
Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 2: A basic review of probability theory
Laboratory for Information and Inference Systems (LIONS)

École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2015)



License Information for Mathematics of Data Slides

I This work is released under a Creative Commons License with the following terms:
I Attribution

I The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees must give the original authors credit.

I Non-Commercial
I The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees may not use the work for commercial purposes – unless they get the licensor’s
permission.

I Share Alike
I The licensor permits others to distribute derivative works only under a license identical
to the one that governs the licensor’s work.

I Full Text of the License

Mathematics of Data: From Theory to Computation | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 2/ 44

http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/legalcode


I This lecture
1. Review of probability theory
2. Learning as an optimization problem

I Next lecture
1. Basic concepts in convex analysis
2. Complexity theory review
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Recommended reading

I Probability and Measure, Patrick Billingsley, Wiley-Interscience, 1995.
I Chapter 7, 8, & 9 in K. P. Murphy, Machine Learning: A Probabilistic
Perspective, MIT Press, 2012.

I V. N. Vapnik, “An overview of statistical learning theory,” IEEE Trans. Inf.
Theory, vol. 10, no. 5, pp. 988–999, Sep. 1999.

I ?Chapter 5 in A. W. van der Vaart, Asymptotic Statistics, Cambridge Univ.
Press, 1998.
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Motivation

Motivation
This lecture reviews basic probability and statistics.
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Basic concepts in probability theory

Definition (Sample space)
The sample space Ω of an experiment is the set of all possible outcomes of that
experiment.

Example
If the experiment is tossing a coin, the sample set is the set {head, tail}.

Definition (Event)
An event E corresponds to a subset of the sample space; i.e., E ⊆ Ω.

Definition (Probability measure)
Probability measure P (E) maps event E from Ω onto the interval [0, 1] and satisfies
the following Kolmogorov axioms:
I P (E) ≥ 0,
I P (Ω) = 1 and
I P
(⋃n

i=1 Ei

)
=
∑n

i=1 P (Ei), where E1, ..., En are mutually exclusive (i.e.⋂n

i=1 Ei = ∅). Such events are called independent.
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Union of non-disjoint events

Definition (Principle of inclusion-exclusion)
The probability of the union of n events is

P

(
n⋃

i=1

Ei

)
=

n∑
k=1

(−1)k+1
∑

1≤i1≤...≤ik≤n

P (Ei1 ∩ ... ∩ Eik
),

where the second sum is over all subsets of k events.

Example
Suppose we throw two dices and ask what is the probability that the outcome is even
or larger than 7. Let A and B denote the event of having an even number and the
event of getting the number that exceeds 7, respectively. Then, P (A) =

1
2
,

P (B) =
15
36

and P (A ∩B) =
9
36

.

By the inclusion-exclusion principle, P (A ∪B) = P (A) + P (B)− P (A ∩B) =
2
3
.
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The rules of probability

Let A and B denote two events in a sample space Ω, and let P (B) , 0.

Definition (Marginal probability)
The probability of an event (A) occuring (P (A)).

Definition (Joint probability)
P (A,B) is the probability of event A and event B occuring. Symmetry property
holds, i.e. P (A,B) = P (B,A).

Definition (Conditional probability)
P (B|A) is the probability that B will occur given that A has occurred.

Rules
I Sum rule: P (A) =

∑
B
P (A,B)

I Product rule: P (A,B) = P (B|A)P (A).
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Bayes’ rule

Bayes’ rule

P (A|B) =
P (B|A)P (A)

P (B)
Constituents:
I P (A), the prior probability, is the probability of A before B is observed.
I P (A|B), the posterior probability, is the probability of A given B, i.e., after B is
observed.

I P (B|A) is the probability of observing B given A. As a function of A with B
fixed, this is the likelihood.

Mathematics of Data: From Theory to Computation | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 44



Random variable

Definition
A real-valued random variable is a function that associates a value to the outcome of
a randomized experiment X : Ω→ R.

Example

I Whether a coin flip was heads: a function from Ω = {H,T} to {0, 1}
I Number of heads in a sequence of n throws: function from Ω = {H,T}n to
{0, 1, ..., n}.
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Discrete random variable
Probability mass function (Pmf)
The probability mass function is the function from values to its probability,
PX(x) = P (X = x) for x ∈ X (i.e., a countable subset of the reals) with properties:
I PX(x) ≥ 0 for every x ∈ X ,
I
∑

x∈X PX(x) = 1

Example
Discrete distributions:
I Bernoulli distribution - distribution of a binary variable x ∈ {0, 1}; single
parameter µ ∈ [0, 1] represents the probability of x = 1:

Bern(x|µ) = µx(1− µ)1−x.

I Binomial distribution - probability of observing m occurrences of 1 in a set of N
samples from a Bernoulli distribution:

Bin(m|N,µ) =
(N
m

)
µm(1− µ)1−m.

I Other important discrete distributions: Categorical, Multinomial, Poisson,
Geometric, Negative binomial, etc.
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Probability density function (pdf)

I A continuous random variable can have uncountably infinite possible values.

Probability density function (pdf)
The probability density function of a continuous random variable X is an integrable
function p(x) satisfying the following:
1. The density is nonnegative: i.e., p(x) ≥ 0 for any x,
2. Probabilities integrate to 1: i.e.,

∫∞
−∞ p(x)dx = 1,

3. The probability that x belongs to the interval [a, b] is given by the integral of
p(x) over that interval: i.e.,

P (a ≤ X ≤ b) =
∫ b

a

p(x)dx.

Basic rules of probability

1. Analog of sum rule: p(x) =
∫
p(x, y)dy

2. Product rule: p(x, y) = p(y|x)p(x).
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Expectations and variances

Definition (Expectation (1st moment, mean))

E[X] =


∑

x∈X xP (X = x) discrete∫∞
−∞ xp(x)dx continuous

Definition (Variance (2nd moment))

V[X] =


∑

x∈X (x− E[X])2P (X = x) discrete∫∞
−∞(x− E[X])2p(x)dx continuous

Definition (Conditional expectation and Covariance)

E[X|Y = y] =
∑
x∈X

xP (X = x|Y = y)

cov[x, y] = E
[(
x− E[X]

)(
y − E[Y ]

)]
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Probability distributions for continuous variables

Common distributions:
I Uniform
I Normal / Gaussian
I Beta
I Chi-Squared
I Exponential
I Gamma
I Laplace
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Normal (Gaussian) Distribution

Gaussian distribution
For x ∈ Rd, the multivariate Gaussian distribution takes the form

N (x|µ,Σ) =
1

(2π)d/2|Σ|1/2 exp
(
−

1
2

(x− µ)T Σ−1(x− µ)
)
,

where µ ∈ Rd is the mean, Σ ∈ Rd×d is the covariance matrix and |Σ| denotes the
determinant of Σ.

I In the case of a single variable

N (x|µ, σ2) =
1

(2πσ2)1/2 exp
(
−

1
2σ2 (x− µ)2

)
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Law of large numbers and central limit theorem

Theorem (Strong Law of Large Numbers)
Let X be a real-valued random variable with the finite first moment E[X] , and let
X1, X2, ..., Xn be an infinite sequence of independent and identically distributed
copies of X. Then the empirical average of this sequence X̄n :=

1
n

(X1 + ...+Xn)

converges almost surely to E[X] i.e., P
(
limn→∞X̄n = E[X]

)
= 1.

Theorem (Central Limit Theorem)
Let X1, ...Xn be a sequence of independent and identically distributed random
variables each having mean µ and variance σ2. Then the distribution of
X1 + ...+Xn − nµ

σ
√
n

tends to the standard normal as n→∞. That is, for
−∞ < a <∞,

P

(
X1 + ...+Xn − nµ

σ
√
n

≤ a
)
→

1
2π

∫
−∞

ae−x2/2dx

as n→∞.

I Intuitively, the sampling distribution of the mean will be close to Gaussian, if you
just take enough independent samples.
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Basic statistics

Parametric estimation model
A parametric estimation model consists of the following four elements:
1. A parameter space, which is a subset X of Rp

2. A parameter x\, which is an element of the parameter space
3. A class of probability distributions PX := {Px : x ∈ X}, parametrized by x ∈ X
4. A sample b, which follows the probability distribution b ∼ Px\ ∈ PX

Statistical estimation seeks to approximate the value of x\, given X , PX , and b.

Definition (Estimator)
An estimator x̂ is a mapping that takes X , PX , and b as inputs, and outputs a value
in Rp.

I The output of an estimator depends on the sample, and hence, is random.
I The output of an estimator is not necessarily equal to x\.
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Ordinary least-squares estimator

Ordinary least-squares estimator (OLS)
The ordinary least-squares estimator is given by

x̂OLS ∈ arg min
x

{
‖b−Ax‖2

2 : x ∈ Rp
}
.
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Ordinary least squares estimator: An intuitive model

Gaussian linear model
Let x\ ∈ Rp. Let b := Ax\ + w ∈ Rn for some matrix A ∈ Rn×p, where w is a
Gaussian vector with zero mean and covariance matrix σ2I.

The probability density function px(·) is given by

px(b) =
( 1
√

2πσ2

)n

exp
(
−

1
2σ2 ‖b−Ax‖2

2

)
.

Therefore, the maximum likelihood (ML) estimator is defined as

x̂ML ∈ arg min
x

{
− log px(b) = −

n

2
log(2πσ2) +

1
2σ2 ‖b−Ax‖2

2 : x ∈ Rp
}
,

which is equivalent to

x̂ML ∈ arg min
x

{
‖b−Ax‖2

2 : x ∈ Rp
}
.

OLS is the ML estimator for the Gaussian linear model.
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Maximum-likelihood estimator

Recall the general setting.

Parametric estimation model
A parametric estimation model consists of four elements:
1. A parameter space, which is a subset X of Rp,
2. A parameter x\, which is an element of the parameter space,
3. A class of probability distributions PX := {Px : x ∈ X}, parametrized by x ∈ X ,
4. A sample b, which follows the probability distribution Px\ ∈ PX .

Definition (Maximum-likelihood estimator)
The maximum-likelihood (ML) estimator is given by

x̂ML ∈ arg min
x
{− log px(y)} ,

where px(·) denotes the probability density function or probability mass function of
Px, for x ∈ X .

Mathematics of Data: From Theory to Computation | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 44



Logistic regression

Logistic regression [1]
Let x\ ∈ Rp. Let a1, . . . ,an ∈ Rp be given. The sample is given by
b := (b1, . . . , bn) ∈ {−1, 1}n, where each bi is a Bernoulli random variable satisfying

P {bi = 1} = 1− P {bi = −1} =
[
1 + exp

(
−
〈
ai,x\

〉)]−1
,

and b1, . . . , bn are independent.

The probability mass function px(·) is given by

px(b) = Πn
i=1 [1 + exp (−bi 〈ai,x〉)]−1 .

Therefore, the maximum-likelihood estimator is defined as

x̂ML ∈ arg min
x

{
− log px(b) =

n∑
i=1

log [1 + exp (−bi 〈ai,x〉)] : x ∈ Rp

}
.

I x̂ML defines a linear classifier. For any new ai, i ≥ n+ 1, we can predict the
corresponding bi by predicting bi = 1 if 〈ai, x̂ML〉 ≥ 0, and bi = −1 otherwise.
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ML estimation in photon-limited imaging systems

Statistical model of a photon-limited imaging system [2, 3]
Let x\ ∈ Rp. Let a1, . . . ,an ∈ Rp be given vectors. The sample is given by
b := (b1, . . . , bn) ∈ Nn, where each bi is a Poisson random variable with mean〈
ai,x\

〉
that denotes the number of detected photons, and b1, . . . , bn are

independent.

Confocal imaging

In confocal imaging, the vectors ai can be
used to capture the lens effects, including
blur and (spatial) low-pass filtering (due to
the numerical aperture of the lens).
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ML estimation in photon-limited imaging systems contd.

Statistical model of a photon-limited imaging system [2, 3]
Let x\ ∈ Rp. Let a1, . . . ,an ∈ Rp be given vectors. The sample is given by
b := (b1, . . . , bn) ∈ Nn, where each bi is a Poisson random variable with mean〈
ai,x\

〉
that denotes the number of detected photons, and b1, . . . , bn are

independent.

The probability mass function px(·) is given by

px(b) = Πn
i=1(bi!)−1 exp (−〈ai,x〉) 〈ai,x〉bi .

Therefore, the maximum-likelihood estimator is defined as

x̂ML ∈ arg min
x

{
− log px(b) =

n∑
i=1

[log(bi!) + 〈ai,x〉 − bi log (〈ai,x〉)] : x ∈ Rp

}
,

which is equivalent to

x̂ML ∈ arg min
x

{
n∑

i=1

[〈ai,x〉 − bi log (〈ai,x〉)] : x ∈ Rp

}
.
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Regression

Basic regression model
Let x\ ∈ Rp. Let a1, . . . ,an ∈ Rp be given vectors. The sample is given by
b := (b1, . . . , bn) ∈ Bn for some set B, where each bi follows a probability distribution
Px\,ai

determined by x\ and ai, and b1, . . . , bn are independent.

Examples
The statistical models we have discussed are all regression models.
I The Gaussian linear regression model is a regression model, where each bi is a
Gaussian random variable with mean

〈
ai,x\

〉
and variance σ2, for some σ > 0.

I The logistic regression model is a regression model, where each bi is a Bernoulli
random variable with

P {bi = 1} = 1− P {bi = −1} =
[
1 + exp

(
−
〈
ai,x\

〉)]−1
.

I The statistical model for photon-limited imaging systems is a Poisson regression
model, where each bi is a Poisson random variable with mean

〈
ai,x\

〉
.
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M-Estimators

Recall that an ML estimator x̂ML takes the form

x̂ML ∈ arg min
x
{L(x) : x ∈ Rp} ,

where L denotes the negative log-likelihood function. In general, L can be replaced by
another suitably designed function.

Definition (M -Estimator)
An M -estimator x̂M is an estimator of the form

x̂M ∈ arg min
x
{f(x) : x ∈ X ⊆ Rp} ,

for some function f depending on the sample space X , class of probability
distributions PX , and sample b.

I The term “M -estimator” denotes “maximum-likelihood-type estimator” [4].
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Graphical model learning

Graphical model selection
Let Θ\ ∈ Rp×p be a positive-definite matrix. The sample is given by x1, . . . ,xn ∈ Rp,
which are i.i.d. random vectors with zero mean and covariance matrix Θ\−1.

We can consider the M -estimator

Θ̂M ∈ arg min
Θ

{
Tr
(
Σ̂Θ
)
− log det (Θ) : Θ ∈ Sp

++
}
,

where Σ̂ is the empirical covariance matrix, i.e., Σ̂ := (1/n)
∑n

i=1 xixT
i [5].Example: Log-determinant for LMIs

• Application: Graphical model selection

Given a data set D := {x1, . . . ,xN}, where xi is a Gaussian random variable.
Let ⌃ be the covariance matrix corresponding to the graphical model of
the Gausian Markov random field. The aim is to learn a sparse matrix ⇥ that
approximates the inverse ⌃�1.

Optimization problem

min
⇥�0

8
><
>:
� log det(⇥) + trace(⌃⇥)| {z }

f(x)

+ ⇢kvec(⇥)k1| {z }
g(x)

9
>=
>;

x2

x3

x4x5

x1

x1 x2 x3 x4 x5

x1

x2

x3

x4

x5

⇥ =

Thursday, June 12, 14
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Graphical model learning contd.

Graphical model selection
Let Θ\ ∈ Rp×p be a positive-definite matrix. The sample is given by x1, . . . ,xn ∈ Rp,
which are i.i.d. random vectors with zero mean and covariance matrix Θ\−1.

The M -estimator becomes the ML estimator when xi’s are Gaussian random vectors.
The probability density function pΘ(·) is given by

pΘ(x1, . . . ,xn) = Πn
i=1

[
(2π)−p/2 det

(
Θ−1

)−1/2
exp
(
−

1
2

xT
i Θxi

)]
= (2π)−np/2 det(Θ)n/2 exp

[
−

1
2

n∑
i=1

(
xT

i Θxi

)]
Therefore, the ML estimator is defined as

x̂ML ∈ arg min
Θ

{
−
np

2
log(2π)−

n

2
log det (Θ) +

n

2
Tr
(
Σ̂Θ
)

: Θ ∈ Sp
++

}
,

which is equivalent to the M -estimator Θ̂M .
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Checking the fidelity

Given an estimator x̂ ∈ arg minx∈X {F (x)}, we need to address two key questions:

1. Is the formulation reasonable?
2. What is the role of the data size?

Mathematics of Data: From Theory to Computation | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 28/ 44



Standard approach to checking the fidelity

Standard approach

1. Specify a performance criterion L(x̂,x\) that should be small if x̂ = x\.
2. Show that L is actually small in some sense when some condition is satisfied.

Example
Take the `2-error L(x̂,x\) :=

∥∥x̂− x\
∥∥2

2
as an example. Then we may verify the

fidelity via one of the following ways, where ε denotes a small enough number:
1. E

[
L(x̂,x\))

]
≤ ε (expected error),

2. P
(
L(x̂,x\) ≥ ε

)
≤ δ for some δ depending on ε (consistency),

3.
√
n(x̂− x\) converges in distribution to N (0, I) (asymptotic normality),

4.
√
n(x̂− x\) converges in distribution to N (0, I) in a local neighborhood (local

asymptotic normality).
if some condition is satisfied. Such conditions typically revolve around the data size.
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Approach 1: Expected error

Gaussian linear model
Let x\ ∈ Rp and let A ∈ Rn×p. The samples are given by b = Ax\ + w, where w is
a sample of a Gaussian random vector w ∼ N (0, σ2I).

What is the performance of the ML estimator

x̂ML ∈ arg min
x∈Rp

{
‖b−Ax‖2

2
}

?

Theorem (Performance of the LS estimator [6])
If A is a matrix of independent and identically distributed (i.i.d.) standard Gaussian
distributed entries, and if n > p+ 1, then

E

[∥∥x̂ML − x\
∥∥2

2

]
=

p

n− p− 1
σ2 → 0 as

n

p
→∞.
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?Approach 2: Consistency

Covariance estimation
Let x1, . . . ,xn be samples of a sub-Gaussian random vector with zero mean and some
unknown positive-definite covariance matrix Σ\ ∈ Rp×p. (Sub-Gaussian random
variables will be defined in recitation.)

What is the performance of the M -estimator Σ̂ := Θ̂
−1

, where

Θ̂ML ∈ arg min
Θ∈Sp++

{
1
n

n∑
i=1

[
− log det (Θ) + xT

i Θxi

]}
?

I If y = f(x), then ŷML = f(x̂ML). This is called the functional invariance property
of ML estimators.

Theorem (Performance of the ML estimator [5])
Suppose that the diagonal elements of Σ\ are bounded above by κ > 0, and each
Xi/

√(
Σ\
)

i,i
is sub-Gaussian with parameter c. Then

P

({∣∣∣(Σ̂ML
)

i,j
−
(
Σ\
)

i,j

∣∣∣ > t

})
≤ 4 exp

[
−

nt2

128 (1 + 4c2)κ2

]
→ 0 as n→∞

for all t ∈
(
0, 8κ

(
1 + 4c2

))
.
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?Approach 3: Asymptotic normality

Logistic regression
Let x\ ∈ Rp, and let a1, . . . ,an ∈ Rp. Let b1, . . . , bn be samples of independent
random variables B1, . . . , Bn. Each random variable Bi takes values in {−1, 1} and
follows P ({Bi = 1}) := `i(x\) =

[
1 + exp

(
−
〈
ai,x\

〉)]−1 (i.e., the logistics loss).

What is the performance of the ML estimator

x̂ML ∈ arg min
x∈Rp

{
−

1
n

n∑
i=1

ln
[
I{Bi=1}`i(x) + I{Bi=0} (1− `i(x))

]
:= −

1
n
fn(x)

}
?
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?Approach 3: Asymptotic normality

Theorem (Performance of the ML estimator [7] (?also valid for
generalized linear models))
The random variable J(x\)−1/2

(
x̂ML − x\

)
converges in distribution to N (0, I) if

λmin(J(x\))→∞ and

max
x∈Rp

{∥∥J(x\)−1/2J(x)J(x\)−1/2 − I
∥∥

2→2
:
∥∥J(x\)1/2

(
x− x\

)∥∥
2
≤ δ
}
→ 0 (1)

for all δ > 0 as n→∞, where J(x) := −E
[
∇2 fn(x)

]
is the Fisher information

matrix.

Roughly speaking, assuming that p is fixed, we have the following observations.

1. The technical condition (1) means that J(x) ∼ J(x\) for all x in a neighborhood
Nx\ (δ) of x\, and Nx\ (δ) becomes larger with increasing n.

2.
∥∥J(x\)−1/2

(
x̂ML − x\

)∥∥2
2
∼ Tr (I) = p, which means that

∥∥x̂ML − x\
∥∥2

2
decreases at the rate λmin(J(x\))−1 → 0 asymptotically.
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?Approach 4: Local asymptotic normality

In general, the asymptotic normality does not hold even in the independent identically
distributed (i.i.d.) case, but we may have the local asymptotic normality (LAN).

ML estimation with i.i.d. samples
Let b1, . . . , bn be independent samples of a random variable B, whose probability
density function is known to be in the set {px(b) : x ∈ X} with some X ⊆ Rp.

What is the performance of the ML estimator

x̂ML ∈ arg min
x∈X

{
−

1
n

n∑
i=1

ln [px(bi)]

}
?
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?Approach 4: Local asymptotic normality

Theorem (Performance of the ML estimator (cf. [8, 9] for details))
Under some technical conditions, the random variable

√
nJ−1/2

(
x̂ML − x\

)
converges in distribution to N (0, I), where J is the Fisher information matrix
associated with one sample, i.e.,

J := −E
[
∇2

x ln [px(B)]
]∣∣

x=x\
.

Roughly speaking, assuming that p is fixed, we can observe that
I

∥∥√nJ−1/2
(
x̂ML − x\

)∥∥2
2
∼ Tr (I) = p,

I

∥∥x̂ML − x\
∥∥2

2
= O(1/n).
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Example: ML estimation for quantum tomography

Problem (Quantum tomography)
A quantum system of q qubits can be characterized by a density operator, i.e., a
Hermitian positive semidefinite X\ ∈ Cp×p with p = 2q . Let {A1, . . . ,Am} ⊆ Cp×p

be a probability operator-valued measure, i.e., a set of Hermitian positive semidefinite
matrices summing to I. Let b1, . . . , bn be samples of independent random variables
B1, . . . , Bn, with probability distribution

P ({bi = k}) = Tr
(
AkX\

)
, k = 1, . . . ,m

How do we estimate X\ given {A1, . . . ,Am} and b1, . . . , bn?

ML approach

X̂ML ∈ arg min
X∈Cp×p

{
−

1
n

n∑
i=1

m∑
k=1

I{bi=k} ln [Tr (AkX)] : X = XH ,X � 0

}
.

Mathematics of Data: From Theory to Computation | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 36/ 44



Example: ML estimation for quantum tomography

101 102 103
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n (numb er of sample s)

‖X̂
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L
−

X
\ ‖

F

Performance of ML estimator for quantum tomography with 3 qubits

 

 

Numerical re sult

4.5/
√
n
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Caveat Emptor

The ML estimator does not always yield the optimal performance. We show a simple
yet very powerful example below.

Problem
Let b be a sample of a Gaussian random vector b ∼ N (x\, I) with some x\ ∈ Rp.
How do we estimate x\ given b?

ML approach
The ML estimator is given by x̂ML := b.

James-Stein estimator [10]
The James-Stein estimator is given by

x̂JS :=
(

1−
p− 2
‖b‖2

2

)
+

b,

for all p ≥ 3, where (a)+ = max(a, 0).

Observation: The James-Stein estimator shrinks b towards the origin.
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Caveat Emptor

Theorem (Performance comparison: ML vs. James-Stein [10])
For all x\ ∈ Rp with p ≥ 3, we have

E

[∥∥x̂JS − x\
∥∥2

2

]
< E

[∥∥x̂ML − x\
∥∥2

2

]
.

Performance of the ML estimator is uniformly dominated by the performance of the
James-Stein estimator [10].

Important take home message
The ML approach is not always the best.

Remark
The James-Stein estimator inspires the study of shrinkage estimators and the use of
oracle inequalities, which play important roles in contemporary statistics and machine
learning [11].
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Basic statistical learning

Statistical Learning Model [12]
A statistical learning model consists of the following three elements.

1. A sample of i.i.d. random variables (ai, bi) ∈ A× B, i = 1, . . . , n, following an
unknown probability distribution P.

2. A class (set) F of functions f : A → B.
3. A loss function L : B × B → R.

Definition
Let (a, b) follow the probability distribution P and be independent of
(a1, b1), . . . , (an, bn). Then, the risk corresponding to any f ∈ F is its expected loss:

R(f) := E(a,b) [L(f(a), b)] .

Statistical learning seeks to find a f? ∈ F that minimizes the risk, i.e., it solves

f? ∈ arg min
f
{R(f) : f ∈ F} .

I Since P is unknown, the optimization problem above is intractable.
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Empirical risk minimization (ERM)

By the law of large numbers, we can expect that for each f ∈ F ,

R(f) := E [L(a, b)] ≈
1
n

n∑
i=1

L(f(ai), bi)

when n is large enough, with high probability.

Empirical risk minimization (ERM) [12]
We approximate f? by minimizing the empirical average of the loss instead of the risk.
That is, we consider the optimization problem

f̂n ∈ arg min
f

{
1
n

n∑
i=1

L(f(ai), bi) : f ∈ F

}
.
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Least squares revisited

Recall that the LS estimator is given by

x̂LS ∈ arg min
{
‖b−Ax‖2

2 : x ∈ Rp
}

= arg min

{
1
n

n∑
i=1

(bi − 〈ai,x〉)2 : x ∈ Rp

}
,

where we define b := (b1, . . . , bn) and ai to be the i-th row of A.

A statistical learning view of least squares
This corresponds to a statistical learning model, for which
I the sample is given by (ai, bi) ∈ Rp × R, i = 1, . . . , n,
I the function class F is given by F := {fx(·) := 〈·,x〉 : x ∈ Rp}, and
I the loss function is given by L(fx(a), b) := (b− fx(a))2.

The corresponding ERM solution is

f̂n(·) := 〈·, x̂LS〉 .

I Thus the LS estimator also seeks to, given a, minimize the error of predicting the
corresponding b by a linear function in terms of the squared error.
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