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Lecture 02 – Structures in convex functions

I This lecture
1. Learning as an optimization problem
2. Basic concepts in convex analysis
3. Three important classes of convex functions

I Next lecture
1. Optimality conditions
2. Unconstrained convex minimization
3. Convergence and convergence rate characterization of methods for unconstrained

minimization
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Recommended reading

I V. N. Vapnik, “An overview of statistical learning theory,” IEEE Trans. Inf.
Theory, vol. 10, no. 5, pp. 988–999, Sep. 1999.

I ?Chapter 5 in A. W. van der Vaart, Asymptotic Statistics, Cambridge Univ.
Press, 1998.

I Chapter 2 & 3 in Boyd, Stephen, and Lieven Vandenberghe, Convex optimization,
Cambridge Univ. Press, 2009.

I Appendices A & B in Bertsekas, Dimitris, Nonlinear Programming, Athena
Scientific, 1999.

I Chapter 4 in Nesterov, Yurii, Introductory Lectures on Convex Optimization: A
Basic Course, Vol. 87, Springer, 2004.
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Motivation

Motivation
This lecture explains how convex optimization problems naturally arise in data
analytics∗ and feature important properties useful for efficiently obtaining numerical
solutions with provable certificates of quality.
I Several important data models lead to convex optimization problems whose
solutions have guarantees.

I Convex analysis offer key structures that will help us construct efficient numerical
solution methods.

∗discovery and communication of meaningful patterns and information in data.
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Learning as an optimization problem

Problem
Information in data can be elusive. When we want to extract information form data,
we typically have to solve an optimization problem of the following form:

x̂ ∈ arg min
x∈X
{F(x)}

with some constraints X ⊆ Rp.

Remark
The seemingly simple optimization formulation above, of course, has applications well
beyond learning in many diverse disciplines.
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Example 1: Least-squares estimation

Problem
Let x\ ∈ Rp. Let A ∈ Rn×p with full column rank. How do we estimate x\ given A
and

b = Ax\ + w,

where w denotes some unknown noise (either random or deterministic)?

Solution (Least-squares estimator)

x̂LS ∈ arg min
x∈Rp

{F(x)} ,

with
F(x) := ‖b−Ax‖2

2 .
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Example 2: Maximum-likelihood estimation with the linear model

Problem (Gaussian linear model)
Let x\ ∈ Rp be an unknown vector and A ∈ Rn×p be a matrix with full column rank.
How do we estimate x\ given A and

b = Ax\ + w,

where w is a sample of a Gaussian random vector ∼ N (0, I)?

Solution (Maximum-likelihood estimator)
The maximum-likelihood (ML) estimator in the Gaussian linear model is given by

x̂ML ∈ arg min
x∈Rp

{F(x)} ,

with

F(x) := −
n∑

i=1

ln
{ 1
√

2π
exp
[
−

1
2

(bi − 〈ai ,x〉)2
]}

,

where bi is the i-th entry of b, and ai is the i-th row of A.

We may observe that x̂LS is equivalent to the x̂ML given above.
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Example 3: ML estimation in general

Problem (General estimation problem)
Let x\ ∈ Rp an unknown vector. Let bi be a sample of a random variable Bi with
unknown probability density function pi(bi ; x\) in Pi := {pi(bi ; x) : x ∈ X ⊆ Rp}.
How do we estimate x\ given P1, . . . ,Pn and b1, . . . , bn?

Remark
This formulation is essentially equivalent to the formulation bi = f \(ai) + wi in
Lecture 0. Let wi be the realization of a random variable W with zero mean. Define
Bi := f \(ai) + W with f \(ai) := E [Bi ], and let pi(bi ; x\) denote the probability
density at bi given ai and x\. Then we obtain the formulation above.

Solution (ML estimator for the general estimation problem)

x̂ML ∈ arg min
x∈X
{F(x)} ,

with

F(x) := −
1
n

n∑
i=1

ln [pi(bi ; x)] .
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Real application: Poisson imaging

Problem (Poisson observations)
Let x\ ∈ Rp be an unknown vector. Let b1, . . . , bn be samples of independent random
variables B1, . . . ,Bn , and each Bi is Poisson distributed with parameter

〈
ai ,x\

〉
,

where the vectors a1, . . . ,ai are given. How do we estimate x\ given a1, . . . ,an and
the measurement outcomes b1, . . . , bn?

Solution (ML estimator)
We may consider the ML estimator

x̂ML ∈ arg min
x∈Rp

{
1
n

n∑
i=1

[〈ai ,x〉 − bi ln (〈ai ,x〉)]

}
.

Remark
In confocal imaging, the linear vectors ai can be
used to capture the lens effects, including blur and
(spatial) low-pass filtering (due to the so-called
numerical aperture of the lens).

Confocal imaging
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Example 4: M -estimators

Problem (General estimation problem)
Let x\ ∈ Rp an unknown vector. Let bi be a sample of a random variable Bi with
unknown probability density function pi(bi ; x\) in Pi := {pi(bi ; x) : x ∈ X ⊆ Rp}.
How do we estimate x\ given P1, . . . ,Pn and b1, . . . , bn?

Solution (M -estimator)
In general we can replace the negative log-likelihoods by any appropriate functions fi ,
and obtain an M -estimator

x̂M ∈ arg min
x∈X
{F(x)} ,

with

F(x) :=
1
n

n∑
i=1

fi(x; bi).

I When fi are chosen to be the negative log-likelihoods, the M -estimator is
equivalent to the maximum-likelihood estimator.

I The term “M -estimator” denotes “maximum-likelihood-type estimator,” as it is a
generalization of ML estimators [1].
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A machine learning application: Graphical model learning

Problem (Graphical model selection)
Let x be a random vector with zero mean and positive-definite covariance matrix Σ\.
How do we estimate Θ\ := Σ\−1 given independent samples x1, . . . ,xn of the
random vector x?

Solution (M -estimator)
We may consider the M -estimator

Θ̂M ∈ arg min
Θ∈Sp

++

{
Tr
(

Σ̂Θ
)
− log det (Θ)

}
,

where Σ̂ is the empirical covariance, i.e., Σ̂ := (1/n)
∑n

i=1 xixT
i .

This is equivalent to the ML estimator only when x is Gaussian distributed.

Example: Log-determinant for LMIs
• Application: Graphical model selection

Given a data set D := {x1, . . . ,xN}, where xi is a Gaussian random variable.
Let ⌃ be the covariance matrix corresponding to the graphical model of
the Gausian Markov random field. The aim is to learn a sparse matrix ⇥ that
approximates the inverse ⌃�1.

Optimization problem

min
⇥�0

8
><
>:
� log det(⇥) + trace(⌃⇥)| {z }

f(x)

+ ⇢kvec(⇥)k1| {z }
g(x)

9
>=
>;

x2

x3

x4x5

x1

x1 x2 x3 x4 x5

x1

x2

x3

x4

x5

⇥ =

Thursday, June 12, 14
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?Example 5: Statistical learning and empirical risk minimization
principle

Statistical learning problem [2]
A statistical learning problem consists of three elements.
1. A generator that produces samples ai ∈ Rp of a random variable a with an

unknown probability distribution Pa.
2. A supervisor that for each ai ∈ R, generates a sample bi of a random variable B

with an unknown conditional probability distribution PB|a .
3. A learning machine that can respond as any function f of ai in the set
{fx(ai) : x ∈ X} with some fixed X ⊆ Rp.
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?Example 5: Statistical learning and empirical risk minimization
principle

Goal
Choose an x̂ ∈ X such that the risk R(x) := E [L(B, fx(a))] is minimized for a given
loss function L, where the expectation is taken with respect to the joint distribution of
a and B.

Empirical risk minimization (ERM) principle
[2]
The risk R(x) is not tractable since we do not
know Pa and PB|a . But given samples (ai , bi), we
can minimize the empirical risk R̂(x) as an
approximation of R(x), i.e., we can choose

x̂ERM ∈ arg min
x∈X

{
R̂(x) :=

1
n

n∑
i=1

L(bi , fx(ai))

}
.
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A machine learning application: Pattern classification

Pattern classification by separating hyperplanes
The samples the generator produce are given by a1, . . . ,an ∈ Rp. The samples the
supervisor generates are given by b1, . . . , bn ∈ {±1}. The set of functions that the
learning machine can implement is given by {fx(a) := sign (〈x,a〉) : x ∈ X} with
some fixed set X ⊆ Rp. The loss function L is defined as

L(bi , fx(ai)) := (bi − fx(ai))2 .

Applying the ERM principle
The corresponding x̂ERM is given by

x̂ERM ∈ arg min
x∈X

{
R̂(x) :=

1
n

n∑
i=1

(bi − fx(ai))2 : x ∈ X

}
.

I This stylized method does not apply well in a lot of applications, but it inspires
advanced pattern classification algorithms such as the neural network and the
support vector machine [2].
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Checking the fidelity

Now that we have an estimator x̂ ∈ arg minx∈X {F(x)}, we need to address two key
questions:

1. Is the formulation reasonable?
2. What is the role of the data size?

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 02 – Structures in convex functions

Standard approach to checking the fidelity

Standard approach

1. Specify a performance criterion L(x̂,x\) that should be small if x̂ = x\.
2. Show that L is actually small in some sense when some condition is satisfied.

Example
Take the `2-error L(x̂,x\) :=

∥∥x̂− x\
∥∥2

2
as an example. Then we may verify the

fidelity via one of the following ways, where ε denotes a small enough number:
1. E

[
L(x̂,x\))

]
≤ ε (expected error),

2. P
(
L(x̂,x\) > t

)
≤ ε for any t > 0 (consistency),

3.
√

n(x̂− x\) converges in distribution to N (0, I) (asymptotic normality),
4.
√

n(x̂− x\) converges in distribution to N (0, I) in a local neighborhood (local
asymptotic normality).

if some condition is satisfied. Such conditions typically revolve around the data size.
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Approach 1: Expected error

Gaussian linear model
Let x\ ∈ Rp and let A ∈ Rn×p. The samples are given by b = Ax\ + w, where w is
a sample of a Gaussian random vector w ∼ N (0, σ2I).

What is the performance of the ML estimator

x̂ML ∈ arg min
x∈Rp

{
‖b−Ax‖2

2
}

?

Theorem (Performance of the LS estimator [3])
If A is a matrix of independent and identically distributed (i.i.d.) standard Gaussian
distributed entries, and if n > p + 1, then

E

[∥∥x̂ML − x\
∥∥2

2

]
=

p
n − p − 1

σ2 → 0 as
n
p
→∞.
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Approach 2: Consistency

Covariance estimation
Let x1, . . . ,xn be samples of a sub-Gaussian random vector with zero mean and some
unknown positive-definite covariance matrix Σ\ ∈ Rp×p. (Sub-Gaussian random
variables will be defined in recitation.)

What is the performance of the M -estimator Σ̂ := Θ̂
−1

, where

Θ̂ML ∈ arg min
Θ∈Sp++

{
1
n

n∑
i=1

[
− log det (Θ) + xT

i Θxi
]}

?

I If y = f (x), then ŷML = f (x̂ML). This is called the functional invariance property
of ML estimators.

Theorem (Performance of the ML estimator [4])
Suppose that the diagonal elements of Σ\ are bounded above by κ > 0, and each
Xi/
√(

Σ\
)

i,i
is sub-Gaussian with parameter c. Then

P

({∣∣∣(Σ̂ML
)

i,j
−
(

Σ\
)

i,j

∣∣∣ > t
})
≤ 4 exp

[
−

nt2

128 (1 + 4c2)κ2

]
→ 0 as n →∞

for all t ∈
(

0, 8κ
(

1 + 4c2
))

.

We will actually prove this result in a later recitation.
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?Approach 3: Asymptotic normality

Logistic regression
Let x\ ∈ Rp, and let a1, . . . ,an ∈ Rp. Let b1, . . . , bn be samples of independent
random variables B1, . . . ,Bn . Each random variable Bi takes values in {−1, 1} and
follows P ({Bi = 1}) := `i(x\) =

[
1 + exp

(
−
〈

ai ,x\
〉)]−1 (i.e., the logistics loss).

What is the performance of the ML estimator

x̂ML ∈ arg min
x∈Rp

{
−

1
n

n∑
i=1

ln
[
I{Bi=1}`i(x) + I{Bi=0} (1− `i(x))

]
:= −

1
n

fn(x)

}
?
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?Approach 3: Asymptotic normality

Theorem (Performance of the ML estimator [5] (?also valid for
generalized linear models))
The random variable J(x\)−1/2

(
x̂ML − x\

)
converges in distribution to N (0, I) if

λmin(J(x\))→∞ and

max
x∈Rp

{∥∥J(x\)−1/2J(x)J(x\)−1/2 − I
∥∥

2→2
:
∥∥J(x\)1/2

(
x− x\

)∥∥
2
≤ δ
}
→ 0 (1)

for all δ > 0 as n →∞, where J(x) := −E
[
∇2 fn(x)

]
is the Fisher information

matrix.

Roughly speaking, assuming that p is fixed, we have the following observations.

1. The technical condition (1) means that J(x) ∼ J(x\) for all x in a neighborhood
Nx\ (δ) of x\, and Nx\ (δ) becomes larger with increasing n.

2.
∥∥J(x\)−1/2

(
x̂ML − x\

)∥∥2
2
∼ Tr (I) = p, which means that

∥∥x̂ML − x\
∥∥2

2
decreases at the rate λmin(J(x\))−1 → 0 asymptotically.
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?Approach 4: Local asymptotic normality

In general, the asymptotic normality does not hold even in the independent identically
distributed (i.i.d.) case, but we may have the local asymptotic normality (LAN).

ML estimation with i.i.d. samples
Let b1, . . . , bn be independent samples of a random variable B, whose probability
density function is known to be in the set {px(b) : x ∈ X} with some X ⊆ Rp.

What is the performance of the ML estimator

x̂ML ∈ arg min
x∈X

{
−

1
n

n∑
i=1

ln [px(bi)]

}
?
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?Approach 4: Local asymptotic normality

Theorem (Performance of the ML estimator (cf. [6, 7] for details))
Under some technical conditions, the random variable

√
n J−1/2

(
x̂ML − x\

)
converges in distribution to N (0, I), where J is the Fisher information matrix
associated with one sample, i.e.,

J := −E
[
∇2

x ln [px(B)]
]∣∣

x=x\
.

Roughly speaking, assuming that p is fixed, we can observe that
I

∥∥√n J−1/2
(

x̂ML − x\
)∥∥2

2
∼ Tr (I) = p,

I

∥∥x̂ML − x\
∥∥2

2
= O(1/n).
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Example: ML estimation for quantum tomography

Problem (Quantum tomography)
A quantum system of q qubits can be characterized by a density operator, i.e., a
Hermitian positive semidefinite X\ ∈ Cp×p with p = 2q . Let {A1, . . . ,Am} ⊆ Cp×p

be a probability operator-valued measure, i.e., a set of Hermitian positive semidefinite
matrices summing to I. Let b1, . . . , bn be samples of independent random variables
B1, . . . ,Bn , with probability distribution

P ({bi = k}) = Tr
(

AkX\
)
, k = 1, . . . ,m

How do we estimate X\ given {A1, . . . ,Am} and b1, . . . , bn?

ML approach

X̂ML ∈ arg min
X∈Cp×p

{
−

1
n

n∑
i=1

m∑
k=1

I{bi=k} ln [Tr (AkX)] : X = XH ,X � 0

}
.
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Example: ML estimation for quantum tomography

101 102 103

10−1

100

n (numb er of sample s)

‖X̂
M

L
−

X
\ ‖

F

Performance of ML estimator for quantum tomography with 3 qubits

 

 

Numerical re sult

4.5/
√
n
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Caveat Emptor

The ML estimator does not always yield the optimal performance. We show a simple
yet very powerful example below.

Problem
Let b be a sample of a Gaussian random vector b ∼ N (x\, I) with some x\ ∈ Rp.
How do we estimate x\ given b?

ML approach
The ML estimator is given by x̂ML := b.

James-Stein estimator [8]
The James-Stein estimator is given by

x̂JS :=
(

1−
p − 2
‖b‖2

2

)
+

b,

for all p ≥ 3, where (a)+ = max(a, 0).

Observation: The James-Stein estimator shrinks b towards the origin.
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Caveat Emptor

Theorem (Performance comparison: ML vs. James-Stein [8])
For all x\ ∈ Rp with p ≥ 3, we have

E

[∥∥x̂JS − x\
∥∥2

2

]
< E

[∥∥x̂ML − x\
∥∥2

2

]
.

Performance of the ML estimator is uniformly dominated by the performance of the
James-Stein estimator [8].

Important take home message
The ML approach is not always the best.

Remark
The James-Stein estimator inspires the study of shrinkage estimators and the use of
oracle inequalities, which play important roles in contemporary statistics and machine
learning [9].
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?Minimax performance
In previous slides we focused how good an estimator is. Now we would like to derive a
fundamental limitation on the statistical performance, posed by the statistical model.

Definition (Minimax risk)
For a given loss function L(x̂,x\) and the associated risk function
R(x̂,x\) := E

[
L(x̂,x\)

]
, the minimax risk is defined as

Rminmax := min
x̂

max
x\∈X

{
R(x̂,x\)

}
,

where X denotes the parameter space.

A game theoretic interpretation:
I Consider a statistician playing a game with Nature.
I Nature is malicious, i.e., Nature prefers high risk, while the statistician prefers low
risk.

I Nature chooses an x\ ∈ X , and the statistician designs an estimator x̂.
I The best the statistician can choose is the minimax strategy, i.e., the estimator

x̂minmax such that it minimizes the worst-case risk.
I The resulting worst-case risk is the minimax risk.
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?An information theoretic approach

We choose R(x̂,x\) :=
∥∥x̂− x\

∥∥
2
to illustrate the idea. Generalizations can be found

in [10, 11].

There are two key concepts.

?First step: transformation to a multiple hypothesis testing problem
Let Xfinite be a finite subset of the original parameter space X . Then we have

Rminmax := min
x̂

max
x\∈X

{
R(x̂,x\)

}
≥ min

x̂∈Xfinite
max

x∈Xfinite

{
R(x̂,x\)

}
,

?Second step: randomizing the problem
Let P be a probability distribution on Xfinite, and suppose that x\ is selected randomly
following P. Then we have

min
x̂∈Xfinite

max
x∈Xfinite

{
R(x̂,x\)

}
≥ min

x̂∈Xfinite

{
EP
[
R(x̂,x\)

]}
.
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?An information theoretic approach contd.

Suppose we choose the subset Xfinite such that for any x,y ∈ Xfinite, x , y,

‖x− y‖2 ≥ dmin

with some dmin > 0. Then we have

Rminmax ≥ min
x̂∈Xfinite

{
EP
[
R(x̂,x\)

]}
≥

1
2

dminP
(

x̂ , x\
)
.

What remains is to bound the probability of error, P
(

x̂ , x\
)
.
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?An information theoretic approach contd.
A very useful tool from information theory is Fano’s inequality.

Theorem (Fano’s inequality)
Let X and Y be two random variables taking values in the same finite set X . Then

H(X |Y ) ≤ h(P (X , Y )) + P (X , Y ) ln (|X | − 1) ,

where H(X |Y ) denotes the conditional entropy of X given Y , defined as

H(X |Y ) := EX,Y [− ln (P (X |Y ))] ,

and
h(x) := −x ln x − (1− x) ln(1− x) ≤ ln 2

for any x ∈ [0, 1].

Applying Fano’s inequality to our problem with some simplifications, we obtain the
following fundamental limit.

Corollary

P
(

x̂ , x\
)
≥

1
|Xfinite|

(
H(x\|x̂)− ln 2

)
.
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?An information theoretic approach contd.

Theorem ([11])
If there exists a finite subset Xfinite of the parameter space X such that for any
x1,x2 ∈ X finite , x1 , x2,

‖x1 − x2‖2 ≥ dmin

with some dmin > 0 and1

D(Px1‖Px2 ) :=
∫

ln
(

dPx1

dPx2

)
dPx1 ≤ r

with some r > 0, where Px denotes the probability distribution of the observations
when x\ = x for any x ∈ Xfinite. Then

Rminmax ≥
dmin

2

(
1−

r + ln 2
ln |Xfinite|

)
.

Proof.
Combine the results in previous slides, and take Pfinite to be the uniform distribution on
Xfinite. �

1The function D(P‖Q) is called the Kullback-Leibler divergence or the relative entropy between probability
distributions P and Q.
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?Example

Problem (Gaussian linear regression on the `1-ball)
Let A ∈ Rn×p and let x\ ∈ Rp. Define y := Ax\ + w, where w ∼ N (0, σ2I) with
some σ > 0. It is known that x\ ∈ X :=

{
x : ‖x‖1 ≤ R

}
. What is the minimax risk

Rminmax with respect to R(x̂,x\) := E
[∥∥x̂− x\

∥∥
2

]
?

Theorem ([12])
Suppose the `2-norm of each column of A is less than or equal to

√
n and some

technical conditions are satisfied. Then with high probability,

Rminmax ≥ cσR

√
ln p
n

with some c > 0.

Bound the minimax risk from above
I The worst-case risk of any explicitly given estimator is an upper bound of Rminmax.
I If the upper bound equals Θ(lower bound), then Θ( lower bound ) is the optimal
minimax rate. For example, the result of the theorem above is optimal [12].
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Practical Issues

Take the `2 loss, i.e., L(x̂,x\) :=
∥∥x̂− x\

∥∥2
2
, as an example. Is evaluating∥∥x̂− x\

∥∥2
2
enough for evaluating the performance of an x̂?
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Practical Issues

No, because in general we can only numerically approximate the solution of

x̂ ∈ arg min
x∈Rp

{F(x)} .

Implementation
How do we numerically approximate x̂?

Practical performance
Denote the numerical approximation by x?ε . The practical performance is determined
by ∥∥x?ε − x\

∥∥
2
≤ ‖x?ε − x̂‖2︸         ︷︷         ︸

approximation error

+
∥∥x̂− x\

∥∥
2︸          ︷︷          ︸

statistical error

.

How do we evaluate ‖x?ε − x̂‖2
2?

I The ε-approximation solution, x?ε , will be defined rigorously in the later lectures.
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Practical issues

How do we numerically approximate x̂ ∈ arg minx∈Rp {F(x)} for a given F?

General idea of an optimization algorithm
Guess a solution, and then refine it based on oracle information.
Repeat the procedure until the result is good enough.

How do we evaluate the approximation error ‖x?ε − x̂‖2?

General concept about the approximation error
It depends on the characteristics of the function F and the chosen numerical
optimization algorithm.
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Need for convex analysis

General idea of an optimization algorithm
Guess a solution, and then refine it based on oracle information.
Repeat the procedure until the result is good enough.

General concept about the approximation error
It depends on the characteristics of the function F and the chosen numerical
optimization algorithm.

Role of convexity
Convex optimization provides a key framework in obtaining numerical approximations
at well-understood computational costs.

To precisely understand these ideas, we need to understand basics of convex analysis.
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Challenges for an iterative optimization algorithm

Problem
Find the minimum x? of f (x), given starting point x0 based on only local information.

I Fog of war

x

f(x)

x0
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Challenges for an iterative optimization algorithm

Problem
Find the minimum x? of f (x), given starting point x0 based on only local information.

I Fog of war, non-differentiability, discontinuities, local minima, stationary points...

x

f(x)

x?x0
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Basics of functions

Definition (Function)
A function f with domain Q ⊆ Rp and codomain U ⊆ R is denoted as:

f : Q → U .

The domain Q represents the set of values in Rp on which f is defined and is denoted
as dom(f ) ≡ Q = {x : −∞ < f (x) < +∞}. The codomain U is the set of function
values of f for any input in Q.
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Continuity in functions

Definition (Continuity)
Let f : Q → R where Q ⊆ Rp. Then, f is a continuous function over its domain Q if
and only if

lim
x→y

f (x) = f (y), ∀y ∈ Q,

i.e., the limit of f—as x approaches y—exists and is equal to f (y).

Definition (Class of continuous functions)
We denote the class of continuous functions f over the domain Q as f ∈ C(Q).

Definition (Lipschitz continuity)
Let f : Q → R where Q ⊆ Rp. Then, f is called Lipschitz continuous if there exists a
constant value K ≥ 0 such that:

|f (y)− f (x)| ≤ K‖y− x‖2, ∀x, y ∈ Q.

I "Small" changes in the input result into "small" changes in the function values.
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Continuity in functions

Definition (Continuity)
Let f : Q → R where Q ⊆ Rp. Then, f is a continuous function over its domain Q if
and only if

lim
x→y

f (x) = f (y), ∀y ∈ Q,

i.e., the limit of f—as x approaches y—exists and is equal to f (y).

Definition (Class of continuous functions)
We denote the class of continuous functions f over the domain Q as f ∈ C(Q).

Definition (Lipschitz continuity)
Let f : Q → R where Q ⊆ Rp. Then, f is called Lipschitz continuous if there exists a
constant value K ≥ 0 such that:

|f (y)− f (x)| ≤ K‖y− x‖2, ∀x, y ∈ Q.

I "Small" changes in the input result into "small" changes in the function values.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 02 – Structures in convex functions

Continuity in functions

0 200 400 600 800 1000 1200
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0.15

x

f(x)

Thursday, July 3, 14
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Lower semi-continuity

Definition
A function f : Rn → R ∪ {+∞} is lower semi-continuous (l.s.c.) if

lim inf
x→y

f (x) ≥ f (y), for any y ∈ dom(f ).

f (x) =
{

e−x , if x < 0
+∞, if x ≥ 0 f (x) =

{
e−x , if x ≤ 0
+∞, if x > 0

Unless stated otherwise, we only consider l.s.c. functions.
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Lower semi-continuity

Definition
A function f : Rn → R ∪ {+∞} is lower semi-continuous (l.s.c.) if

lim inf
x→y

f (x) ≥ f (y), for any y ∈ dom(f ).

I Rule of thumb: a lower semi-continuous function only jumps down.

f(x)

xx1 x2

l.s.c
not l.s.c

Monday, June 2, 14
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Differentiability in functions
I We use ∇f (x) to denote the gradient of f
at x ∈ Rp such that:

∇f (x) =
p∑

i=1

∂f
∂xi

ei =
∂f
∂x1

e1 + · · ·+
∂f
∂xp

ep

Example: f (x) = ‖b−Ax‖2
2

∇f (x) = −2AT (b−Ax).

Definition (Differentiability)
Let f ∈ C(Q) where Q ⊆ Rp. Then, f is a k-times continuously differentiable on Q if
and only if ∇k f (x) exists ∀x ∈ Q.

Definition (Class of differentiable functions)
We denote the class of k-times continuously differentiable functions f on Q as
f ∈ Ck(Q).

I In the special case of k = 2, we dub ∇2f (x) the Hessian of f (x).
I We have Cq(Q) ⊆ Ck(Q) where q ≤ k. That is, a twice differentiable function is
at least differentiable once.

I For complex cases C, we refer to the Matrix Cookbook online.
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Differentiability in functions

I Some examples:

f(x) = x2 · sin(1/x), x � 0

f(x)

x

Thursday, May 22, 14

x

f(x)

f(x) = |x|

Wednesday, June 18, 14

Figure: (Left panel) ∞-times continuously differentiable function in R. (Right panel)
Non-differentiable f (x) = |x| in R.
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Stationary points of differentiable functions

Definition (Stationary point)
A point x̄ is called a stationary point of a twice differentiable function f (x) if

∇f (x̄) = 0.

Definition (Local minima, maxima, and saddle points)
Let x̄ be a stationary point of a twice differentiable function f (x).
I If ∇2f (x̄) � 0, then the point x̄ is called a local minimum.
I If ∇2f (x̄) ≺ 0, then the point x̄ is called a local maximum.
I If ∇2f (x̄) = 0, then the point x̄ can be a saddle point depending on the sign
change.
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Stationary points of smooth functions contd.

Intuition
Recall Taylor’s theorem for the function f around x̄ for all y that satisfy ‖y− x̄‖2 ≤ r
in a local region with radius r as follows

f (y) = f (x̄) + 〈∇f (x̄),y− x̄〉+
1
2

(y− x̄)T∇2f (z)(y− x̄),

where z is a point between x̄ and y. When r → 0, the second-order term becomes
∇2f (z)→ ∇2f (x̄). Since ∇f (x̄) = 0, Taylor’s theorem leads to
I f (y) > f (x̄) when ∇2f (x̄) � 0. Hence, the point x̄ is a local minimum.
I f (y) < f (x̄) when ∇2f (x̄) ≺ 0. Hence, the point x̄ is a local maximum.
I f (y) ≷ f (x̄) when ∇2f (x̄) = 0. Hence, the point x̄ can be a saddle point (i.e., f (x) = x3

at x̄ = 0), a local minima (i.e., f (x) = x4 at x̄ = 0) or a local maxima (i.e., f (x) = −x4 at
x̄ = 0).

f(x)

x
local minimum

local maximum

saddle point

saddle point x̄
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Convexity

Definition
A function f : Q → R ∪ {+∞} is called convex on its domain Q if and only if for any
x1, x2 ∈ Q and α ∈ [0, 1] we have:

f (αx1 + (1− α)x2) ≤ αf (x1) + (1− α)f (x2).

I If −f (x) is convex, then f (x) is called concave.

x

f(x)

x1 x2

f(x2)

f(x1)

Monday, May 26, 14

x

f(x)

x1 x2

f(x2)

f(x1)

↵x1 + (1 � ↵)x2

f(↵x1 + (1 � ↵)x2)

↵f(x1) + (1 � ↵)f(x2)

Thursday, May 29, 14

x

f(x)

x1 x2

f(x2)

f(x1)

Monday, May 26, 14

Figure: (Left) Non-convex (Middle) Convex (Right) Concave
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Convexity

Definition
A function f : Q → R ∪ {+∞} is called convex on its domain Q if and only if for any
x1, x2 ∈ Q and α ∈ [0, 1] we have:

f (αx1 + (1− α)x2) ≤ αf (x1) + (1− α)f (x2).

I Additional terms that you will encounter in the literature

Definition (Proper)
A convex function f is called proper if its domain satisfies dom(f ) , ∅ and,
f (x) > −∞, ∀x ∈ dom(f ).

Definition (Extended real-valued convex functions)
We define the extended real-valued convex functions f as

f (x) =
{

f (x) if x ∈ dom(f )
+∞ if otherwise

To denote this concept, we use f : dom(f )→ R ∪ {+∞}. (Note how l.s.c. might be
useful)
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Convexity

Definition
A function f : Q → R ∪ {+∞} is called convex on its domain Q if and only if for any
x1, x2 ∈ Q and α ∈ [0, 1] we have:

f (αx1 + (1− α)x2) ≤ αf (x1) + (1− α)f (x2).

Example
Function Example Attributes

`p vector norms, p ≥ 1 ‖x‖2, ‖x‖1, ‖x‖∞ convex

`p matrix norms, p ≥ 1 ‖X‖∗ =
∑rank(X)

i=1
σi convex

Square root function
√

x concave, nondecreasing
Maximum of functions max{x1, . . . , xn} convex, nondecreasing
Minimum of functions min{x1, . . . , xn} concave, nondecreasing
Logarithmic functions log (det(X)) concave, assumes X � 0
Affine/linear functions

∑n
i=1

Xii both convex and concave

Eigenvalue functions λmax(X) convex, assumes X = XT
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Strict convexity

Definition
A function f : Q → R ∪ {+∞} is called strictly convex on its domain Q if and only if
for any x1, x2 ∈ Q and α ∈ [0, 1] we have:

f (αx1 + (1− α)x2) < αf (x1) + (1− α)f (x2).

x

f(x)

x1 x2

f(x2)f(x1)

Set of minima

Monday, June 16, 14

x

f(x)

x1 x2

f(x2)

f(x1)

↵x1 + (1 � ↵)x2

f(↵x1 + (1 � ↵)x2)

↵f(x1) + (1 � ↵)f(x2)

Thursday, May 29, 14

Figure: (Left panel) Convex function. (Right panel) Strictly convex function.
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Revisiting: Alternative definitions of function convexity II

Definition
A function f ∈ C1(Q) is called convex on its domain if for any x, y ∈ Q:

f (x) ≥ f (y) + 〈∇f (y), x− y〉.

f(x)

x

f(y)

y

the function lies above all 
of its tangents

f(y) + hrf(y),x � yi

Definition
A function f ∈ C1(Q) is called convex on its domain if for any x, y ∈ Q:

〈∇f (y)−∇f (x), y− x〉 ≥ 0.

?That is, if its gradient is a monotone operator (cf., Lecture 8).
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Revisiting: Alternative definitions of function convexity III

Definition
A function f ∈ C2(Rp) is called convex on its domain if for any x, y ∈ Rp:

∇2f (x) � 0.

I Geometrical interpretation: the graph of f has zero or positive (upward)
curvature.

I However, this does not exclude flatness of f .

x

f(x)

Flatness

Upward curvature

Wednesday, June 18, 14
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What about some “ill-posed” cases...?

x

f(x)

f(x) = |x|

Wednesday, June 18, 14

Figure: Non-differentiable at the origin
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Subdifferentials and (sub)gradients in convex functions
I Subdifferential: generalizes ∇ to nondifferentiable functions

Definition
Let f : Q → R ∪ {+∞} be a convex function. The subdifferential of f at a point
x ∈ Q is defined by the set:

∂f (x) = {v ∈ Rp : f (y) ≥ f (x) + 〈v, y− x〉 for all y ∈ Q} .

Each element v of ∂f (x) is called subgradient of f at x.

Definition
Let f : Q → R ∪ {+∞} be a differentiable convex function. Then, the subdifferential
of f at a point x ∈ Q contains only the gradient, i.e., ∂f (x) = {∇f (x)}.

f(x)

x
...

f(x) + hv1,y � xi

f(x) + hv2,y � xi

f(y)

y

Tuesday, May 27, 14

f(x)

xf(x) + hrf(y),y � xi

f(y)

y

Tuesday, May 27, 14

Figure: (Left) Non-differentiability at point y. (Right) Gradient as a subdifferential with a
singleton entry.
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Subdifferentials and (sub)gradients in convex functions

Example

I f (x) = ‖y−Ax‖2
2 −→ ∇f (x) = −2AT (y−Ax).

I f (X) = − log det(X) −→ ∇f (X) = X−1

I f (x) = |x| −→ ∂|x| = {sgn(x)} , if x , 0, but [−1, 1], if x = 0.

x

f(x)

f(x) = |x|

�11

o
[�1, 1]

Tuesday, May 27, 14

Figure: Subdifferential of f (x) = |x| in R.
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Is convexity of f enough for an iterative optimization algorithm?

x

f(x)

Constraints

Wednesday, July 2, 14
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Convexity over sets

Definition
I Q ⊆ Rp is a convex set if x1, x2 ∈ Q ⇒ ∀α ∈ [0, 1], αx1 + (1− α)x2 ∈ Q.
I Q ⊆ Rp is a strictly convex set if

x1, x2 ∈ Q =⇒ ∀α ∈ (0, 1), αx1 + (1− α)x2 ∈ interior(Q).

x1

x2

↵x
1
+

(1
� ↵

)x
2

Monday, May 26, 14

x1

x2

↵x
1 +

(1�
↵)x

2

Monday, May 26, 14

x1

x2

↵x
1
+

(1
� ↵

)x
2

Monday, May 26, 14

Figure: (Left) Strictly convex (Middle) Convex (Right) Non-convex
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Convexity over sets

Definition
I Q ⊆ Rp is a convex set if x1, x2 ∈ Q ⇒ ∀α ∈ [0, 1], αx1 + (1− α)x2 ∈ Q.
I Q ⊆ Rp is a strictly convex set if

x1, x2 ∈ Q =⇒ ∀α ∈ (0, 1), αx1 + (1− α)x2 ∈ interior(Q).

b = Ax
x1

x2

x3

Thursday, June 19, 14

Figure: A linear set of equations b = Ax defines an affine (thus convex) set.
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Convexity over sets

Definition
I Q ⊆ Rp is a convex set if x1, x2 ∈ Q ⇒ ∀α ∈ [0, 1], αx1 + (1− α)x2 ∈ Q.
I Q ⊆ Rp is a strictly convex set if

x1, x2 ∈ Q =⇒ ∀α ∈ (0, 1), αx1 + (1− α)x2 ∈ interior(Q).

Why is this also important/useful?
I convex sets <> convex optimization constraints

minimize
x

f0(x)

subject to constraints
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Some basic notions on sets I

Definition (Closed set)
A set is called closed if it contains all its limit points.

Definition (Closure of a set)
Let Q ⊆ Rp be a given open set, i.e., the limit points on the boundaries of Q do not
belong into Q. Then, the closure of Q, denoted as cl(Q), is the smallest set in Rp

that includes Q with its boundary points.

Q

Friday, June 27, 14

Q

Friday, June 27, 14

Q

Friday, June 27, 14

Figure: (Left panel) Closed set Q. (Middle panel) Open set Q and its closure Q (Right panel).
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Some basic notions on sets II

Definition (Interior)
Let Q ⊆ Rp. Then, a point x ∈ Rp is an interior of Q if a neighborhood with radius r
of x is also included in Q. That is, there exists r > 0, such that
{y : ‖y− x‖2 ≤ r} ∈ Q. The set of all interior points is denoted as int(Q).

Example

I The interior of an open set is the set itself.
I The interior of the set {x : ‖y− x‖2 ≤ r} is the open set {x : ‖y− x‖2 < r}.

Definition (Relative interior)
Let Q ⊆ Rp. Then, a point x ∈ Rp is a relative interior of Q if Q contains the
intersection of a neighborhood with radius r around x with the intersection of all
affine sets containing Q, i.e., aff(Q). The set of all relative interior points is denoted
as relint(Q).

Example
The interior of the affine set X = {x : Ax = b} is empty. However, its relative
interior is itself, i.e., relint(X ) = X .
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Some basic notions on sets II

Definition (Interior)
Let Q ⊆ Rp. Then, a point x ∈ Rp is an interior of Q if a neighborhood with radius r
of x is also included in Q. That is, there exists r > 0, such that
{y : ‖y− x‖2 ≤ r} ∈ Q. The set of all interior points is denoted as int(Q).

Example

I The interior of an open set is the set itself.
I The interior of the set {x : ‖y− x‖2 ≤ r} is the open set {x : ‖y− x‖2 < r}.

Definition (Relative interior)
Let Q ⊆ Rp. Then, a point x ∈ Rp is a relative interior of Q if Q contains the
intersection of a neighborhood with radius r around x with the intersection of all
affine sets containing Q, i.e., aff(Q). The set of all relative interior points is denoted
as relint(Q).

Example
The interior of the affine set X = {x : Ax = b} is empty. However, its relative
interior is itself, i.e., relint(X ) = X .
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Convex hull
Definition (Convex hull)
Let V ⊆ Rp be a set. The convex hull of V, i.e., conv(V), is the smallest convex set
that contains V.

Definition (Convex hull of points)
Let V ⊆ Rp be a finite set of points with cardinality |V|. The convex hull of V is the
set of all convex combinations of its points, i.e.,

conv(V) =

{ |V|∑
i=1

αixi :
|V|∑
i=1

αi = 1, αi ≥ 0,∀i, xi ∈ V

}
.

V conv(V)

Figure: (Left) Discrete set of points V. (Right) Convex hull conv(V).

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 02 – Structures in convex functions

Properties of convex sets

Lemma (Separating hyperplane theorem)
Let Q1 ⊆ Rp and Q2 ⊆ Rp be two non-empty and disjoint convex sets. Then, there
exists at least one hyperplane that separates them, i.e., ∃α , 0 such that:

αT x1 ≤ αT x2, ∀x1 ∈ Q1, x2 ∈ Q2

Q1

Q2

↵

Wednesday, June 18, 14

Figure: Illustration of a strictly separating hyperplane of two disjoint convex sets Q1 and Q2.
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Lecture 02 – Structures in convex functions

Revisiting: Alternative definition of function convexity I

Definition
The epigraph of a function f : Q → R,Q ⊆ Rp is the subset of Rp+1 given by:

epi(f ) = {(x,w) : x ∈ Q,w ∈ R, f (x) ≤ w} .

Lemma
A function f : Q → R is convex if and only if its epigraph, i.e, the region above its
graph, is a convex set.

x

f(x)

epi(f)

Monday, May 26, 14

Figure: Epigraph — the region in green above graph f (·).
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Lecture 02 – Structures in convex functions

Cones

Definition (Convex cone)
A subset K ⊆ Rp is called a convex cone if and only if for any x1, x2 ∈ K, the point
αx1 + βx2 ∈ K for all nonnegative constants α, β ≥ 0.

0

x1

x2↵x1
+
�x2

K

Tuesday, June 17, 14

Figure: Illustration of a convex cone K. The depicted cones extend to infinity.
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Lecture 02 – Structures in convex functions

Cones

Definition (Convex cone of an arbitrary set Q)
A subset K ⊆ Rp is called a convex cone of a given set Q if it contains all vectors λx
where x belongs to Q and λ is a non-negative scalar.

0

QK

Tuesday, June 17, 14

Figure: Illustration of a convex cone K of an arbitrary set Q. The depicted cones extend till
infinity.
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Lecture 02 – Structures in convex functions

Cones
Definition (Normal cone)
Let Q ⊆ Rp be an arbitrary convex set in the linear space Rp. The normal cone
NQ(x) of Q at a point x is defined as:

NQ(x) = cone {s : 〈s,y− x〉 ≤ 0, ∀y ∈ Q} ,

Q
x

x + NQ(x)

Figure: Illustration of the normal cone NQ(x) at a point x of an convex set Q. The depicted
normal cone extends till infinity.
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Lecture 02 – Structures in convex functions

Revisiting: Subdifferential through epi(f ) and normal cones

Definition (Subdifferential)
Let f : Q → R ∪ {+∞} be a convex function. The
subdifferential of f at a point x ∈ Q is defined by the set:

∂f (x) =
{

v ∈ Rp : f (y) ≥ f (x) + 〈v, y− x〉 for all y ∈ Q
}
.

Each element v of ∂f (x) is called subgradient of f at x.

f(x)

xx

epi(f)

f(x)

xx

epi(f)

x̄
Nepi(f)(x)

Nepi(f)(x̄)

Subdifferentials and normal cones
With some abuse on the notation, the set ∂f (x) is
related to the normal cone Nepi(f )(x) of the epi(f )
at a point (x, f (x)) as follows

[∂f (x)T −1]T ⊆ Nepi(f )(x),

where 1 is the vector of ones.
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Lecture 02 – Structures in convex functions

Cones
Definition (Dual cone)
Let Q ⊆ Rp be an arbitrary subset in the linear space Rp, and let K be its convex
cone. The dual cone K? of Q is defined as:

K? = {y ∈ Rp : 〈y,x〉 ≥ 0, ∀x ∈ K} .

I K? is always a convex cone, even if Q is not a convex set.

0

QK
K?

Tuesday, June 17, 14

Figure: Illustration of a dual cone K? for subset Q. The depicted cones extend to infinity.
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Lecture 02 – Structures in convex functions

Cones
Definition (Dual cone)
Let Q ⊆ Rp be an arbitrary subset in the linear space Rp, and let K be its convex
cone. The dual cone K? of Q is defined as:

K? = {y ∈ Rp : 〈y,x〉 ≥ 0, ∀x ∈ K} .

I K? is always a convex cone, even if Q is not a convex set.

Definition (Self-dual cone)
A cone K is self-dual if its dual cone (relative to inner product) is equal to K.

I Examples: nonnegative orthant, cone of positive semidefinite matrices, etc.
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Lecture 02 – Structures in convex functions

Cones

Definition (Polar cone)
Let Q ⊆ Rp be an arbitrary subset in the linear space Rp, and let K be its convex
cone. The polar cone K◦ of Q is defined as:

K◦ = {y ∈ Rp : 〈y,x〉 ≤ 0, ∀x ∈ K} .

0

K?

K�

K Q

Tuesday, June 17, 14

Figure: Illustration of a polar cone K◦ for subset Q.
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Lecture 02 – Structures in convex functions

Cones
Definition (Cone of descent directions)
Let f : Q → R, Q ⊆ Rp be a given function. Then, the cone of descent directions
D(f ,x) for f at a point x ∈ Q is given by

D(f ,x) = cone {d : f (x + d) ≤ f (x) such that x + d ∈ Q} .

Figure: Illustration of a descent cone D(f ,x) for a toy example.
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Lecture 02 – Structures in convex functions

I This lecture
1. Learning as an optimization problem

2. Basic concepts in convex analysis
3. Three important classes of convex functions

I Next lecture
1. Optimality conditions

2. Unconstrained convex minimization

3. Convergence and convergence rate characterization of methods for unconstrained
minimization
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Lecture 02 – Structures in convex functions

Classes of convex functions

Definition
We use F to denote the class of convex functions f . The domain of f will be apparent
from the context.

L � Lipschitz gradient

µ � strongly convex Self-concordant

Wednesday, June 18, 14
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Lecture 02 – Structures in convex functions

Classes of convex functions

Definition
We use F to denote the class of convex functions f . The domain of f will be apparent
from the context.

L � Lipschitz gradient

µ � strongly convex Self-concordant

Wednesday, June 18, 14
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Lecture 02 – Structures in convex functions

L-Lipschitz gradient class of functions

Definition (L-Lipschitz gradient functions)
Let f : Q → R be a differentiable convex function, i.e., f ∈ F1(Q). Then, f is a
Lipschitz gradient function if and only if

‖∇f (x)−∇f (y)‖2 ≤ L‖x− y‖2, ∀x,y ∈ Q.

Here, L > 0 is known as the Lipschitz constant.
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Lecture 02 – Structures in convex functions

L-Lipschitz gradient class of functions

Definition (L-Lipschitz gradient functions)
Let f : Q → R be a differentiable convex function, i.e., f ∈ F1(Q). Then, f is a
Lipschitz gradient function if and only if

‖∇f (x)−∇f (y)‖2 ≤ L‖x− y‖2, ∀x,y ∈ Q.

Here, L > 0 is known as the Lipschitz constant.

Definition (L-Lipschitz gradient functions in a Banach space)
Let f : Q → R be a differentiable convex function, i.e., f ∈ F1(Q). Then, f is a
Lipschitz gradient function if and only if

‖∇f (x)−∇f (y)‖∗ ≤ L‖x− y‖, ∀x,y ∈ Q.

Here, L > 0 is known as the Lipschitz constant.

Definition (L-Lipschitz gradient convex functions)
Let f : Q → R be a differentiable convex function, i.e., f ∈ F1(Q). Then, f is a
L-Lipschitz gradient function if and only if the following function is convex

h(x) =
L
2
‖x‖2

2 − f (x) ∀x ∈ Q.
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Lecture 02 – Structures in convex functions

L-Lipschitz gradient class of functions

Definition (L-Lipschitz gradient functions)
Let f : Q → R be a differentiable convex function, i.e., f ∈ F1(Q). Then, f is a
Lipschitz gradient function if and only if

‖∇f (x)−∇f (y)‖2 ≤ L‖x− y‖2, ∀x,y ∈ Q.

Here, L > 0 is known as the Lipschitz constant.

Definition (Class of 2-nd order Lipschitz functions)
We denote the class of twice continuously differentiable functions f on Q, where their
2nd derivative is Lipschitz continuous, i.e.,

‖∇2f (x)−∇2f (y)‖2→2 ≤ L‖x− y‖2, ∀x,y ∈ Q,

as f ∈ F2,2
L (Q).

I In the sequel, we will use the notation F l,m
L to denote convex functions that are

l-times differentiable with m-th order Lipschitz property.
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Lecture 02 – Structures in convex functions

L-Lipschitz gradient class of functions

Definition (L-Lipschitz gradient functions)
Let f : Q → R be a differentiable convex function, i.e., f ∈ F1(Q). Then, f is a
Lipschitz gradient function if and only if

‖∇f (x)−∇f (y)‖2 ≤ L‖x− y‖2, ∀x,y ∈ Q.

Here, L > 0 is known as the Lipschitz constant.

Example (Underdetermined least squares)
Consider an underdetermined linear system of
equations b = Ax\ + w where A ∈ Rn×p and x\ is
unknown. Let f (x) = 1

2‖b−Ax‖2
2. Then, f is a

L-Lipschitz convex function, i.e., f ∈ F1,1
L (Rp)

where:

‖∇f (x1)−∇f (x2)‖2 = ‖AT A (x1 − x2) ‖2

≤ ‖AT A‖2→2‖x1 − x2‖2,

for all x1,x2. That is, L = σ2
max (A). Also,

(SPOILER ALERT) σ2
min (A) = 0.

= +
...

n ⇥ p

n ⌧ p

x\

Ab w

Wednesday, July 2, 14

Figure: Compressive sensing.
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Lecture 02 – Structures in convex functions

L-Lipschitz gradient class of functions

Definition (L-Lipschitz gradient functions)
Let f : Q → R be a differentiable convex function, i.e., f ∈ F1(Q). Then, f is a
Lipschitz gradient function if and only if

‖∇f (x)−∇f (y)‖2 ≤ L‖x− y‖2, ∀x,y ∈ Q.

Here, L > 0 is known as the Lipschitz constant.

Example (Linear functions)
Consider any linear function f (x) = cT x + β.
Then, f is a 0-Lipschitz convex function, i.e.,
f ∈ F1,1

0 (Rp) since ∇f (x) = c, ∀x and thus

‖∇f (x1)−∇f (x2)‖2 = 0 · ‖x1 − x2‖2,

for all x1,x2.

x

f(x)

�
Constant slope

Wednesday, June 18, 14

Figure: Linear function have
L = 0 Lipschitz constant.
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Lecture 02 – Structures in convex functions

L-Lipschitz gradient class of functions

Definition (L-Lipschitz gradient functions)
Let f : Q → R be a differentiable convex function, i.e., f ∈ F1(Q). Then, f is a
Lipschitz gradient function if and only if

‖∇f (x)−∇f (y)‖2 ≤ L‖x− y‖2, ∀x,y ∈ Q.

Here, L > 0 is known as the Lipschitz constant.

Example (Underdetermined least squares)
Consider an underdetermined linear system of
equations b = Ax\ + w where A ∈ Rn×p and x\ is
unknown. Let f (x) = 1

2‖b−Ax‖2
2. Using operator

norm properties, we have

‖∇f (x1)−∇f (x2)‖1 = ‖AT A (x1 − x2) ‖1

≤ ‖AT A‖∞→1‖x1 − x2‖∞
(derivation on board)

for all x1,x2.

= +
...

n ⇥ p

n ⌧ p

x\

Ab w

Wednesday, July 2, 14

Figure: Compressive sensing.
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Lecture 02 – Structures in convex functions

Properties of L-Lipschitz functions

Lemma
Let f : Q → R, Q ⊆ Rp be a twice differentiable convex function, i.e., f ∈ F2(Q).
Then, f is a Lipschitz gradient function if and only if

0 � ∇2f (x) � LI, ∀x ∈ Rp.
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Lecture 02 – Structures in convex functions

Properties of L-Lipschitz functions

Lemma
Let f : Q → R, Q ⊆ Rp be a twice differentiable convex function, i.e., f ∈ F2(Q).
Then, f is a Lipschitz gradient function if and only if

0 � ∇2f (x) � LI, ∀x ∈ Rp.

Proof.
(=⇒) Key ingredient: Taylor’s theorem. Then for any x,y ∈ Rp, we have:

∇f (y) = ∇f (x) +

∫ 1

0

∇2f (x + τ(y− x))(y− x)dτ

By the Cauchy-Schwartz and Jensen inequalities, we further have (1/r + 1/q = 1):

‖∇f (y)−∇f (x)‖r ≤

∥∥∥∥∫ 1

0

∇2f (x + τ(y− x))dτ

∥∥∥∥
q→r

· ‖y− x‖q

≤

∫ 1

0

∥∥∇2f (x + τ(y− x))
∥∥

2→2
dτ · ‖y− x‖2[q = r = 2]

≤ L‖y− x‖2

�
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Lecture 02 – Structures in convex functions

Properties of L-Lipschitz functions

Lemma
Let f : Q → R, Q ⊆ Rp be a twice differentiable convex function, i.e., f ∈ F2(Q).
Then, f is a Lipschitz gradient function if and only if

0 � ∇2f (x) � LI, ∀x ∈ Rp.

Example (Positive semi-definite quadratic
functions)
Consider any quadratic function
f (x) = 1

2 xT Φx + cT x + β where Φ � 0. Then, f
is a L-Lipschitz convex function, i.e., f ∈ F2,1

L (Rp)
with L = ‖Φ‖2→2 since

∇f (x) = Φx + c and ∇2f (x) = Φ. Figure: Quadratic function with
Φ � 0 has L = ‖Φ‖2→2
Lipschitz constant.
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Lecture 02 – Structures in convex functions

Additional properties of L-Lipschitz functions

Lemma
Let f ∈ F1,1

L (Q). Then, we have:

|f (y)− f (x)− 〈∇f (x),y− x〉| ≤
L
2
‖y− x‖2

2, ∀x,y ∈ Q.

Proof.
By the Taylor’s theorem:

f (y) = f (x) + 〈∇f (x),y− x〉+
∫ 1

0
〈∇f (x + τ(y− x))−∇f (x),y− x〉dτ.

Therefore,

|f (y)− f (x)− 〈∇f (x),y− x〉| ≤
∫ 1

0
‖∇f (x + τ(y− x))−∇f (x)||∗ · ‖y− x‖dτ

≤ L‖y− x‖2
2

∫ 1

0
τdτ =

L
2
‖y− x‖2

2

�
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Lecture 02 – Structures in convex functions

Geometric illustration of lower/upper Lipschitz bounds

f(x)

x

f(x)

x0

f(x0) + hr(x0),x � x0i +
L

2
kx � x0k2

2

f(x0) + hr(x0),x � x0i �
L

2
kx � x0k2

2

Figure: The function f is located between the lower quadratic
f (x0) + 〈∇(x0),x− x0〉 − L

2 ‖x− x0‖2
2 and the upper quadratic

f (x0) + 〈∇(x0),x− x0〉+ L
2 ‖x− x0‖2

2.
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Lecture 02 – Structures in convex functions

Lipschitz continuity and Taylor series

I Let f ∈ F2
L(Rp) with gradient ∇f (x) and Hessian ∇2f (x).

I First-order Taylor approximation of f at y:

f (x) ≥ f (y) + 〈∇f (y),x− y〉

f(x)

xf(x) + hrf(y),y � xi

f(y)

y

Tuesday, May 27, 14

I Convex functions: 1st-order Taylor approximation is a global lower surrogate.
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Lecture 02 – Structures in convex functions

Lipschitz continuity and Taylor series approximation

I Let f ∈ F2
L(Rp) with gradient ∇f (x) and Hessian ∇2f (x).

I Second-order Taylor approximation of f at y: there exists α ∈ [0, 1] such that

f (y) = f (x) + 〈∇f (x),y− x〉+
1
2
〈∇2f (x + α(y− x))(y− x),y− x〉

I By convexity and L-Lipschitz gradient assumption (Hessian is globally bounded):

0 � ∇2f (x) � LI

I Thus:

f (y) = f (x) + 〈∇f (x),y− x〉+
1
2
〈∇2f (x + α(y− x))(y− x),y− x〉

≤ f (x) + 〈∇f (x),y− x〉+
1
2
‖∇2f (x + α(y− x))‖2→2‖y− x‖2

2

≤ f (x) + 〈∇f (x),y− x〉+
L
2
‖y− x‖2

2

I Convex functions with L-Lipschitz gradient. We can use 2st-order Taylor
approximation to obtain a global upper surrogate.
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Lecture 02 – Structures in convex functions

Classes of convex functions

Definition
We use F to denote the class of convex functions f . The domain of f will be apparent
from the context.

L � Lipschitz gradient

Self-concordantµ � strongly convex

Wednesday, June 18, 14
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Lecture 02 – Structures in convex functions

µ-strongly convex functions

Definition
A function f : Q → R ∪ {+∞} ,Q ⊆ Rp is called µ-strongly convex on its domain if
and only if for any x, y ∈ Q and α ∈ [0, 1] we have:

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)−
µ

2
α(1− α)‖x− y‖2

2.

The constant µ is called the convexity parameter of function f . We denote the class of
k-differentiable µ-strongly functions as f ∈ Fk

µ(Q).

I Strong convexity ⇒ strict convexity, BUT strict convexity ; strong convexity

x

f(x)

x1 x2

f(x2)

f(x1)

↵x1 + (1 � ↵)x2

f(↵x1 + (1 � ↵)x2)

↵f(x1) + (1 � ↵)f(x2)

Thursday, May 29, 14

x

f(x)

x1 x2

f(x2)

f(x1)

↵x1 + (1 � ↵)x2

f(↵x1 + (1 � ↵)x2)

↵f(x1) + (1 � ↵)f(x2)

µ

2
↵(1 � ↵)kx1 � x2k2

2

n

Thursday, May 29, 14

Figure: (Left) Convex (Right) Strongly convex
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Lecture 02 – Structures in convex functions

µ-strongly convex functions

Definition
A function f : Q → R ∪ {+∞} ,Q ⊆ Rp is called µ-strongly convex on its domain if
and only if for any x, y ∈ Q and α ∈ [0, 1] we have:

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)−
µ

2
α(1− α)‖x− y‖2

2.

The constant µ is called the convexity parameter of function f . We denote the class of
k-differentiable µ-strongly functions as f ∈ Fk

µ(Q).

I Strong convexity ⇒ strict convexity, BUT strict convexity ; strong convexity

Example
Function f (x) = 1

2‖x‖
2
2 + ‖x‖1 is non-differentiable but strongly convex.

Example
Function f (x) = 1

2‖x‖
2
1.5 + ‖x‖1 is non-differentiable, strictly convex but not strongly

convex.
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Lecture 02 – Structures in convex functions

µ-strongly convex functions

Definition
A function f : Q → R ∪ {+∞} ,Q ⊆ Rp is called µ-strongly convex on its domain if
and only if for any x, y ∈ Q and α ∈ [0, 1] we have:

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)−
µ

2
α(1− α)‖x− y‖2

2.

The constant µ is called the convexity parameter of function f . We denote the class of
k-differentiable µ-strongly functions as f ∈ Fk

µ(Q).

I Strong convexity ⇒ strict convexity, BUT strict convexity ; strong convexity

Definition (Alternative definition)
Let f : Q → R be a convex function, i.e., f ∈ F(Q). Then, f is a µ-strongly convex
function if and only if the following function is convex

h(x) = f (x)−
µ

2
‖x‖2

2 ∀x ∈ Q.
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Properties of µ-strongly convex functions

Lemma
Let f : Q → R,Q ⊆ Rp be a twice differentiable convex function, i.e., f ∈ F2(Q).
Then, f is µ-strongly convex function if and only if

∇2f (x) � µI, ∀x ∈ Rp.
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Lecture 02 – Structures in convex functions

Properties of µ-strongly convex functions

Lemma
Let f : Q → R,Q ⊆ Rp be a twice differentiable convex function, i.e., f ∈ F2(Q).
Then, f is µ-strongly convex function if and only if

∇2f (x) � µI, ∀x ∈ Rp.

Example (Toy example)
Consider the quadratic function f (x) = 1

2‖x‖
2
2.

Then, f is a µ-strongly convex since
∇2f (x) = I =⇒ µ = 1. x

f(x)

f(x) =
1

2
x2

Wednesday, June 18, 14

Figure: Toy example for
µ-strongly convex functions.
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Properties of µ-strongly convex functions

Lemma
Let f : Q → R,Q ⊆ Rp be a twice differentiable convex function, i.e., f ∈ F2(Q).
Then, f is µ-strongly convex function if and only if

∇2f (x) � µI, ∀x ∈ Rp.

Example (Overdetermined least squares)
Consider an overdetermined linear system of
equations b = Ax\ + w where A ∈ Rn×p is a full
column-rank matrix and x\ is unknown. Assume
that AT A � ρI, ρ > 0 and let
f (x) = 1

2‖b−Ax‖2
2. Then, f is a µ-strongly

convex function, i.e., f ∈ F2
µ(Rp) since:

∇2f (x) = AT A where AT A � ρI =: µI.

= +

n � p

n ⇥ p

x\

Ab w

Wednesday, July 2, 14

Figure: Overdetermined system of
linear equations.
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Properties of µ-strongly convex functions

Lemma
Let f : Q → R,Q ⊆ Rp be a twice differentiable convex function, i.e., f ∈ F2(Q).
Then, f is µ-strongly convex function if and only if

∇2f (x) � µI, ∀x ∈ Rp.

Example (Trivial)
Any linear function f (x) = cT x + β ∈ F1

µ(Rp) for
µ = 0 since

∇f (x) = c and ∇2f (x) = 0. x

f(x)

�
Constant slope

Wednesday, June 18, 14

Figure: Counterexample for
µ-strongly convex functions.
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Properties of µ-strongly convex functions

Lemma
Let f : Q → R,Q ⊆ Rp be a twice differentiable convex function, i.e., f ∈ F2(Q).
Then, f is µ-strongly convex function if and only if

∇2f (x) � µI, ∀x ∈ Rp.

Lemma
A continuously differentiable function f belongs to F1

µ(Q) if there exists a constant
µ > 0 such that for any x,y ∈ Q, we have:

f (y) ≥ f (x) + 〈∇f (x),y− x〉+
µ

2
‖y− x‖2

2

Lemma
Let f be continuously differentiable. The following condition, holding for all
x,y ∈ Q ⊆ Rp, is equivalent to inclusion that f is µ-strongly convex function:

〈∇f (x)−∇f (y),x− y〉 ≥ µ‖x− y‖2
#

where # is the primal norm.
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L-Lipschitz, µ-strongly convex functions

Definition
Let f : Q → R,Q ⊆ Rp be a continuously differentiable function. Then, f is both
µ-strongly and L-Lipschitz convex function if for any x,y ∈ Q, we have:

µ

2
‖y− x‖2

2 ≤ f (y)− f (x)− 〈∇f (x),y− x〉 ≤
L
2
‖y− x‖2

2

and

µI � ∇2f (x) � LI

for constants 0 < µ ≤ L. We denote that f ∈ F1,1
µ,L(Q).
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L-Lipschitz, µ-strongly convex functions

Definition
Let f : Q → R,Q ⊆ Rp be a continuously differentiable function. Then, f is both
µ-strongly and L-Lipschitz convex function if for any x,y ∈ Q, we have:

µ

2
‖y− x‖2

2 ≤ f (y)− f (x)− 〈∇f (x),y− x〉 ≤
L
2
‖y− x‖2

2

and

µI � ∇2f (x) � LI

for constants 0 < µ ≤ L. We denote that f ∈ F1,1
µ,L(Q).

Example
Consider an linear system of equations b = Ax\ where µI � AT A � LI. Let
f (x) = 1

2‖b−Ax‖2
2. Then, f is both µ-strongly convex and L-Lipschitz continuous

gradient function, i.e., f ∈ F2,1
µ,L(Rp) since:

∇2f (x) = AT A where µI � AT A � LI.
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L-Lipschitz, µ-strongly convex functions

Definition
Let f : Q → R,Q ⊆ Rp be a continuously differentiable function. Then, f is both
µ-strongly and L-Lipschitz convex function if for any x,y ∈ Q, we have:

µ

2
‖y− x‖2

2 ≤ f (y)− f (x)− 〈∇f (x),y− x〉 ≤
L
2
‖y− x‖2

2

and

µI � ∇2f (x) � LI

for constants 0 < µ ≤ L. We denote that f ∈ F1,1
µ,L(Q).

I (As will be shown in next sections) µ,L are used in convergence rate
characterization of actual algorithmic implementations

I Also used in stopping criteria
I Unfortunately, µ,L are usually not known a priori...
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Classes of convex functions

Definition
We use F to denote the class of convex functions f . The domain of f will be apparent
from the context.

L � Lipschitz gradient

µ � strongly convex Self-concordant

Wednesday, June 18, 14
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Self-concordant functions
I Another key structure beyond

µI � ∇2f (x) � LI

I We first explain the concept in the simple 1-dimensional setting...

Definition (Self-concordant functions in 1-dimension)
A convex function ϕ : R→ R is self-concordant if

|ϕ′′′(t)| ≤ 2ϕ′′(t)3/2, ∀t ∈ R.

I Motivation
1. Conceptually, self-concordance definition provides a complete convergence

analysis for algorithmic solutions (e.g., Newton method) without knowing
such constants.

2. Self-concordance leads to convergence analysis which is affine invariant; i.e.,
does not depend on the coordinate basis selected.

Example
Linear and quadratic functions are self-concordant: their 3rd derivative is by definition
zero.
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Self-concordant functions

I Self-concordance provides a way to control the 3rd derivative of a function.

Lemma
Claim: Let ϕ̃(t) = ϕ(αt + β) where α , 0. Then, ϕ̃ is self-concordant iff ϕ is.

Proof.
To see this, observe that:

ϕ̃′′(t) = α2ϕ′′(αt + β), ϕ̃′′′(t) = α3ϕ′′′(αt + β).

Then, by definition of the self-concordance,

|ϕ̃′′′(t)| ≤ 2ϕ̃(t)3/2 =⇒ |α3ϕ′′′(αt + β)| ≤ 2
(
α2ϕ(αt + β)

)3/2

�

Affine invariance!!!
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Self-concordant functions

I Self-concordance provides a way to control the 3rd derivative of a function.

Lemma
Claim: Let ϕ̃(t) = ϕ(αt + β) where α , 0. Then, ϕ̃ is self-concordant iff ϕ is.

Proof.
To see this, observe that:
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Then, by definition of the self-concordance,
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α2ϕ(αt + β)

)3/2

�

Affine invariance!!!
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Self-concordant functions in higher dimensions

Definition (Self-concordant functions)
A convex function f : Rn → R is said to be self-concordant with parameter M ≥ 0, if
|ϕ′′′(t)| ≤ Mϕ′′(t)3/2, where ϕ(t) := f (x + tv) for all t ∈ R, x ∈ domf and v ∈ Rn

such that x + tv ∈ domf . When M = 2, the function f is said to be a standard
self-concordant.
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Self-concordant functions in higher dimensions

Definition (Self-concordant functions)
A convex function f : Rn → R is said to be self-concordant with parameter M ≥ 0, if
|ϕ′′′(t)| ≤ Mϕ′′(t)3/2, where ϕ(t) := f (x + tv) for all t ∈ R, x ∈ domf and v ∈ Rn

such that x + tv ∈ domf . When M = 2, the function f is said to be a standard
self-concordant.

Example
The function f (x) = − log x is self-concordant. To see this, observe:

f ′′(x) = 1/x2, f ′′′(x) = −2/x3.

Thus:

|f ′′′(x)|
2f ′′(x)3/2 =

2/x3

2(1/x2)3/2 = 1
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Self-concordant functions in higher dimensions

Definition (Self-concordant functions)
A convex function f : Rn → R is said to be self-concordant with parameter M ≥ 0, if
|ϕ′′′(t)| ≤ Mϕ′′(t)3/2, where ϕ(t) := f (x + tv) for all t ∈ R, x ∈ domf and v ∈ Rn

such that x + tv ∈ domf . When M = 2, the function f is said to be a standard
self-concordant.

Example
Similarly, the following example functions are self-concordant
1. f (x) = x log x − log x,
2. f (x) =

∑m
i=1 log(bi − aT

i x) with domain
dom(f ) =

{
x : aT

i x < bi , i = 1, . . . ,m
}
,

3. f (X) = − log det(X) with domain dom(f ) = S++
n ,

4. f (x) = − log
(

xT Px + qT x + r
)
with domain

dom(f ) =
{

x : xT Px + qT x + r > 0
}

and P ∈ S++
n .
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Example: Graphical model learning

Problem (Graphical model selection)
Given a data set D := {x1, · · · ,xN}, where xi ∈ Rp (p� N) is a Gaussian random
variable with sample covariance Σ̂. Let Σ be the unknown covariance matrix
corresponding to the graphical model of the Gaussian Markov random field. The aim
is to learn a matrix Θ = Σ−1.

Example: Log-determinant for LMIs
• Application: Graphical model selection

Given a data set D := {x1, . . . ,xN}, where xi is a Gaussian random variable.
Let ⌃ be the covariance matrix corresponding to the graphical model of
the Gausian Markov random field. The aim is to learn a sparse matrix ⇥ that
approximates the inverse ⌃�1.

Optimization problem

min
⇥�0

8
><
>:
� log det(⇥) + trace(⌃⇥)| {z }

f(x)

+ ⇢kvec(⇥)k1| {z }
g(x)

9
>=
>;

x2

x3

x4x5

x1

x1 x2 x3 x4 x5

x1

x2

x3

x4

x5

⇥ =

Thursday, June 12, 14
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Example: Graphical model learning

Problem (Graphical model selection)
Given a data set D := {x1, · · · ,xN}, where xi ∈ Rp (p� N) is a Gaussian random
variable with sample covariance Σ̂. Let Σ be the unknown covariance matrix
corresponding to the graphical model of the Gaussian Markov random field. The aim
is to learn a matrix Θ = Σ−1.

Example: Log-determinant for LMIs
• Application: Graphical model selection

Given a data set D := {x1, . . . ,xN}, where xi is a Gaussian random variable.
Let ⌃ be the covariance matrix corresponding to the graphical model of
the Gausian Markov random field. The aim is to learn a sparse matrix ⇥ that
approximates the inverse ⌃�1.

Optimization problem

min
⇥�0

8
><
>:
� log det(⇥) + trace(⌃⇥)| {z }

f(x)

+ ⇢kvec(⇥)k1| {z }
g(x)

9
>=
>;

x2

x3

x4x5

x1

x1 x2 x3 x4 x5

x1

x2

x3

x4

x5

⇥ =

Thursday, June 12, 14

Optimization formulation

min
Θ

{
tr(Σ̂Θ)− log det(Θ)︸                          ︷︷                          ︸

f (Θ)

}
where f (Θ) forces Θ to be symmetric and positive definite through the
self-concordant function log det(·).
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Example: Graphical model learning

Problem (Graphical model selection)
Given a data set D := {x1, · · · ,xN}, where xi ∈ Rp (p� N) is a Gaussian random
variable with sample covariance Σ̂. Let Σ be the unknown covariance matrix
corresponding to the graphical model of the Gaussian Markov random field. The aim
is to learn a matrix Θ = Σ−1.

Example: Log-determinant for LMIs
• Application: Graphical model selection

Given a data set D := {x1, . . . ,xN}, where xi is a Gaussian random variable.
Let ⌃ be the covariance matrix corresponding to the graphical model of
the Gausian Markov random field. The aim is to learn a sparse matrix ⇥ that
approximates the inverse ⌃�1.

Optimization problem

min
⇥�0

8
><
>:
� log det(⇥) + trace(⌃⇥)| {z }

f(x)

+ ⇢kvec(⇥)k1| {z }
g(x)

9
>=
>;

x2

x3

x4x5

x1

x1 x2 x3 x4 x5

x1

x2

x3

x4

x5

⇥ =

Thursday, June 12, 14

I f (Θ) = tr(Σ̂Θ)− log det(Θ) is only locally Lipschitz continuous gradient
function, restricted on a compact subset of Sp

++.
I Observe that, for X,Y ∈ Sp

++ where αI � X,Y,� βI:

‖∇f (X)−∇f (Y)‖F = ‖X−1 −Y−1‖F ≤
√p‖X−1 −Y−1‖2→2

≤
√p
α2 ‖X−Y‖2→2 ≤

√p
α2 ‖X−Y‖F
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Some geometric intuition behind self-concordant functions

Self-concordance vs. Lipschitz gradient + SC

• Main properties of Fµ,L

x,y 2 dom(f)

x,y 2 dom(f)

x 2 dom(f)

Lower surrogate

Upper surrogate

Hessian surrogates

f(y) � f(x) + rf(x)T (y � x) +
µ

2
ky � xk2

2

f(y)  f(x) + rf(x)T (y � x) +
L

2
ky � xk2

2

µI � r2f(x) � LI
Global

x,y 2 dom(f)

x,y 2 dom(f)

x 2 dom(f)

Lower surrogate

Upper surrogate

Hessian surrogates

f(y) � f(x) + rf(x)T (y � x) +
µ

2
ky � xk2

2

f(y)  f(x) + rf(x)T (y � x) +
L

2
ky � xk2

2

µI � r2f(x) � LI

x,y 2 dom(f)Lower surrogate

Upper surrogate

Hessian surrogates (1 � ky � xkx)2r2f(x) � r2f(y) � (1 � ky � xkx)�2r2f(x)

f(y)  f(x) + rf(x)T (y � x) + !⇤ (ky � xkx)

f(y) � f(x) + rf(x)T (y � x) + ! (ky � xkx)

ky � xkx < 1

ky � xkx < 1

Friday, May 30, 14

x

f(x)

xi
xi+1

Thursday, May 29, 14

Figure: Global assumptions must hold a priori to operate with Lipschitz or µ-strongly convex
machinery.
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Some geometric intuition behind self-concordant functions

Self-concordance vs. Lipschitz gradient + SC
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Figure: Global assumptions must hold a priori to operate with Lipschitz or µ-strongly convex
machinery.
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Some geometric intuition behind self-concordant functions

Self-concordance vs. Lipschitz gradient + SC

• Main properties of 

x,y 2 dom(f)Lower surrogate

Upper surrogate

Hessian surrogates (1 � ky � xkx)2r2f(x) � r2f(y) � (1 � ky � xkx)�2r2f(x)

f(y)  f(x) + rf(x)T (y � x) + !⇤ (ky � xkx)

f(y) � f(x) + rf(x)T (y � x) + ! (ky � xkx)

ky � xkx < 1

ky � xkx < 1

F2

Local

Local norm:   

Utility functions:   

kukx :=
⇥
uTr2f(x)u

⇤1/2

!⇤(⌧) = �⌧ � ln(1 � ⌧), ⌧ 2 [0, 1) !(⌧) = ⌧ � ln(1 + ⌧), ⌧ � 0

f is self-concordant if '(t) := f(x + td) satisfies |'000(t)|  2'00(t)3/2 for all x and d.

Friday, May 30, 14
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Some geometric intuition behind self-concordant functions

Self-concordance vs. Lipschitz gradient + SC
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Some geometric intuition behind self-concordant functions

Self-concordance vs. Lipschitz gradient + SC

• Main properties of 

x,y 2 dom(f)Lower surrogate

Upper surrogate
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F2
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Local norm:   

Utility functions:   

kukx :=
⇥
uTr2f(x)u

⇤1/2

!⇤(⌧) = �⌧ � ln(1 � ⌧), ⌧ 2 [0, 1) !(⌧) = ⌧ � ln(1 + ⌧), ⌧ � 0

f is self-concordant if '(t) := f(x + td) satisfies |'000(t)|  2'00(t)3/2 for all x and d.

Friday, May 30, 14

Definition
For any x,y ∈ dom(f ), we have:

〈∇f (y)−∇f (x),y− x〉 ≥
‖y− x‖2

x
1 + ‖y− x‖x
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Some geometric intuition behind self-concordant functions

Self-concordance vs. Lipschitz gradient + SC
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Friday, May 30, 14

Definition
Let x ∈ dom(f ) and ‖x− y‖x < 1. Then:

〈∇f (y)−∇f (x),y− x〉 ≤
‖y− x‖2

x
1− ‖y− x‖x
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Some geometric intuition behind self-concordant functions

Self-concordance vs. Lipschitz gradient + SC

• Main properties of 
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Friday, May 30, 14

x

f(x)

xi
xi+1

Thursday, May 29, 14

Figure: Only local information is used such to operate with self-concordant machinery.
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Classes of convex functions

Definition
We use F to denote the class of convex functions f . The domain of f will be apparent
from the context.

L� Lipschitz gradient

µ� strongly convex

Self-concordant

Self-concordant barriers

Friday, June 20, 14
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?Self-concordant barriers2

I In the problems above, the self-concordant function f (·) appears in the objective
function.

Problem
For our discussion, we consider the following constrained optimization problem

minimize
x

g(x)

subject to x ∈ Q

where Q is a closed convex set and is endowed with a self-concordant barrier.

I That is, we assume that we know a self-concordant function f such that
dom(f ) ≡ Q.

Definition
A standard self-concordant function f is a ν-self-concordant barrier of a given convex
set Q with parameter ν > 0 if

sup
u∈Rp

{
2uT∇f (x)− uT∇2f (x)u

}
≤ ν, ∀x ∈ dom(f ).

2This material will be covered again in the next lectures
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?Self-concordant barriers3
I Used in sequential unconstrained minimization

Problem
We define the following parametric penalty function:

F(t; x) = f (x) + tg(x)

and solve the following sequential problem for increasing values of t:

minimize
x∈dom(f )

F(t; x).

I Intuition: we expect x\(t)→ x (optimal solution) as t →∞.

Example
I All linear and convex quadratic functions are not self-concordant barriers.
I f (x) := −

∑p
i=1

log(xi) is an p-self-concordant barrier of the orthogonal cone Rp
+.

I f (x, u) = − log(u2 − ‖x‖2
2) is a 2-self-concordant barrier of the Lorentz cone

Lp+1 := {(x, u) ∈ Rp × R+ | ‖x‖2 ≤ u}.
I The semidefinite cone Sp

+ is endowed with an p-self-concordant barrier
f (X) := − log det(X).

3This material will be covered again in the next lectures
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