo, ..., F, € RmX™,

Reminder

> The eigenvalue decomposition of a square matrix, A € R"*" is given by:

A =XAX"!

» A > 0 if all its eigenvalues are nonnegative i.e. Amin(A) > 0.

> Similarly, A > 0 if all its eigenvalues are nonnegative i.e. Amin(A) > 0.

3 |
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Examples: LP and maximum eigenvalue minimization

Example (LP as SDP)
The LP in the canonical form

opt = min {ch :x ERP,Ax < b}
is equivalent to the SDP

opt = min {ch : x € RP, diag(b — Ax) = 0} .
X

Example (Maximum eigenvalue minimization [17])
Define A(x) := Ag + Zﬁ;l x;A; for symmetric matrices Ag,..., Ay,. The problem
of minimizing the maximum eigenvalue of A(x),

opt = min {Amax(A(x)) : x € RP},

is equivalent to the SDP

opt =min{¢t:¢ € R,x € RP,{I — A(x) = 0}.
t,x

. V
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Schur complement

Definition (Schur complement)

Consider a symmetric matrix X € R"*™ given by

A B
X = ( BT C ) )
for some symmetric matrix A € R™*™,
If A is non-singular, then
S:=C-BTA"'B

is called the Schur complement of A in X.

Useful properties:
> det(X) = det(A)det(S)
»X>0&A>0andS >0
»IfA>0,then X>0&S >0

Example:

=0

»(Ax-i—b)T(Ax—&-b)—ch—ng@( I Ax+b )

(Ax + b)T cT'x+d

. V
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QCQP as SDP

Definition (Quadratically Constrained Quadratic Program (QCQP))
A QCQP is an optimization problem of the form

opt = min {xTPox + 2qu +ro:
xX
x €R?,x"P;x+2q] x+r; <Oforalli=1,...,m},
for some P; € RP*P, q; € RP, and r; € R.

SDP formulation

Assume that P; > 0, and hence can be decomposed as P; = MfMZ for all i. The
QCQP is equivalent to the SDP given by

I Mox

= 1 . p
opt mln{t.xeRJGR,[(MOX)T —2qTx — o +1

x,t

}EQ

I Mix
b .
{ (Mix)T —2qTx —r; } - 0}
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SOCP as SDP

Definition (Second-order cone program (SOCP))
An SOCP is an optimization problem of the form

opt = min E clTxi:xiERp,E A;x; =b,x; X0 ,,

X1y Xm - -
i=1 =1l

for some A; € R"*P b € R?, and ¢; € RP.

SDP formulation

Write each x; as x; = (vi,ti)T for all . The constraint x; <, 0 is equivalent to
tll Vi
T

v i)

}50,

for all 4.

. V
ILGHEI{]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 27/ 39 -ﬂ ﬂ-




Applications: Matrix completion

Example (Matrix completion)

Let X! € RPXP be an unknown low-rank matrix, and we want to estimate X! given a
linear operator A : RPXP — R™ and b := A (Xh) € R™. An estimator is given by

Xe arg min {IX|l, : X eRP®, A(X)=b}.

We could use methods from Lectures 11 and 12 to solve it.

SDP formulation [13]

The optimization problem is equivalent to the SDP given by

1 . « B Y X
Xryn\l(l?z{i[Tr(Y)JrTr(Z)].X,Y,ZGRP p,A(X)—b,{ xT 7 } EO}.

> The proof in [13] uses the duality of SDP. We show another proof in the next
slide.
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Applications: Matrix completion contd.

Proposition
For any matrix X € RPXP, we have
n
Z

X1, = min { 5 (100 + M@ Y. 2R, [ 7 | =0}

Proof.
Consider the SVD of X, X = UXV. If

Y X
| xr 7 ]=0
then we have

Y

i T X U | _ o7 T
[U \Y ]{XT Z}[V}_UYU—&—V ZV - 2% > 0,

and hence
Tr(UTYU 4+ VT'ZV — 23%) = Tr(Y) + Tr(Z) — 2||X]« > 0,

and the minimum value of (1/2) [Tr(Y) + Tr(Z)] is ||X]|,. o

3 |
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From simplex methods to interior point methods (IPM)

Observation

Simplex methods scans the extreme points of the feasible set, and this is why the
number of iterations can be sub-exponential in the problem dimensions. (Although
empirical performance is much better.)

P = {x|Ax < b}

Interior point method (IPM) [10, 12]
The key idea of the Interior Point Methods (IPM) is, as the name suggests, to keep
the iterates in the interior of the feasible set, and progress toward the optimum.

-
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A brief history of IPM

A brief history [10]

> N. Karmarkar proposed the first IPM for LP in 1984 [7].

> This is the first algorithm for LP that has both theoretical polynomial time guarantee
and good empirical performance.

> J. Renegar proposed the first path-following IPM for LP in 1986 [14].

> This establishes the foundation of the current version of IPMs.

> Y. Nesterov extended the path-following idea to general constrained convex
optimization problems in 1988 [12].

> This is achieved by the notion of self-concordant barriers.

. V
ICLGHEI{]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 31/ 39 -ﬂ ﬂ.



The path-following IPM

Let G be a closed bounded set in RP. Consider the convex program

opt:min{ch:xeg}.

Definition (Barrier function)

A barrier function of G is a smooth convex function F' : int(G) — R such that
lim; o0 F(x¢) = oo for any sequence {x; : t € N} converging to the boundary of G,
and V2F(x) = 0 for all x € int(G).

Idea of a path-following IPM

Consider a family of optimization problems:

z*(t) = arg min {tch +F(x):x€ Rp} ,
X

where F' is a barrier function of G. We call z*(¢) the path.
> For every t > 0, z*(¢) uniquely exists in G, and hence is always feasible.
» For any sequence t; — oo, we have z*(t;) — opt.

> For any sequence z; such that x; — 2*(¢;) — 0, we have z; — opt.

L]
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An example of the path-following IPM

Consider an SDP given by
P
opt = min ch:xeRp,FoJrZXz‘Fi =0,
X
i=1

for some ¢ € RP and symmetric matrices Fo, ..., F, € R™*™,

Choice of the barrier function
The function F(x) := —Indet (Fo + Zle xiFi) is a (self-concordant) barrier
function of the feasible set.

» Obviously, F(x) < +oc if and only if x is in the feasible set of the SDP.
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An example of the path-following IPM contd.

Define F(x) := tc'x + F(x), and

A(Fx) = VIVEE]T [V2F () [VF 0]
It can be proved that x is close to x*(¢) if A(Ft,x) is small.

Basic path-following scheme [10]

Basic path-following scheme
Let T € N, and v,k > 0.
1. Set tg,x0o such that )\(to,xo) < K.

2.Fori=1,...,T
ti (1+%) Ug—1

Find x; such that A(F%,,x;) < k.
3. Output x7.

Theorem ([10])

The output of the basic path-following scheme satisfies ¢! x — opt = O(e~ 7).
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Available solvers

Warning

Kids, do not try this at home!
The following solvers have been designed by trained professionals.

Solvers

A list of solvers (commercial, academic
free license and free/open source) e

Mixed Integer Quadratic

i, QRO TRES s

e e, 186

categorized by application are available at Se——

(e, 815 s

Second.order cone progra
[T ———

Mixed Integer Second-ords
L s, R (1 o295,
Semidefinite programming (ree)

520,509 LOGIETIBN, PN SO, SPL ST

Semidefinite programming (commercial)

General nonlinear programming and o

http://users.isy.liu.se/johanl /yalmip/pmwiki.php?n=Solvers.Solvers
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