Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 2: A basic review of probability theory
Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2015)
erc

License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes - unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License
- This lecture

1. Review of probability theory
2. Learning as an optimization problem

- Next lecture

1. Basic concepts in convex analysis
2. Complexity theory review

Recommended reading

- Probability and Measure, Patrick Billingsley, Wiley-Interscience, 1995.
- Chapter 7, 8, \& 9 in K. P. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012.
- V. N. Vapnik, "An overview of statistical learning theory," IEEE Trans. Inf. Theory, vol. 10, no. 5, pp. 988-999, Sep. 1999.
- *Chapter 5 in A. W. van der Vaart, Asymptotic Statistics, Cambridge Univ. Press, 1998.

Motivation

Motivation

This lecture reviews basic probability and statistics.

Basic concepts in probability theory

Definition (Sample space)

The sample space Ω of an experiment is the set of all possible outcomes of that experiment.

Example

If the experiment is tossing a coin, the sample set is the set $\{$ head, tail\}.

Definition (Event)

An event E corresponds to a subset of the sample space; i.e., $E \subseteq \Omega$.

Definition (Probability measure)

Probability measure $P(E)$ maps event E from Ω onto the interval $[0,1]$ and satisfies the following Kolmogorov axioms:

- $P(E) \geq 0$,
- $P(\Omega)=1$ and
- $P\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} P\left(E_{i}\right)$, where E_{1}, \ldots, E_{n} are mutually exclusive (i.e. $\bigcap_{i=1}^{n} E_{i}=\emptyset$). Such events are called independent.

Union of non-disjoint events

Definition (Principle of inclusion-exclusion)

The probability of the union of n events is

$$
P\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq i_{1} \leq \ldots \leq i_{k} \leq n} P\left(E_{i_{1}} \cap \ldots \cap E_{i_{k}}\right)
$$

where the second sum is over all subsets of k events.

Union of non-disjoint events

Definition (Principle of inclusion-exclusion)

The probability of the union of n events is

$$
P\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq i_{1} \leq \ldots \leq i_{k} \leq n} P\left(E_{i_{1}} \cap \ldots \cap E_{i_{k}}\right),
$$

where the second sum is over all subsets of k events.

Example

Suppose we throw two dices and ask what is the probability that the outcome is even or larger than 7. Let A and B denote the event of having an even number and the event of getting the number that exceeds 7 , respectively. Then, $P(A)=\frac{1}{2}$, $P(B)=\frac{15}{36}$ and $P(A \cap B)=\frac{9}{36}$.
By the inclusion-exclusion principle, $P(A \cup B)=P(A)+P(B)-P(A \cap B)=\frac{2}{3}$.

The rules of probability

Let A and B denote two events in a sample space Ω, and let $P(B) \neq 0$.

Definition (Marginal probability)

The probability of an event (A) occuring $(P(A))$.

Definition (Joint probability)

$P(A, B)$ is the probability of event A and event B occuring. Symmetry property holds, i.e. $P(A, B)=P(B, A)$.

Definition (Conditional probability)

$P(B \mid A)$ is the probability that B will occur given that A has occurred.

Rules

- Sum rule: $P(A)=\sum_{B} P(A, B)$
- Product rule: $P(A, B)=P(B \mid A) P(A)$.

Bayes' rule

Bayes' rule

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Constituents:

- $P(A)$, the prior probability, is the probability of A before B is observed.
- $P(A \mid B)$, the posterior probability, is the probability of A given B, i.e., after B is observed.
- $P(B \mid A)$ is the probability of observing B given A. As a function of A with B fixed, this is the likelihood.

Random variable

Definition

A real-valued random variable is a function that associates a value to the outcome of a randomized experiment $X: \Omega \rightarrow \mathbb{R}$.

Example

- Whether a coin flip was heads: a function from $\Omega=\{H, T\}$ to $\{0,1\}$
- Number of heads in a sequence of n throws: function from $\Omega=\{H, T\}^{n}$ to $\{0,1, \ldots, n\}$.

Discrete random variable

Probability mass function (Pmf)

The probability mass function is the function from values to its probability, $P_{X}(x)=P(X=x)$ for $x \in \mathcal{X}$ (i.e., a countable subset of the reals) with properties:

- $P_{X}(x) \geq 0$ for every $x \in \mathcal{X}$,
- $\sum_{x \in \mathcal{X}} P_{X}(x)=1$

Example

Discrete distributions:

- Bernoulli distribution - distribution of a binary variable $x \in\{0,1\}$; single parameter $\mu \in[0,1]$ represents the probability of $x=1$:

$$
\operatorname{Bern}(x \mid \mu)=\mu^{x}(1-\mu)^{1-x}
$$

- Binomial distribution - probability of observing m occurrences of 1 in a set of N samples from a Bernoulli distribution:

$$
\operatorname{Bin}(m \mid N, \mu)=\binom{N}{m} \mu^{m}(1-\mu)^{1-m}
$$

- Other important discrete distributions: Categorical, Multinomial, Poisson, Geometric, Negative binomial, etc.

Probability density function (pdf)

- A continuous random variable can have uncountably infinite possible values.

Probability density function (pdf)

The probability density function of a continuous random variable X is an integrable function $p(x)$ satisfying the following:

1. The density is nonnegative: i.e., $p(x) \geq 0$ for any x,
2. Probabilities integrate to 1 : i.e., $\int_{-\infty}^{\infty} p(x) d x=1$,
3. The probability that x belongs to the interval $[a, b]$ is given by the integral of $p(x)$ over that interval: i.e.,

$$
P(a \leq X \leq b)=\int_{a}^{b} p(x) d x
$$

Basic rules of probability

1. Analog of sum rule: $p(x)=\int p(x, y) d y$
2. Product rule: $p(x, y)=p(y \mid x) p(x)$.

Expectations and variances

Definition (Expectation (1 ${ }^{\text {st }}$ moment, mean))

$$
\mathbb{E}[X]= \begin{cases}\sum_{x \in \mathcal{X}} x P(X=x) & \text { discrete } \\ \int_{-\infty}^{\infty} x p(x) d x & \text { continuous }\end{cases}
$$

Definition (Variance (2 $2^{\text {nd }}$ moment))

$$
\mathbb{V}[X]= \begin{cases}\sum_{x \in \mathcal{X}}(x-\mathbb{E}[X])^{2} P(X=x) & \text { discrete } \\ \int_{-\infty}^{\infty}(x-\mathbb{E}[X])^{2} p(x) d x & \text { continuous }\end{cases}
$$

Definition (Conditional expectation and Covariance)

$$
\begin{aligned}
& \mathbb{E}[X \mid Y=y]=\sum_{x \in \mathcal{X}} x P(X=x \mid Y=y) \\
& \operatorname{cov}[x, y]=\mathbb{E}[(x-\mathbb{E}[X])(y-\mathbb{E}[Y])]
\end{aligned}
$$

Probability distributions for continuous variables

Common distributions:

- Uniform
- Normal / Gaussian
- Beta
- Chi-Squared
- Exponential
- Gamma
- Laplace

Normal (Gaussian) Distribution

Gaussian distribution

For $\mathbf{x} \in \mathbb{R}^{d}$, the multivariate Gaussian distribution takes the form

$$
\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right),
$$

where $\boldsymbol{\mu} \in \mathbb{R}^{d}$ is the mean, $\boldsymbol{\Sigma} \in \mathbb{R}^{d \times d}$ is the covariance matrix and $|\boldsymbol{\Sigma}|$ denotes the determinant of $\boldsymbol{\Sigma}$.

- In the case of a single variable

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)
$$

Law of large numbers and central limit theorem

Theorem (Strong Law of Large Numbers)

Let X be a real-valued random variable with the finite first moment $\mathbb{E}[X]$, and let $X_{1}, X_{2}, \ldots, X_{n}$ be an infinite sequence of independent and identically distributed copies of X. Then the empirical average of this sequence $\bar{X}_{n}:=\frac{1}{n}\left(X_{1}+\ldots+X_{n}\right)$ converges almost surely to $\mathbb{E}[X]$ i.e., $P\left(\lim _{n \rightarrow \infty} \bar{X}_{n}=\mathbb{E}[X]\right)=1$.

Theorem (Central Limit Theorem)

Let $X_{1}, \ldots X_{n}$ be a sequence of independent and identically distributed random variables each having mean μ and variance σ^{2}. Then the distribution of $\frac{X_{1}+\ldots+X_{n}-n \mu}{\sigma \sqrt{n}}$ tends to the standard normal as $n \rightarrow \infty$. That is, for $-\infty<a<\infty$,

$$
P\left(\frac{X_{1}+\ldots+X_{n}-n \mu}{\sigma \sqrt{n}} \leq a\right) \rightarrow \frac{1}{2 \pi} \int_{-\infty} a e^{-x^{2} / 2} d x
$$

as $n \rightarrow \infty$.

- Intuitively, the sampling distribution of the mean will be close to Gaussian, if you just take enough independent samples.

Basic statistics

Parametric estimation model

A parametric estimation model consists of the following four elements:

1. A parameter space, which is a subset \mathcal{X} of \mathbb{R}^{p}
2. A parameter \mathbf{x}^{\natural}, which is an element of the parameter space
3. A class of probability distributions $\mathcal{P}_{\mathcal{X}}:=\left\{\mathbb{P}_{\mathbf{x}}: \mathbf{x} \in \mathcal{X}\right\}$, parametrized by $\mathbf{x} \in \mathcal{X}$
4. A sample \mathbf{b}, which follows the probability distribution $\mathbf{b} \sim \mathbb{P}_{\mathbf{x}^{\natural}} \in \mathcal{P}_{\mathcal{X}}$

Statistical estimation seeks to approximate the value of \mathbf{x}^{\natural}, given $\mathcal{X}, \mathcal{P} \mathcal{X}$, and \mathbf{b}.

Definition (Estimator)

An estimator $\hat{\mathbf{x}}$ is a mapping that takes $\mathcal{X}, \mathcal{P}_{\mathcal{X}}$, and \mathbf{b} as inputs, and outputs a value in \mathbb{R}^{p}.

- The output of an estimator depends on the sample, and hence, is random.
- The output of an estimator is not necessarily equal to \mathbf{x}^{\natural}.

Ordinary least-squares estimator

Ordinary least-squares estimator (OLS)

The ordinary least-squares estimator is given by

$$
\hat{\mathbf{x}}_{\mathrm{OLS}} \in \arg \min _{\mathbf{x}}\left\{\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}
$$

Ordinary least squares estimator: An intuitive model

Gaussian linear model

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$. Let $\mathbf{b}:=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w} \in \mathbb{R}^{n}$ for some matrix $\mathbf{A} \in \mathbb{R}^{n \times p}$, where \mathbf{w} is a Gaussian vector with zero mean and covariance matrix $\sigma^{2} I$.

The probability density function $p_{\mathbf{x}}(\cdot)$ is given by

$$
p_{\mathbf{x}}(\mathbf{b})=\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{n} \exp \left(-\frac{1}{2 \sigma^{2}}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}\right) .
$$

Therefore, the maximum likelihood (ML) estimator is defined as

$$
\hat{\mathbf{x}}_{\mathrm{ML}} \in \arg \min _{\mathbf{x}}\left\{-\log p_{\mathbf{x}}(\mathbf{b})=-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)+\frac{1}{2 \sigma^{2}}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}
$$

which is equivalent to

$$
\hat{\mathbf{x}}_{\mathrm{ML}} \in \arg \min _{\mathbf{x}}\left\{\|\mathbf{b}-\mathbf{A x}\|_{2}^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}
$$

OLS is the ML estimator for the Gaussian linear model.

Maximum-likelihood estimator

Recall the general setting.

Parametric estimation model

A parametric estimation model consists of four elements:

1. A parameter space, which is a subset \mathcal{X} of \mathbb{R}^{p},
2. A parameter \mathbf{x}^{\natural}, which is an element of the parameter space,
3. A class of probability distributions $\mathcal{P}_{\mathcal{X}}:=\left\{\mathbb{P}_{\mathbf{x}}: \mathbf{x} \in \mathcal{X}\right\}$, parametrized by $\mathbf{x} \in \mathcal{X}$,
4. A sample \mathbf{b}, which follows the probability distribution $\mathbb{P}_{\mathbf{x}^{\natural}} \in \mathcal{P}_{\mathcal{X}}$.

Definition (Maximum-likelihood estimator)

The maximum-likelihood (ML) estimator is given by

$$
\hat{\mathbf{x}}_{\mathrm{ML}} \in \arg \min _{\mathbf{x}}\left\{-\log p_{\mathbf{x}}(\mathbf{y})\right\}
$$

where $p_{\mathbf{x}}(\cdot)$ denotes the probability density function or probability mass function of $\mathbb{P}_{\mathbf{x}}$, for $\mathbf{x} \in \mathcal{X}$.

Logistic regression

Logistic regression [1]

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$. Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{p}$ be given. The sample is given by $\mathbf{b}:=\left(b_{1}, \ldots, b_{n}\right) \in\{-1,1\}^{n}$, where each b_{i} is a Bernoulli random variable satisfying

$$
\mathbb{P}\left\{b_{i}=1\right\}=1-\mathbb{P}\left\{b_{i}=-1\right\}=\left[1+\exp \left(-\left\langle\mathbf{a}_{i}, \mathbf{x}^{\natural}\right\rangle\right)\right]^{-1},
$$

and b_{1}, \ldots, b_{n} are independent.
The probability mass function $p_{\mathbf{x}}(\cdot)$ is given by

$$
p_{\mathbf{x}}(\mathbf{b})=\Pi_{i=1}^{n}\left[1+\exp \left(-b_{i}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle\right)\right]^{-1} .
$$

Therefore, the maximum-likelihood estimator is defined as

$$
\hat{\mathbf{x}}_{\mathrm{ML}} \in \arg \min _{\mathbf{x}}\left\{-\log p_{\mathbf{x}}(\mathbf{b})=\sum_{i=1}^{n} \log \left[1+\exp \left(-b_{i}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle\right)\right]: \mathbf{x} \in \mathbb{R}^{p}\right\} .
$$

- $\hat{\mathbf{x}}_{\text {ML }}$ defines a linear classifier. For any new $\mathbf{a}_{i}, i \geq n+1$, we can predict the corresponding b_{i} by predicting $b_{i}=1$ if $\left\langle\mathbf{a}_{i}, \hat{\mathbf{x}}_{\mathrm{ML}}\right\rangle \geq 0$, and $b_{i}=-1$ otherwise.

ML estimation in photon-limited imaging systems

Statistical model of a photon-limited imaging system [2, 3]

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$. Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{p}$ be given vectors. The sample is given by $\mathbf{b}:=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{N}^{n}$, where each b_{i} is a Poisson random variable with mean $\left\langle\mathbf{a}_{i}, \mathbf{x}^{\natural}\right\rangle$ that denotes the number of detected photons, and b_{1}, \ldots, b_{n} are independent.

In confocal imaging, the vectors \mathbf{a}_{i} can be used to capture the lens effects, including blur and (spatial) low-pass filtering (due to the numerical aperture of the lens).

ML estimation in photon-limited imaging systems contd.

Statistical model of a photon-limited imaging system [2, 3]

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$. Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{p}$ be given vectors. The sample is given by $\mathbf{b}:=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{N}^{n}$, where each b_{i} is a Poisson random variable with mean $\left\langle\mathbf{a}_{i}, \mathbf{x}^{\natural}\right\rangle$ that denotes the number of detected photons, and b_{1}, \ldots, b_{n} are independent.

The probability mass function $p_{\mathbf{x}}(\cdot)$ is given by

$$
p_{\mathbf{x}}(\mathbf{b})=\Pi_{i=1}^{n}\left(b_{i}!\right)^{-1} \exp \left(-\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle\right)\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle^{b_{i}} .
$$

Therefore, the maximum-likelihood estimator is defined as

$$
\hat{\mathbf{x}}_{\mathrm{ML}} \in \arg \min _{\mathbf{x}}\left\{-\log p_{\mathbf{x}}(\mathbf{b})=\sum_{i=1}^{n}\left[\log \left(b_{i}!\right)+\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle-b_{i} \log \left(\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle\right)\right]: \mathbf{x} \in \mathbb{R}^{p}\right\}
$$

which is equivalent to

$$
\hat{\mathbf{x}}_{\mathrm{ML}} \in \arg \min _{\mathbf{x}}\left\{\sum_{i=1}^{n}\left[\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle-b_{i} \log \left(\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle\right)\right]: \mathbf{x} \in \mathbb{R}^{p}\right\} .
$$

Regression

Basic regression model

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$. Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{p}$ be given vectors. The sample is given by $\mathbf{b}:=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{B}^{n}$ for some set \mathbb{B}, where each b_{i} follows a probability distribution $\mathbb{P}_{\mathbf{x}^{\natural}, \mathbf{a}_{i}}$ determined by \mathbf{x}^{\natural} and \mathbf{a}_{i}, and b_{1}, \ldots, b_{n} are independent.

Examples

The statistical models we have discussed are all regression models.

- The Gaussian linear regression model is a regression model, where each b_{i} is a Gaussian random variable with mean $\left\langle\mathbf{a}_{i}, \mathbf{x}^{\natural}\right\rangle$ and variance σ^{2}, for some $\sigma>0$.
- The logistic regression model is a regression model, where each b_{i} is a Bernoulli random variable with

$$
\mathbb{P}\left\{b_{i}=1\right\}=1-\mathbb{P}\left\{b_{i}=-1\right\}=\left[1+\exp \left(-\left\langle\mathbf{a}_{i}, \mathbf{x}^{\natural}\right\rangle\right)\right]^{-1} .
$$

- The statistical model for photon-limited imaging systems is a Poisson regression model, where each b_{i} is a Poisson random variable with mean $\left\langle\mathbf{a}_{i}, \mathbf{x}^{\natural}\right\rangle$.

M-Estimators

Recall that an ML estimator $\hat{\mathbf{x}}_{\mathrm{ML}}$ takes the form

$$
\hat{\mathbf{x}}_{\mathrm{ML}} \in \arg \min _{\mathbf{x}}\left\{L(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{p}\right\},
$$

where L denotes the negative log-likelihood function. In general, L can be replaced by another suitably designed function.

Definition (M-Estimator)

An M-estimator $\hat{\mathbf{x}}_{M}$ is an estimator of the form

$$
\hat{\mathbf{x}}_{M} \in \arg \min _{\mathbf{x}}\left\{f(\mathbf{x}): \mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^{p}\right\}
$$

for some function f depending on the sample space \mathcal{X}, class of probability distributions $\mathcal{P}_{\mathcal{X}}$, and sample \mathbf{b}.

- The term " M-estimator" denotes "maximum-likelihood-type estimator" [4].

Graphical model learning

Graphical model selection

Let $\Theta^{\natural} \in \mathbb{R}^{p \times p}$ be a positive-definite matrix. The sample is given by $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{p}$, which are i.i.d. random vectors with zero mean and covariance matrix $\Theta^{\mathfrak{q}^{-1}}$.

We can consider the M-estimator

$$
\widehat{\boldsymbol{\Theta}}_{M} \in \arg \min _{\boldsymbol{\Theta}}\left\{\operatorname{Tr}(\widehat{\boldsymbol{\Sigma}} \boldsymbol{\Theta})-\log \operatorname{det}(\boldsymbol{\Theta}): \boldsymbol{\Theta} \in \mathbb{S}_{++}^{p}\right\}
$$

where $\widehat{\boldsymbol{\Sigma}}$ is the empirical covariance matrix, i.e., $\widehat{\boldsymbol{\Sigma}}:=(1 / n) \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$ [5].

Graphical model learning contd.

Graphical model selection

Let $\Theta^{\natural} \in \mathbb{R}^{p \times p}$ be a positive-definite matrix. The sample is given by $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{p}$, which are i.i.d. random vectors with zero mean and covariance matrix $\Theta^{\natural-1}$.

The M-estimator becomes the ML estimator when \mathbf{x}_{i} 's are Gaussian random vectors. The probability density function $p_{\boldsymbol{\Theta}}(\cdot)$ is given by

$$
\begin{aligned}
p_{\boldsymbol{\Theta}}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) & =\Pi_{i=1}^{n}\left[(2 \pi)^{-p / 2} \operatorname{det}\left(\boldsymbol{\Theta}^{-1}\right)^{-1 / 2} \exp \left(-\frac{1}{2} \mathbf{x}_{i}^{T} \boldsymbol{\Theta} \mathbf{x}_{i}\right)\right] \\
& =(2 \pi)^{-n p / 2} \operatorname{det}(\boldsymbol{\Theta})^{n / 2} \exp \left[-\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{x}_{i}^{T} \boldsymbol{\Theta} \mathbf{x}_{i}\right)\right]
\end{aligned}
$$

Therefore, the ML estimator is defined as

$$
\hat{\mathbf{x}}_{\mathrm{ML}} \in \arg \min _{\boldsymbol{\Theta}}\left\{-\frac{n p}{2} \log (2 \pi)-\frac{n}{2} \log \operatorname{det}(\boldsymbol{\Theta})+\frac{n}{2} \operatorname{Tr}(\widehat{\boldsymbol{\Sigma}} \boldsymbol{\Theta}): \mathbf{\Theta} \in \mathbb{S}_{++}^{p}\right\}
$$

which is equivalent to the M-estimator $\widehat{\boldsymbol{\Theta}}_{M}$.

Checking the fidelity

Given an estimator $\hat{\mathbf{x}} \in \arg \min _{\mathbf{x} \in \mathcal{X}}\{F(\mathbf{x})\}$, we need to address two key questions:

1. Is the formulation reasonable?
2. What is the role of the data size?

Standard approach to checking the fidelity

Standard approach

1. Specify a performance criterion $\mathcal{L}\left(\hat{\mathbf{x}}, \mathbf{x}^{\natural}\right)$ that should be small if $\hat{\mathbf{x}}=\mathbf{x}^{\natural}$.
2. Show that \mathcal{L} is actually small in some sense when some condition is satisfied.

Example

Take the ℓ_{2}-error $\mathcal{L}\left(\hat{\mathbf{x}}, \mathbf{x}^{\natural}\right):=\left\|\hat{\mathbf{x}}-\mathbf{x}^{\natural}\right\|_{2}^{2}$ as an example. Then we may verify the fidelity via one of the following ways, where ε denotes a small enough number:

1. $\left.\mathbb{E}\left[\mathcal{L}\left(\hat{\mathbf{x}}, \mathbf{x}^{\natural}\right)\right)\right] \leq \varepsilon$ (expected error),
2. $\mathbb{P}\left(\mathcal{L}\left(\hat{\mathbf{x}}, \mathbf{x}^{\natural}\right) \geq \epsilon\right) \leq \delta$ for some δ depending on ϵ (consistency),
3. $\sqrt{n}\left(\hat{\mathbf{x}}-\mathbf{x}^{\natural}\right)$ converges in distribution to $\mathcal{N}(0, \mathbf{I})$ (asymptotic normality),
4. $\sqrt{n}\left(\hat{\mathbf{x}}-\mathbf{x}^{\natural}\right)$ converges in distribution to $\mathcal{N}(0, \mathbf{I})$ in a local neighborhood (local asymptotic normality).
if some condition is satisfied. Such conditions typically revolve around the data size.

Approach 1: Expected error

Gaussian linear model

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ and let $\mathbf{A} \in \mathbb{R}^{n \times p}$. The samples are given by $\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$, where \mathbf{w} is a sample of a Gaussian random vector $\mathbf{w} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$.

What is the performance of the ML estimator

$$
\hat{\mathbf{x}}_{\mathrm{ML}} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{b}-\mathbf{A x}\|_{2}^{2}\right\} ?
$$

Theorem (Performance of the LS estimator [6])

If \mathbf{A} is a matrix of independent and identically distributed (i.i.d.) standard Gaussian distributed entries, and if $n>p+1$, then

$$
\mathbb{E}\left[\left\|\hat{\mathbf{x}}_{M L}-\mathbf{x}^{\natural}\right\|_{2}^{2}\right]=\frac{p}{n-p-1} \sigma^{2} \rightarrow 0 \text { as } \frac{n}{p} \rightarrow \infty .
$$

*Approach 2: Consistency

Covariance estimation

Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ be samples of a sub-Gaussian random vector with zero mean and some unknown positive-definite covariance matrix $\boldsymbol{\Sigma}^{\natural} \in \mathbb{R}^{p \times p}$. (Sub-Gaussian random variables will be defined in recitation.)

What is the performance of the M-estimator $\widehat{\boldsymbol{\Sigma}}:=\widehat{\boldsymbol{\Theta}}^{-1}$, where

$$
\widehat{\boldsymbol{\Theta}}_{\mathrm{ML}} \in \arg \min _{\boldsymbol{\Theta} \in \mathbb{S}_{++}^{p}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left[-\log \operatorname{det}(\boldsymbol{\Theta})+\mathbf{x}_{i}^{T} \boldsymbol{\Theta} \mathbf{x}_{i}\right]\right\} ?
$$

- If $\mathbf{y}=f(\mathbf{x})$, then $\hat{\mathbf{y}}_{\mathrm{ML}}=f\left(\hat{\mathbf{x}}_{\mathrm{ML}}\right)$. This is called the functional invariance property of ML estimators.

Theorem (Performance of the ML estimator [5])

Suppose that the diagonal elements of $\boldsymbol{\Sigma}^{\natural}$ are bounded above by $\kappa>0$, and each $X_{i} / \sqrt{\left(\Sigma^{\natural}\right)_{i, i}}$ is sub-Gaussian with parameter c. Then $\mathbb{P}\left(\left\{\left|\left(\widehat{\boldsymbol{\Sigma}}_{M L}\right)_{i, j}-\left(\boldsymbol{\Sigma}^{\natural}\right)_{i, j}\right|>t\right\}\right) \leq 4 \exp \left[-\frac{n t^{2}}{128\left(1+4 c^{2}\right) \kappa^{2}}\right] \rightarrow 0$ as $n \rightarrow \infty$ for all $t \in\left(0,8 \kappa\left(1+4 c^{2}\right)\right)$.

*Approach 3: Asymptotic normality

Logistic regression

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$, and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{p}$. Let b_{1}, \ldots, b_{n} be samples of independent random variables B_{1}, \ldots, B_{n}. Each random variable B_{i} takes values in $\{-1,1\}$ and follows $\mathbb{P}\left(\left\{B_{i}=1\right\}\right):=\ell_{i}\left(\mathbf{x}^{\natural}\right)=\left[1+\exp \left(-\left\langle\mathbf{a}_{i}, \mathbf{x}^{\natural}\right\rangle\right)\right]^{-1}$ (i.e., the logistics loss).

What is the performance of the ML estimator

$$
\hat{\mathbf{x}}_{\mathrm{ML}} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{-\frac{1}{n} \sum_{i=1}^{n} \ln \left[\mathbb{I}_{\left\{B_{i}=1\right\}} \ell_{i}(\mathbf{x})+\mathbb{I}_{\left\{B_{i}=0\right\}}\left(1-\ell_{i}(\mathbf{x})\right)\right]:=-\frac{1}{n} f_{n}(\mathbf{x})\right\} ?
$$

*Approach 3: Asymptotic normality

Theorem (Performance of the ML estimator [7] (*also valid for generalized linear models))

The random variable $\mathbf{J}\left(\mathbf{x}^{\natural}\right)^{-1 / 2}\left(\hat{\mathbf{x}}_{M L}-\mathbf{x}^{\natural}\right)$ converges in distribution to $\mathcal{N}(\mathbf{0}, \mathbf{I})$ if $\lambda_{\text {min }}\left(\mathbf{J}\left(\mathbf{x}^{\natural}\right)\right) \rightarrow \infty$ and

$$
\begin{equation*}
\max _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\left\|\mathbf{J}\left(\mathbf{x}^{\natural}\right)^{-1 / 2} \mathbf{J}(\mathbf{x}) \mathbf{J}\left(\mathbf{x}^{\natural}\right)^{-1 / 2}-\mathbf{I}\right\|_{2 \rightarrow 2}:\left\|\mathbf{J}\left(\mathbf{x}^{\natural}\right)^{1 / 2}\left(\mathbf{x}-\mathbf{x}^{\natural}\right)\right\|_{2} \leq \delta\right\} \rightarrow 0 \tag{1}
\end{equation*}
$$

for all $\delta>0$ as $n \rightarrow \infty$, where $\mathbf{J}(\mathbf{x}):=-\mathbb{E}\left[\nabla^{2} f_{n}(\mathbf{x})\right]$ is the Fisher information matrix.

Roughly speaking, assuming that p is fixed, we have the following observations.

1. The technical condition (1) means that $\mathbf{J}(\mathbf{x}) \sim \mathbf{J}\left(\mathbf{x}^{\natural}\right)$ for all \mathbf{x} in a neighborhood $N_{\mathbf{x}^{\natural}}(\delta)$ of \mathbf{x}^{\natural}, and $N_{\mathbf{x}^{\natural}}(\delta)$ becomes larger with increasing n.
2. $\left\|\mathbf{J}\left(\mathbf{x}^{\natural}\right)^{-1 / 2}\left(\hat{\mathbf{x}}_{\mathrm{ML}}-\mathbf{x}^{\natural}\right)\right\|_{2}^{2} \sim \operatorname{Tr}(\mathbf{I})=p$, which means that $\left\|\hat{\mathbf{x}}_{\mathrm{ML}}-\mathbf{x}^{\natural}\right\|_{2}^{2}$ decreases at the rate $\lambda_{\text {min }}\left(\mathbf{J}\left(\mathbf{x}^{\natural}\right)\right)^{-1} \rightarrow 0$ asymptotically.

*Approach 4: Local asymptotic normality

In general, the asymptotic normality does not hold even in the independent identically distributed (i.i.d.) case, but we may have the local asymptotic normality (LAN).

ML estimation with i.i.d. samples

Let b_{1}, \ldots, b_{n} be independent samples of a random variable B, whose probability density function is known to be in the set $\left\{p_{\mathbf{x}}(b): \mathbf{x} \in \mathcal{X}\right\}$ with some $\mathcal{X} \subseteq \mathbb{R}^{p}$.

What is the performance of the ML estimator

$$
\hat{\mathbf{x}}_{\mathrm{ML}} \in \arg \min _{\mathbf{x} \in \mathcal{X}}\left\{-\frac{1}{n} \sum_{i=1}^{n} \ln \left[p_{\mathbf{x}}\left(b_{i}\right)\right]\right\} ?
$$

*Approach 4: Local asymptotic normality

Theorem (Performance of the ML estimator (cf. [8, 9] for details))

Under some technical conditions, the random variable $\sqrt{n} \mathbf{J}^{-1 / 2}\left(\hat{\mathbf{x}}_{M L}-\mathbf{x}^{\natural}\right)$ converges in distribution to $\mathcal{N}(\mathbf{0}, \mathbf{I})$, where \mathbf{J} is the Fisher information matrix associated with one sample, i.e.,

$$
\mathbf{J}:=-\left.\mathbb{E}\left[\nabla_{\mathbf{x}}^{2} \ln \left[p_{\mathbf{x}}(B)\right]\right]\right|_{\mathbf{x}=\mathbf{x}^{\natural}} .
$$

Roughly speaking, assuming that p is fixed, we can observe that

- $\left\|\sqrt{n} \mathbf{J}^{-1 / 2}\left(\hat{\mathbf{x}}_{\mathrm{ML}}-\mathbf{x}^{\natural}\right)\right\|_{2}^{2} \sim \operatorname{Tr}(\mathbf{I})=p$,
- $\left\|\hat{\mathbf{x}}_{\mathrm{ML}}-\mathbf{x}^{\natural}\right\|_{2}^{2}=\mathcal{O}(1 / n)$.

Example: ML estimation for quantum tomography

Problem (Quantum tomography)

A quantum system of q qubits can be characterized by a density operator, i.e., a Hermitian positive semidefinite $\mathbf{X}^{\natural} \in \mathbb{C}^{p \times p}$ with $p=2^{q}$. Let $\left\{\mathbf{A}_{1}, \ldots, \mathbf{A}_{m}\right\} \subseteq \mathbb{C}^{p \times p}$ be a probability operator-valued measure, i.e., a set of Hermitian positive semidefinite matrices summing to \mathbf{I}. Let b_{1}, \ldots, b_{n} be samples of independent random variables B_{1}, \ldots, B_{n}, with probability distribution

$$
\mathbb{P}\left(\left\{b_{i}=k\right\}\right)=\operatorname{Tr}\left(\mathbf{A}_{k} \mathbf{X}^{\natural}\right), \quad k=1, \ldots, m
$$

How do we estimate \mathbf{X}^{\natural} given $\left\{\mathbf{A}_{1}, \ldots, \mathbf{A}_{m}\right\}$ and b_{1}, \ldots, b_{n} ?
ML approach

$$
\hat{\mathbf{X}}_{\mathrm{ML}} \in \arg \min _{\mathbf{X} \in \mathbb{C}^{p} \times p}\left\{-\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m} \mathbb{I}_{\left\{b_{i}=k\right\}} \ln \left[\operatorname{Tr}\left(\mathbf{A}_{k} \mathbf{X}\right)\right]: \mathbf{X}=\mathbf{X}^{H}, \mathbf{X} \succeq \mathbf{0}\right\}
$$

Example: ML estimation for quantum tomography

Caveat Emptor

The ML estimator does not always yield the optimal performance. We show a simple yet very powerful example below.

Problem

Let \mathbf{b} be a sample of a Gaussian random vector $\mathbf{b} \sim \mathcal{N}\left(\mathbf{x}^{\natural}, \mathbf{I}\right)$ with some $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$. How do we estimate \mathbf{x}^{\natural} given \mathbf{b} ?

ML approach

The ML estimator is given by $\hat{\mathbf{x}}_{\mathrm{ML}}:=\mathbf{b}$.

James-Stein estimator [10]

The James-Stein estimator is given by

$$
\hat{\mathbf{x}}_{\mathrm{JS}}:=\left(1-\frac{p-2}{\|\mathbf{b}\|_{2}^{2}}\right)_{+} \mathbf{b}
$$

for all $p \geq 3$, where $(a)_{+}=\max (a, 0)$.
Observation: The James-Stein estimator shrinks b towards the origin.

Caveat Emptor

Theorem (Performance comparison: ML vs. James-Stein [10])
For all $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ with $p \geq 3$, we have

$$
\mathbb{E}\left[\left\|\hat{\mathbf{x}}_{J S}-\mathbf{x}^{\natural}\right\|_{2}^{2}\right]<\mathbb{E}\left[\left\|\hat{\mathbf{x}}_{M L}-\mathbf{x}^{\natural}\right\|_{2}^{2}\right] .
$$

Performance of the ML estimator is uniformly dominated by the performance of the James-Stein estimator [10].

Important take home message

The ML approach is not always the best.

Caveat Emptor

Theorem (Performance comparison: ML vs. James-Stein [10])
For all $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ with $p \geq 3$, we have

$$
\mathbb{E}\left[\left\|\hat{\mathbf{x}}_{J S}-\mathbf{x}^{\natural}\right\|_{2}^{2}\right]<\mathbb{E}\left[\left\|\hat{\mathbf{x}}_{M L}-\mathbf{x}^{\natural}\right\|_{2}^{2}\right] .
$$

Performance of the ML estimator is uniformly dominated by the performance of the James-Stein estimator [10].

Important take home message

The ML approach is not always the best.

Remark

The James-Stein estimator inspires the study of shrinkage estimators and the use of oracle inequalities, which play important roles in contemporary statistics and machine learning [11].

Basic statistical learning

Statistical Learning Model [12]

A statistical learning model consists of the following three elements.

1. A sample of i.i.d. random variables $\left(\mathbf{a}_{i}, b_{i}\right) \in \mathcal{A} \times \mathcal{B}, i=1, \ldots, n$, following an unknown probability distribution \mathbb{P}.
2. A class (set) \mathcal{F} of functions $f: \mathcal{A} \rightarrow \mathcal{B}$.
3. A loss function $L: \mathcal{B} \times \mathcal{B} \rightarrow \mathbb{R}$.

Definition

Let (\mathbf{a}, b) follow the probability distribution \mathbb{P} and be independent of $\left(\mathbf{a}_{1}, b_{1}\right), \ldots,\left(\mathbf{a}_{n}, b_{n}\right)$. Then, the risk corresponding to any $f \in \mathcal{F}$ is its expected loss:

$$
R(f):=\mathbb{E}_{(\mathbf{a}, b)}[L(f(\mathbf{a}), b)] .
$$

Statistical learning seeks to find a $f^{\star} \in \mathcal{F}$ that minimizes the risk, i.e., it solves

$$
f^{\star} \in \arg \min _{f}\{R(f): f \in \mathcal{F}\}
$$

- Since \mathbb{P} is unknown, the optimization problem above is intractable.

Empirical risk minimization (ERM)

By the law of large numbers, we can expect that for each $f \in \mathcal{F}$,

$$
R(f):=\mathbb{E}[L(\mathbf{a}, b)] \approx \frac{1}{n} \sum_{i=1}^{n} L\left(f\left(\mathbf{a}_{i}\right), b_{i}\right)
$$

when n is large enough, with high probability.

Empirical risk minimization (ERM) [12]

We approximate f^{\star} by minimizing the empirical average of the loss instead of the risk. That is, we consider the optimization problem

$$
\hat{f}_{n} \in \arg \min _{f}\left\{\frac{1}{n} \sum_{i=1}^{n} L\left(f\left(\mathbf{a}_{i}\right), b_{i}\right): f \in \mathcal{F}\right\} .
$$

Least squares revisited

Recall that the LS estimator is given by
$\hat{\mathbf{x}}_{\mathrm{LS}} \in \arg \min \left\{\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}=\arg \min \left\{\frac{1}{n} \sum_{i=1}^{n}\left(b_{i}-\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle\right)^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}$,
where we define $\mathbf{b}:=\left(b_{1}, \ldots, b_{n}\right)$ and \mathbf{a}_{i} to be the i-th row of \mathbf{A}.

A statistical learning view of least squares

This corresponds to a statistical learning model, for which

- the sample is given by $\left(\mathbf{a}_{i}, b_{i}\right) \in \mathbb{R}^{p} \times \mathbb{R}, i=1, \ldots, n$,
- the function class \mathcal{F} is given by $\mathcal{F}:=\left\{f_{\mathbf{x}}(\cdot):=\langle\cdot, \mathbf{x}\rangle: \mathbf{x} \in \mathbb{R}^{p}\right\}$, and
- the loss function is given by $L\left(f_{\mathbf{x}}(\mathbf{a}), b\right):=\left(b-f_{\mathbf{x}}(\mathbf{a})\right)^{2}$.

The corresponding ERM solution is

$$
\hat{f}_{n}(\cdot):=\left\langle\cdot, \hat{\mathbf{x}}_{\mathrm{LS}}\right\rangle .
$$

- Thus the LS estimator also seeks to, given a, minimize the error of predicting the corresponding b by a linear function in terms of the squared error.

References I

[1] M. I. Jordan, "Why the logistic function? a tutorial discussion on probabilities and neural networks," MIT Computational Cognitive Science Report 9503, 1995.
[2] N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia, "Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution," Microsc. Res. Tech., vol. 69, pp. 260-266, 2006.
[3] G. M. P. van Kempen, L. J. van Vliet, P. J. Verveer, and H. T. M. van der Voort, "A quantitative comparison of image restoration methods for confocal microscopy," J. Microsc., vol. 185, pp. 354-365, 1997.
[4] P. J. Huber and E. M. Ronchetti, Robust Statistics. Hoboken, NJ: John Wiley \& Sons, 2009.
[5] P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu, "High-dimensional covariance estimation by minimizing ℓ_{1}-penalized log-determinant divergence," Electron. J. Stat., vol. 5, pp. 935-980, 2011.
[6] S. Oymak, C. Thrampoulidis, and B. Hassibi, "The squared-error of generalized LASSO: A precise analysis," 2013, arXiv:1311.0830v2 [cs.IT].
[7] L. Fahrmeir and H. Kaufmann, "Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models," Ann. Stat., vol. 13, no. 1, pp. 342-368, 1985.
[8] L. Le Cam, Asymptotic methods in Statistical Decision Theory. New York, NY: Springer-Verl., 1986.

References II

[9] A. W. van der Vaart, Asymptotic Statistics. Cambridge, UK: Cambridge Univ. Press, 1998.
[10] W. James and C. Stein, "Estimation with quadratic loss," in Proc. 4th Berkeley Symp. Mathematical Statistics and Probability, vol. 1. Univ. Calif. Press, 1961, pp. 361-379.
[11] E. J. Candès, "Modern statistical estimation via oracle inequalities," Acta Numer., vol. 15, pp. 257-325, May 2006.
[12] V. N. Vapnik, "An overview of statistical learning theory," IEEE Trans. Inf. Theory, vol. 10, no. 5, pp. 988-999, Sep. 1999.

