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Lecture 03 – Convex unconstrained, smooth minimization

Outline

I This lecture
1. Unconstrained convex optimization: the basics

2. Optimization methods

3. What about non-smooth optimization?

I Next lecture
1. Composite convex minimization for nonsmooth functions
2. Proximal-gradient and proximal-Newton methods
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Recommended reading

I Chapters 2, 3, 5, 6 in Nocedal, Jorge, and Wright, Stephen J., Numerical
Optimization, Springer, 2006.

I Chapter 9 in Boyd, Stephen, and Vandenberghe, Lieven, Convex optimization,
Cambridge university press, 2009.

I Chapter 1 in Bertsekas, Dimitris, Nonlinear Programming, Athena Scientific,
1999.

I Chapters 1, 2 and 4 in Nesterov, Yurii, Introductory Lectures on Convex
Optimization: A Basic Course, Vol. 87, Springer, 2004.
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Motivation

Motivation
This lecture covers the basics of numerical methods for unconstrained and smooth
convex minimization.
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Smooth unconstrained convex minimization

Problem (Mathematical formulation)
How can we find an approximately optimal solution to the following optimization
problem?

F? := min
x∈Rp

{F(x) := f (x)} (1)

where f is proper, closed, convex and twice differentiable, f ∈ F2.
Note that (1) is unconstrained.

Three remarks
1. (1) covers a wide range of problems, including but not limited to

I ML estimators, such as least squares and Poisson,
I M-estimators,
I Empirical risk minimization.

2. This lecture covers algorithms that have computational efficiency guarantees for
(1) using additional structural assumptions on the convex functions.

3. Since F is composed of only one term f , throughout this lecture we only refer to
f and f ? = F?. We consider more general cases later.
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Definition (Optimal solutions and solution set)

I (1) has solution if f ? is finite.

I x? ∈ Rp is a solution to (1) if f (x?) = f ? .

I S? := {x? ∈ Rp : f (x?) = f ?} is the solution set of (1).

Assumption (Three key structures for (1))
Throughout, we assume f to feature one of the following structures
(a) f is Lipschitz-gradient, i.e., f ∈ F2,1

L (Rp).

(b) f is Lipschitz-gradient and strongly convex, i.e., f ∈ F2,1
L,µ(Rp).

(c) f is self-concordant, i.e., f ∈ F2(Q).
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Example 1: ML estimation and M-estimators

Problem
Let x\ ∈ Rp be an unknown vector. Let bi be a sample of a random variable Bi with
unknown probability density function pi(bi ; x\) in the set Pi := {pi(bi ; x) : x ∈ Rp}.
How do we estimate x\ given P1, . . . ,Pn and b1, . . . , bn?

Optimization formulation (ML estimator)

min
x∈X
−

1
n

n∑
i=1

ln [pi(bi ; x)]︸                         ︷︷                         ︸
f (x)

.

Optimization formulation (M -estimator)
In general, we can replace the negative log-likelihoods by any appropriate functions fi

min
x∈X

1
n

n∑
i=1

fi(x; bi)︸                ︷︷                ︸
f (x)

.
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Example 2: Least-squares estimation

Problem
Let x\ ∈ Rp. Let A ∈ Rn×p with full column rank. How do we estimate x\ given A
and

b = Ax\ + w,

where w denotes some unknown noise (either random or deterministic)?

Optimization formulation (Least-squares estimator)

min
x∈Rp

1
2
‖b−Ax‖2

2︸              ︷︷              ︸
f (x)

.

Structural properties

I ∇f (x) = AT (Ax− b), and ∇2f (x) = AT A.
I λ1I � ∇2f (x) � λpI, where λ1 ≤ λ2 ≤ . . . ≤ λp are the eigenvalues of AT A.
I It follows that L = λp and µ = λ1 . If λ1 > 0, then f ∈ F2,1

L,µ, otherwise

f ∈ F2,1
L . Also, if n < p, rank(AT A) ≤ n, hence λ1 = 0 and f ∈ F2,1

L .
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Example 3: Logistic regression

Problem (Logistic regression)
Given a sample vector ai ∈ Rp and a binary class label bi ∈ {−1,+1} (i = 1, . . . ,n),
we define the conditional probability of bi given ai as:

P(bi |ai ,x\, µ) ∝ 1/(1 + e−bi(〈x\,ai〉+µ)),

where x\ ∈ Rp is some true weight vector, µ is called the intercept. How do we
estimate x\ given the sample vectors, the binary labels, and µ?

Optimization formulation

min
x∈Rp

1
n

n∑
i=1

log(1 + exp(−bi(aT
i x + µ)))︸                                                 ︷︷                                                 ︸

f (x)

(2)

Structural properties

I Let A = [a1, . . . ,an ]T , then f ∈ F2,1
L and L = 0.25λp(AT A) .

I Whether we have µ > 0 depends on the relative sizes of n and p. When n > p,
the value of µ can also depend on x?.
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Example 4: Poisson imaging

Problem
Let x\ ∈ Rp be an unknown vector. Let b1, . . . , bn be samples of independent random
variables B1, . . . ,Bn , and each Bi is Poisson distributed with parameter

〈
ai ,x\

〉
,

where the vectors a1, . . . ,ai are given. How do we estimate x\ given a1, . . . ,an and
the measurements b1, . . . , bn?

Optimization formulation

x̂ML ∈ arg min
x∈Rp

1
n

n∑
i=1

[〈ai ,x〉 − bi ln (〈ai ,x〉)]︸                                         ︷︷                                         ︸
f (x)

.

Structural properties

I f ∈ F2 is self-concordant with the domain
Q = {x : 〈ai ,x〉 ≥ 0, i = 1, . . . ,n} and the
self-concordancy parameter

M = 2 max
{ 1
√

bi
: bi > 0, i = 1, . . . ,n

}
. Confocal imaging
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Example 5: Graphical model learning

Problem (Graphical model selection)
Let x be a random vector with zero mean and positive-definite covariance matrix Σ\.
How do we estimate Θ\ := (Σ\)−1 given independent samples x1, . . . ,xn of the
random vector x?

Optimization formulation

min
Θ∈Sp

++

Tr
(

Σ̂Θ
)
− log det (Θ)︸                              ︷︷                              ︸
f (Θ)

,

where Σ̂ is the empirical covariance, i.e., Σ̂ := (1/n)
∑n

i=1 xxT .

Structural properties

I f ∈ F2 is standard-self concordant M = 2 with the domain Q = Sp
++.

I if αI � Θ � βI, then f ∈ F2,1
L,µ with L =

√p
α2 and µ =

1
β2√p

.
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Question: How do we design algorithms for finding a solution x??

Philosophy

I We cannot immediately design algorithms just based on the original formulation

F? := min
x∈Rp

{F(x) := f (x)} . (1)

I We need intermediate tools to characterize the optimal solution set S? of (1).
I One key tool is called the optimality condition
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Optimality conditions and convexity

Lemma
Let f be a smooth convex function, i.e., f ∈ F1. Then, any stationary point of f is
also a global minimum.

Proof.
Let x? be a stationary point, i.e., ∇f (x?) = 0. By convexity, we have:

f (x) ≥ f (x?) + 〈∇f (x?), x− x?〉
∇f (x?)=0

= f (x?) for all x ∈ Rp.

Moreover, in the special case where f is strongly convex (f ∈ F1
µ), then:

f (x) ≥ f (x?) + 〈∇f (x?), x− x?〉+
µ

2
‖x− x?‖2

2

∇f (x?)=0
= f (x?) +

µ

2
‖x− x?‖2

2

�

Remark
This result also holds if f ∈ F is not differentiable, which includes constrained
problems. Simply stated, the condition f (x) ≥ f (x?) + 〈v, x− x?〉 must hold for any
v ∈ ∂f (x?). In this case, the stationary point has 0 ∈ ∂f (x?), hence f (x) ≥ f (x?).
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Approximate vs. exact optimality

Is it possible to solve a convex optimization problem?

"In general, optimization problems are unsolvable" - Y. Nesterov [4]

I Even when a closed-form solution exists, numerical accuracy may still be an issue.
I We must be content with approximately optimal solutions.

Definition
We say that x?ε is ε-optimal in objective value if

f (x?ε )− f ? ≤ ε .

We say that x?ε is ε-optimal in sequence if

‖x?ε − x?‖ ≤ ε ,

for some norm ‖ · ‖.
I The latter approximation guarantee is considered stronger.
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A gradient method

Lemma (First-order necessary optimality condition)
Let x? be a global minimum of a convex function f ∈ F2. Then, it holds that

∇f (x?) = 0.

Fixed-point characterization
We can rewrite the first-order condition as

x? = x? − α∇f (x?) for all α ∈ R

Gradient method
Choose a starting point x0 and iterate

xk+1 = xk − αk∇f (xk)

where αk is a step-size to be chosen so that xk converges to x? (ideally, as fast as
possible).
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Does the gradient method converge?

Lemma
Assume that
1. There exists x? ∈ dom(f ) such that ∇f (x?) = 0.
2. The mapping ψ(x) = x− α∇f (x) is contractive for some α: i.e., there exists
γ ∈ [0, 1) such that

‖ψ(x)− ψ(z)‖ ≤ γ‖x− z‖ for all x, z ∈ dom(f )

Then, for any starting point x0 ∈ dom(f ), the gradient method converges to x?.

Proof.
If we start the gradient method at x0 ∈ dom(f ), then we have

‖xk+1 − x?‖ = ‖xk − α∇f (xk)− x?‖

= ‖ψ(xk)− ψ(x?)‖ (∇f (x?) = 0)

≤ γ‖xk − x?‖ (contraction assumption)

≤ γk+1‖x0 − x?‖ .

We then have that the sequence {xk} converges globally to x? at a linear rate.
�
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Short detour: Convergence rates

Definition (Convergence of a sequence)
We say that a sequence {uk} (scalar or vector valued) converges to u? and write
limk→∞ uk = u?, if for any ε > 0, there is an integer K such that

‖uk − u?‖ ≤ ε, for all k ≥ K .

Convergence rates: the speed at which a sequence converges
I sublinear: if there exists c > 0 such that

‖uk − u?‖ = O(k−c)

I linear: if there exists α ∈ (0, 1) such that

‖uk − u?‖ = O(αk)

I Q-linear: if there exists a constant r ∈ (0, 1) such that

lim
k→∞

‖uk+1 − u?‖
‖uk − u?‖

= r

I quadratic: if there exists a constant µ > 0 such that

lim
k→∞

‖uk+1 − u?‖
‖uk − u?‖2 = µ
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Example: Convergence rates
Examples of sequences that all converge to u? = 0:

I Sublinear: uk = 1/k

I Linear: uk = 0.5k

I Superlinear: uk = k−k

I Quadratic: uk = 0.52k
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Remark
For unconstrained convex minimization as in (1), we always have f (xk)− f ? ≥ 0.
Hence, we do not need to use the absolute value when we show convergence results
based on the objective value, such as f (xk)− f ? ≤ O(1/k2), which is sublinear.
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Detour: Global and local convergence

Global vs local convergence
An algorithm may show more than one type of convergence rate during execution:

1. Global convergence rate: overall convergence rate that applies for any starting
point x0 (i.e., worst case scenario);

2. Local convergence rate: convergence rate that applies when the iterates have
reached a certain region surrounding x?.

Definition (Local convergence)
We say that the algorithm locally converges to x?, if there exists a constant r > 0,
such that when the starting point x0 is chosen to satisfy ‖x0 − x?‖ ≤ r , the iterates
xk converge to x?.
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Global and local convergence - example

Newton method for self-concordant functions (later in this lecture)

I Global convergence: sublinear;
I Local convergence: quadratic;
I We can explicitly calculate size of the quadratic convergence region.

quadratic convergence 
region

x⇤

x0 x1

xj

global convergence:
sublinear

local convergence

Friday, 4 July 14
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Contractive maps and convexity

Proposition (Contractivity implies convexity with structure)
Let f ∈ C2 and define ψ(x) = x− α∇f (x), with α > 0.
If ψ(x) is contractive, with a constant contraction factor γ < 1, then f ∈ F2,1

L,µ.

Proof.
Consider y = x + t∆x and z = x. By the contractivity assumption it must hold that

‖ψ(x + t∆x)− ψ(x)‖ ≤ tγ‖∆x‖ ∀t .

We also have that

lim
t→0

1
t
‖ψ(x + t∆x)− ψ(x)‖ = lim

t→0
‖∆x−

α

t
(∇f (x + t∆x)−∇f (x)) ‖

= ‖
(

I− α∇2f (x)
)

∆x‖

≤ γ‖∆x‖ (by assumption)

The inequality implies (derivation on the board) that

0 ≺
1− γ
α

I � ∇2f (x) �
1 + γ

α
I,

which can be reinterpreted as f ∈ F2,1
L,µ with L = 1+γ

α
and µ = 1−γ

α
. �
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Recall: convex, unconstrained, smooth minimization

Problem (Mathematical formulation)

F? := min
x∈Rp

{F(x) := f (x)} (1)

where f is proper, closed, convex and twice differentiable.
Note that (1) is unconstrained.

How de we design efficient optimization algorithms with accuracy-computation
tradeoffs for this class of functions?

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 03 – Convex unconstrained, smooth minimization

Basic principles of descent methods

Iterative descent
1. Let x0 ∈ dom(f ) be a starting point.
2. Generate sequence of vectors x1,x2, · · · ∈ dom(f ) so that we have descent:

f (xk+1) < f (xk), for all k = 0, 1, . . .

until xk is ε-optimal.

Such a sequence
{

xk
}

k≥0
can be generated as:

xk+1 = xk + αkpk

where pk is a descent direction and αk > 0 a step-size.

Remark
I Iterative algorithms can implicitly use various oracle information from the
objective, such as its value, gradient, or Hessian, in different ways to obtain αk
and pk , which determines their overall convergence rate and complexity. The
type of oracle information they use becomes their defining characteristic.
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Basic principles of descent methods

A condition for local descent directions
The iterates are given as:

xk+1 = xk + αkpk

By Taylor’s theorem, we have

f (xk+1) = f (xk) + αk〈∇f (xk), pk〉+ o(α2
k).

For αk small enough, the term αk〈∇f (xk), pk〉 dominates o(α2
k) for a fixed pk .

Therefore, in order to have f (xk+1) < f (xk), we require:

〈∇f (xk), pk〉 < 0
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Basic principles of descent methods

Local steepest descent direction
Since

〈∇f (xk), pk〉 = ‖∇f (xk)‖‖pk‖ cos θ ,

where θ is the angle between ∇f (xk) and pk , we have that

pk := −∇f (xk)

is the local steepest descent direction.

level sets

xk
rf(xk)

pk
xk + D(f, xk)

Figure: Descent directions in 2D should be an element of the cone of descent directions D(f , ·).
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Gradient descent methods

Gradient descent (GD) algorithm
The gradient method we discussed before indeed use the local steepest direction:

pk = −∇f (xk)

so that
xk+1 = xk − αk∇f (xk).

Key question: How do we choose αk so that we have descent/contraction?

Answer: By exploiting the structures within the convex function
When f ∈ F2,1

L , we can use αk = 1/L so that xk+1 = xk − 1
L∇f (xk) is contractive.

I Note that the above GD method only uses the gradient information, and hence, it
is called a first-order method.

First-order methods employ only first-order oracle information about the objective,
namely the value of f and ∇f at specific points.
I Second-order methods also use the Hessian ∇2f .
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Gradient descent methods - a geometrical intuition

xk

f(x)

x?
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Gradient descent methods - a geometrical intuition

Structure'in'op,miza,on:' xk

(1) f(x) � f(xk) � hrf(xk),x � xki

f(x)

x?
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Gradient descent methods - a geometrical intuition

f(x)

Majorize: 

Minimize: 

Structure'in'op,miza,on:' xk

(1) f(x) � f(xk) � hrf(xk),x � xki

xk+1 = arg min
x

QL(x,xk)

= arg min
x

����x �
✓
xk � 1

L
rf(xk)

◆����
2

= xk � 1

L
rf(xk)

f(x)  f(xk) + hrf(xk),x � xki +
L

2
kx � xkk2

2 := QL(x,xk)

(2) f(x)  f(xk) + hrf(xk),x � xki +
L

2
kx � xkk2

2

xk+1x?
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Gradient descent methods - a geometrical intuition

slower'

Structure'in'op,miza,on:'

Majorize: 

Minimize: 

xk

(1) f(x) � f(xk) � hrf(xk),x � xki

xk+1 = arg min
x

QL0(x,xk)

= arg min
x

����x �
✓
xk � 1

L0rf(xk)

◆����
2

= xk � 1

L0rf(xk)

f(x)

(2) f(x)  f(xk) + hrf(xk),x � xki +
L

2
kx � xkk2

2

xk+1

x?

f(x)  f(xk) + hrf(xk),x � xki +
L0

2
kx � xkk2

2 := QL0(x,xk)
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Gradient descent methods - a geometrical intuition

x?Structure'in'op,miza,on:'

Majorize: 

Minimize: 

xk

(1) f(x) � f(xk) � hrf(xk),x � xki

(3) f(x) � f(xk) + hrf(xk),x � xki +
µ

2
kx � xkk2

2

f(x)
xk+1 = arg min

x
QL(x,xk)

= arg min
x

����x �
✓
xk � 1

L
rf(xk)

◆����
2

= xk � 1

L
rf(xk)

f(x)  f(xk) + hrf(xk),x � xki +
L

2
kx � xkk2

2 := QL(x,xk)

(2) f(x)  f(xk) + hrf(xk),x � xki +
L

2
kx � xkk2

2
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Lecture 03 – Convex unconstrained, smooth minimization

Convergence rate of gradient descent

Theorem
Let the starting point for GD be x0 ∈ dom(f ).
I If f ∈ F2,1

L , with the choice α = 1
L , the iterates of GD satisfy

f (xk)− f (x?) ≤
2L

k + 4
‖x0 − x?‖2

2

I If f ∈ F2,1
L,µ, with the choice α = 2

L+µ , the iterates of GD satisfy

‖xk − x?‖2 ≤
(L − µ

L + µ

)k
‖x0 − x?‖2

I If f ∈ F2,1
L,µ, with the choice α = 1

L , the iterates of GD satisfy

‖xk − x?‖2 ≤
(L − µ

L + µ

) k
2
‖x0 − x?‖2
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Lecture 03 – Convex unconstrained, smooth minimization

Proof of convergence rates of gradient descent
I We first need to prove a basic result about functions in F1,1

L

Lemma
Let f ∈ F1,1

L . Then it holds

1
L
‖∇f (x)−∇f (y)‖2 ≤ 〈∇f (x)−∇f (y),x− y〉 (3)

Proof.
First, recall the following result about Lipschitz gradient functions h ∈ F1,1

L

h(y) ≤ h(x) + 〈∇h(x),y− x〉+
L
2
‖y− x‖2

2. (4)

To prove the result, let φ(y) := f (y)− 〈∇f (x),y〉, with ∇φ(y) = ∇f (y)−∇f (x). Clearly,
φ(y) attains its minimum value at y? = x. Now, let us apply (4) as follows

φ(x) ≤ φ
(

y−
1
L
∇φ(y)

)
≤ φ(y)−

1
2L
‖∇φ(y)‖2

2

which yields

f (x) + 〈∇f (x),y− x〉+
1

2L
‖∇f (x)−∇f (y)‖2

2 ≤ f (y) (5)

By adding two copies of (5) with each other x and y swapped, we obtain (3).
�
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Lecture 03 – Convex unconstrained, smooth minimization

The proof of convergence rates - part I

Theorem
If f ∈ F2,1

L , with the choice α = 1
L , the iterates of GD satisfy

f (xk)− f (x?) ≤
2L

k + 4
‖x0 − x?‖2

2 (6)

Proof - part I
I Consider the constant step-size iteration xk+1 = xk − α∇f (xk).

I Let rk := ‖xk − x?‖. Show rk ≤ r0 .

r2
k+1 := ‖xk+1 − x?‖2 = ‖xk − x? − α∇f (xk)‖2

= ‖xk − x?‖2 − 2α〈∇f (xk)−∇f (x?),xk − x?〉+ α
2‖∇f (xk)‖2

≤ r2
k − α(2/L− α)‖∇f (xk)‖2 (by (3))

< r2
k , ∀α < 2/L.

Hence, the gradient iterations are contractive when α < 2/L for all k ≥ 0.

I An auxiliary result: Let ∆k := f (xk)− f ?. Show ∆k ≤ r0‖∇f (xk)‖ .

∆k ≤ 〈∇f (xk),xk − x?〉 ≤ ‖∇f (xk)‖‖xk − x?‖ = rk‖∇f (xk)‖ ≤ r0‖∇f (xk)‖.
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Lecture 03 – Convex unconstrained, smooth minimization

The proof of convergence rates - part II

Proof - part II
I We can establish convergence along with the auxiliary result above:

f (xk+1) ≤ f (xk) + 〈∇f (xk),xk+1 − xk〉+
Lf

2
‖xk+1 − xk‖2

≤ f (xk)− ωk‖∇f (xk)‖2
, ωk := α(1− Lα/2).

Combine three inequalities to get ∆k+1 ≤ ∆k − (ωk/r2
0 )∆2

k . Thus, dividing by ∆k+1∆k

∆−1
k+1 ≥ ∆−1

k + (ωk/r2
0 )∆k/∆k+1 ≥ ∆−1

k + (ωk/r2
0 ).

By induction, we have ∆−1
k+1 ≥ ∆−1

0 + (ωk/r2
0 )(k + 1), which implies

f (xk)− f (x?) ≤
2(f (x0)− f (x?))‖x0 − x?‖2

2
2‖x0 − x?‖2

2 + kα(2− αL)(f (x0)− f ?)
,

I In order to choose the optimal step-size, we maximize the function φ(α) = α(2− αL).
Hence, the optimal step size for the gradient method for f ∈ F1,1

L is given by α = 1
L .

I Finally, since f (x0) ≤ f ∗ +∇f (x?)T (x0 − x?) + (L/2)‖x0 − x?‖2
2 = f ∗ + (L/2)r2

0 , we
obtain (6).

�
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Lecture 03 – Convex unconstrained, smooth minimization

The proof of convergence rates - part III

Theorem
I If f ∈ F2,1

L,µ, with the choice α = 2
L+µ , the iterates of GD satisfy

‖xk − x?‖2 ≤
(L − µ

L + µ

)k
‖x0 − x?‖2 (7)

I If f ∈ F2,1
L,µ, with the choice α = 1

L , the iterates of GD satisfy

‖xk − x?‖2 ≤
(L − µ

L + µ

) k
2
‖x0 − x?‖2 (8)

Before proving the convergence rate, we first need a result about functions in F1,1
L,µ

Theorem
If f ∈ F1,1

L,µ, then for any x and y, we have

〈∇f (x)−∇f (y),x− y〉 ≥
µL
µ+ L

‖x− y‖2 +
1

µ+ L
‖∇f (x)−∇f (y)‖2. (9)
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Lecture 03 – Convex unconstrained, smooth minimization

The proof of convergence rates - part III

Proof of (7) and (8)

I Let rk = ‖xk − x?‖. Then, using (9), we have

r2
k+1 = ‖xk+1 − x? − α∇f (xk)‖2

= r2
k − 2α〈f (xk),xk − x?〉+ α2‖∇f (xk)‖2

≤
(

1−
2αµL
µ+ L

)
r2

k + α

(
α−

2
µ+ L

)
‖∇f (xk)‖2

I Since α ≤ 2
µ+L , the last term in the previous inequality is less than 0, therefore

r2
k+1 ≤

(
1−

2αµL
µ+ L

)k
r2

0

I Plugging α = 1
L and α = 2

µ+L , we obtain the rates as advertised.

I For f ∈ F1,1
L,µ, the optimal step-size is given by α = 2

µ+L (i.e., it optimizes the
worst case bound).

�
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Lecture 03 – Convex unconstrained, smooth minimization

Convergence rate of gradient descent

Convergence rate of gradient descent

f ∈ F2,1
L , α =

1
L

f (xk)− f (x?) ≤
2L

k + 4
‖x0 − x?‖2

2

f ∈ F2,1
L,µ, α =

2
L + µ

‖xk − x?‖2 ≤
(L − µ

L + µ

)k
‖x0 − x?‖2

f ∈ F2,1
L,µ, α =

1
L

‖xk − x?‖2 ≤
(L − µ

L + µ

) k
2
‖x0 − x?‖2

Remarks
I Assumption: Lipschitz gradient. Result: convergence rate in objective values.
I Assumption: Strong convexity. Result: convergence rate in sequence of the
iterates and in objective values.

I Note that the suboptimal step-size choice α = 1
L adapts to the strongly convex

case (i.e., it features a linear rate vs. the standard sublinear rate).
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Lecture 03 – Convex unconstrained, smooth minimization

Example: Ridge regression

Optimization formulation

I Let A ∈ Rn×p and b ∈ Rn given by the model b = Ax\ + w, where w ∈ Rn is
some noise.

I We can try to estimate x\ by solving the Tikhonov regularized least squares

min
x∈Rp

f (x) :=
1
2
‖b−Ax‖2

2 +
ρ

2
‖x‖2

2.

where ρ ≥ 0 is a regularization parameter.

Remarks
I f ∈ F2,1

L,µ with:
I L = λp(AT A) + ρ;
I µ = λ1(AT A) + ρ;
I where λ1 ≤ . . . ≤ λp are the eigenvalues of AT A.

I The ratio L
µ

decreases as ρ increases, leading to faster linear convergence.

I Note that if n < p and ρ = 0, we have µ = 0, hence f ∈ F2,1
L and we can expect

only O(1/k) convergence from the gradient descent method.
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Lecture 03 – Convex unconstrained, smooth minimization

Example: Ridge regression
Case 1:

n = 500, p = 2000, ρ = 0
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Case 2:
n = 500, p = 2000, ρ = 0.01λp(AT A)
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Lecture 03 – Convex unconstrained, smooth minimization

Information theoretic lower bounds [4]

What is the best achievable rate for a first-order method?

f ∈ F∞,1L : Smooth and Lipschitz-gradient
It is possible to construct a function in F∞,1L , for which any first order method must
satisfy

f (xk)− f (x?) ≥
3L

32(k + 1)2 ‖x
0 − x?‖2

2 for all k ≤ (p − 1)/2

f ∈ F∞,1L,µ : Smooth and strongly convex
It is possible to construct a function in F∞,1L,µ , for which any first order method must
satisfy

‖xk − x?‖2 ≥
( √

L − √µ
√

L + √µ

)k

‖x0 − x?‖2

Gradient descent is O(1/k) for F∞,1L and it is slower for F∞,1L,µ ,
hence it is not optimal!
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Lecture 03 – Convex unconstrained, smooth minimization

Accelerated Gradient Descent algorithm

Problem
Can we design an optimal first-order method, whose convergence rates match the
theoretical lower bounds?

Solution
Accelerated Gradient Descent (AGD) methods achieve optimal convergence rates at a
negligible increase in the computational cost.

Accelerated Gradient Descent for F1,1
L

(AGD-L)

1. Choose x0 ∈ dom(f ). Set y0 := x0

and t0 := 1.
2. For k = 0, 1, . . ., iterate

xk+1 = yk − 1
L∇f (yk)

tk+1 = 0.5(1 +
√

4t2
k + 1),

γk+1 = (tk − 1)/tk+1,
yk+1 = xk+1 + γk+1(xk+1 − xk)

Accelerated Gradient Descent for F1,1
L,µ

(AGD-µL)

1. Choose x0 ∈ dom(f ) and set y0 :=
x0.
2. For k = 0, 1, . . ., iterate{

xk+1 = yk − 1
L∇f (yk)

yk+1 = xk+1 + γ(xk+1 − xk)

where γ =
√

L−√µ√
L+√µ

.
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Lecture 03 – Convex unconstrained, smooth minimization

Global convergence of AGD [4]

Theorem (f is convex with Lipschitz gradient)
If f ∈ F1,1

L or F1,1
L,µ, the sequence {xk}k≥0 generated by AGD-L satisfies

f (xk)− f ? ≤
4L

(k + 2)2 ‖x
0 − x?‖2

2, ∀k ≥ 0. (10)

AGD-L is optimal for F1,1
L but NOT for F1,1

L,µ!

Theorem (f is strongly convex with Lipschitz gradient)
If f ∈ F1,1

L,µ, the sequence {xk}k≥0 generated by AGD-µL satisfies

f (xk)− f ? ≤ L
(

1−
√

µ

L

)k
‖x0 − x?‖2

2, ∀k ≥ 0 (11)

‖xk − x?‖2 ≤

√
2L
µ

(
1−

√
µ

L

) k
2
‖x0 − x?‖2, ∀k ≥ 0. (12)

I AGD-L’s iterates are not guarantee to converge.
I AGD-L does not have a linear convergence rate for F1,1

L,µ.
I AGD-µL does, but needs to know µ.

AGD achieves the iteration lowerbound within a constant!
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Lecture 03 – Convex unconstrained, smooth minimization

Global convergence of AGD [4]

Theorem (f is convex with Lipschitz gradient)
If f ∈ F1,1

L or F1,1
L,µ, the sequence {xk}k≥0 generated by AGD-L satisfies

f (xk)− f ? ≤
4L

(k + 2)2 ‖x
0 − x?‖2

2, ∀k ≥ 0. (10)

AGD-L is optimal for F1,1
L but NOT for F1,1

L,µ!

Theorem (f is strongly convex with Lipschitz gradient)
If f ∈ F1,1

L,µ, the sequence {xk}k≥0 generated by AGD-µL satisfies

f (xk)− f ? ≤ L
(

1−
√

µ

L

)k
‖x0 − x?‖2

2, ∀k ≥ 0 (11)

‖xk − x?‖2 ≤

√
2L
µ

(
1−

√
µ

L

) k
2
‖x0 − x?‖2, ∀k ≥ 0. (12)

I AGD-L’s iterates are not guarantee to converge.
I AGD-L does not have a linear convergence rate for F1,1

L,µ.
I AGD-µL does, but needs to know µ.

AGD achieves the iteration lowerbound within a constant!
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Lecture 03 – Convex unconstrained, smooth minimization

Example: Ridge regression
Case 1:

n = 500, p = 2000, ρ = 0
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Case 2:
n = 500, p = 2000, ρ = 0.01λp(AT A)

0 200 400 600 800 1000 1200 1400
10

−10

10
−5

10
0

10
5

Number of iterations

f
(x
)
−

f
⋆
in

lo
g-
sc
al
e

 

 

Theoretical bound AGD
Theoretical bound AGD-µL
GD
GD-µL
AGD
AGD-µL

0 0.5 1 1.5 2 2.5 3 3.5
10

−10

10
−5

10
0

10
5

Time (s)

f
(x
)
−

f
⋆
in

lo
g-
sc
al
e

 

 

GD
GD-µL
AGD
AGD-µL

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 03 – Convex unconstrained, smooth minimization

How can we better adapt to the local geometry?

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

L

2
kx � xkk2

2

�

f(xk)

QL(x,xk)

Global quadratic upper bound
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How can we better adapt to the local geometry?

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

Lk

2
kx � xkk2

2

�

f(xk)

QLk
(x,xk)

Local quadratic upper bound

applies only locally
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Lecture 03 – Convex unconstrained, smooth minimization

Enhancements

Two enhancements

1. Line-search for evaluating L for both GD and AGD.
2. Restart strategies for AGD.

When do we need a line-search procedure?
We can use a line-search procedure for both GD and AGD when
I L is known but it is expensive to evaluate;
I The global constant L usually does not capture the local behavior of f or it is
unknown;
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Lecture 03 – Convex unconstrained, smooth minimization

Line-search for Gradient Descent

Line-search
At each iteration, we try to find a constant Lk that satisfies

f (x) ≤ f (xk) + 〈∇f (xk),x− xk〉+
Lk
2
‖x− xk‖2

2 := QLk (x,xk)

Define also, SL(x) := x− 1
L∇f (x).

Line-search gradient descent scheme (LSGD)
1. Choose x0 ∈ dom(f ) arbitrarily as a starting point.
2. For k = 0, 1, · · · , generate a sequence {xk}k≥0 as:

2.a. Find the smallest j ≥ 0 such that Lj
k := 2jL0 satisfying

f
(
SLj

k

(
xk
))
≤ QLj

k

(
SLj

k

(
xk
)
,xk
)
,

where L0 > 0 is given (e.g., ‖∇f (x1)−∇f (x0)‖2
‖x1−x0‖2

).
2.b. Update

xk+1 = SLj
k
(xk) = xk −

1
Lj

k
∇f (xk)
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Lecture 03 – Convex unconstrained, smooth minimization

Oscillatory behavior of AGD
I Minimizing a quadratic function f (x) = xT Φx, with p = 200 and
κ(Φ) = L/µ = 2.4× 104

I Use stepsize α = 1/L and update xk+1 + γk+1(xk+1 − xk) where
I γk+1 = θk(1− θk)/(θ2

k + θk+1)
I θk+1 solves θ2

k+1 = (1− θk+1)θ2
k + qθk+1.

I The parameter q should be equal to the reciprocal of condition number q = µ/L.
I A different choice of q might lead to oscillatory behaviour.
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Figure 1: Convergence of Algorithm 1 with different estimates of q.

Interpretation. The optimal momentum depends on the condition number of the function;
specifically, higher momentum is required when the function has a higher condition number. Under-
estimating the amount of momentum required leads to slower convergence. However we are more
often in the other regime, that of overestimated momentum, because generally q = 0, in which case
βk ↑ 1; this corresponds to high momentum and rippling behavior, as we see in Figure 1. This
can be visually understood in Figure (2), which shows the trajectories of sequences generated by
Algorithm 1 minimizing a positive definite quadratic in two dimensions, under q = q⋆, the optimal
choice of q, and q = 0. The high momentum causes the trajectory to overshoot the minimum and
oscillate around it. This causes a rippling in the function values along the trajectory. Later we
shall demonstrate that the period of these ripples is proportional to the square root of the (local)
condition number of the function.

Lastly we mention that the condition number is a global parameter; the sequence generated by
an accelerated scheme may enter regions that are locally better conditioned, say, near the optimum.
In these cases the choice of q = q⋆ is appropriate outside of this region, but once we enter it we
expect the rippling behavior associated with high momentum to emerge, despite the optimal choice
of q.

4
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Lecture 03 – Convex unconstrained, smooth minimization

Enhancements
Two enhancements

1. Line-search for evaluating L for both GD and AGD.
2. Restart strategies for AGD.

When do we need a line-search procedure?
We can use a line-search procedure for both GD and AGD when
I L is known but it is expensive to evaluate;
I The global constant L usually does not capture the local behavior of f or it is
unknown;

Why do we need a restart strategy?

I AGD-µL requires knowledge of µ and AGD-L does not have optimal convergence
for strongly convex f .

I AGD is non-monotonic (i.e., f (xk+1) ≤ f (xk) is not always satisfied).
I AGD has a periodic behavior, where the momentum depends on the local
condition number c := L/µ (µ is the local strong convexity parameter).

I A restart strategy tries to reset this momentum whenever we observe high
periodic behavior. We often use function values but other strategies are possible.
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Example: Ridge regression
Case 1:

n = 500, p = 2000, ρ = 0
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Case 2:
n = 500, p = 2000, ρ = 0.01λp(AT A)
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Lecture 03 – Convex unconstrained, smooth minimization

Performance of optimization algorithms

Time-to-reach ε
time-to-reach ε = number of iterations to reach ε × per iteration time

The speed of numerical solutions depends on two factors:
I Convergence rate determines the number of iterations needed to obtain an
ε-optimal solution.

I Per-iteration time depends on the information oracles, implementation, and the
computational platform.

In general, convergence rate and per-iteration time are inversely proportional.
Finding the fastest algorithm is tricky! A non-exhaustive illustration:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

Lipschitz-gradient Accelerated GD Sublinear (1/k2) One gradient
f ∈ F2,1

L (Rp) Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k ) One gradient

Strongly convex, smooth Accelerated GD Linear (e−k ) One gradient
f ∈ F2,1

L,µ(Rp) Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Linear (e−k ), Quadratic One gradient, one linear system

Self-concordant, smooth
Gradient descent Sublinear (1/k) One gradient
Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
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Lecture 03 – Convex unconstrained, smooth minimization

Performance of optimization algorithms

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

Lipschitz-gradient Accelerated GD Sublinear (1/k2) One gradient
f ∈ F2,1

L (Rp) Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k ) One gradient

Strongly convex, smooth Accelerated GD Linear (e−k ) One gradient
f ∈ F2,1

L,µ(Rp) Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Linear (e−k ), Quadratic One gradient, one linear system

Self-concordant, smooth
Gradient descent Sublinear (1/k) One gradient
Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Sublinear (1/k), Quadratic One gradient, one linear system

Accelerated gradient descent:

xk+1 = yk − α∇f (yk)

yk+1 = xk+1 + γk+1(xk+1 − xk).

for some proper choice of α and γk+1.
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Performance of optimization algorithms

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

Lipschitz-gradient Accelerated GD Sublinear (1/k2) One gradient
f ∈ F2,1

L (Rp) Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k ) One gradient

Strongly convex, smooth Accelerated GD Linear (e−k ) One gradient
f ∈ F2,1

L,µ(Rp) Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Linear (e−k ), Quadratic One gradient, one linear system

Self-concordant, smooth
Gradient descent Sublinear (1/k) One gradient
Quasi-Newton Superlinear One gradient, rank-2 update

Newton method Sublinear (1/k), Quadratic One gradient, one linear system

Main computations of the Quasi-Newton method, which we will discuss in the sequel

pk = −B−1
k ∇f (xk) ,

where B−1
k is updated at each iteration by adding a rank-2 matrix.
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Performance of optimization algorithms

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

Lipschitz-gradient Accelerated GD Sublinear (1/k2) One gradient
f ∈ F2,1

L (Rp) Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k ) One gradient

Strongly convex, smooth Accelerated GD Linear (e−k ) One gradient
f ∈ F2,1

L,µ(Rp) Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Linear (e−k ), Quadratic One gradient, one linear system

Self-concordant, smooth
Gradient descent Sublinear (1/k) One gradient
Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Sublinear (1/k), Quadratic One gradient, one linear system

The main computation of the Newton method we discuss in the sequel requires the
solution of the linear system

∇2f (xk)pk = −∇f (xk) .
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Lecture 03 – Convex unconstrained, smooth minimization

A detour: Linear systems of equations

Problem (Solving a linear system)
Which is the best method for solving the linear system

Ax = b ?

Solving a linear system via optimization
To find a solution to the linear system, we can also solve the optimization problem

min
x

fA,b(x) :=
1
2
〈Ax,x〉 − 〈b,x〉.

I fA,b is a quadratic function with Lipschitz-gradient (L = ‖A‖).
I If A is a p × p symmetric positive definite matrix, (i.e., A = AT � 0),

fA is also strongly convex (µ = λ1(A))1.
I if A is not symmetric, but full column rank, we can consider the system

AT Ax = AT b

which can be seen as: Φx = y where Φ is symmetric and positive definite.

1λ1(A) is the smallest eigenvalue of A
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A detour: Linear systems of equations

Remark
If Φ is diagonal and positive definite, given a starting point x0 ∈ dom(f ), successive
minimization of fΦ,y(x) along the coordinate axes yield x? is at most p steps.

x0

x1

x?

x2

x3

x0 x1

x?

Diagonal Φ Non-diagonal Φ
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Lecture 03 – Convex unconstrained, smooth minimization

How can we adapt to the geometry of Φ?

Conjugate gradients method- Φ symmetric and positive definite
Generate a set of conjugate directions {p0,p1, . . . ,pp−1} such that

〈pi ,Φpj〉 = 0 for all i , j (which also implies linear independence).

Successively minimize fΦ,y along the individual conjugate directions. Let

rk = Φxk − y and xk+1 = xk + αkpk ,

where αk is the minimizer of fΦ,y(x) along xk + αpk , i.e.,

αk = −
〈rk ,pk〉
〈pk ,Φpk〉

Theorem
For any x0 ∈ Rp the sequence {xk} generated by the conjugate directions algorithm
converges to the solution x? of the linear system in at most p steps.

Intuition
The conjugate directions adapt to the geometry of the problem, taking the role of the
canonical directions when Φ is a generic symmetric positive definite matrix.
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Lecture 03 – Convex unconstrained, smooth minimization

Conjugate gradients method

Intuition
The conjugate directions adapt to the geometry of the problem, taking the role of the
canonical directions when Φ is a generic symmetric positive definite matrix.

Back to diagonal
For a generic symmetric positive definite Φ, let us consider the variable x̄ := S−1x,
with

S =
[
p0, . . . ,pp−1

]
where {pk} are the conjugate directions with respect to Φ. fΦ,y(x) now becomes

f̄Φ,y(x̄) := fΦ,y(Sx̄) =
1
2
〈x̄, (ST ΦS)x̄〉 − 〈ST y, x̄〉.

By the conjugacy property, 〈pi ,Φpj〉 = 0, ∀ i , j, the matrix ST ΦS is diagonal.
Therefore, we can find the minimum of f̄ (x̄) in at most p steps along the canonical
directions in x̄ space, which are the {pk} directions in x space.
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Conjugate directions naturally adapt to the linear operator

Non-diagonal Φ

x0

x1

x?

x0 x1

x?

Diagonal Φ
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Conjugate gradients method

Theorem
For any x0 ∈ Rp the sequence {xk} generated by the conjugate directions algorithm
converges to the solution x\ of the linear system in at most p steps.

Proof.
Since {pk} are linearly independent, they span Rp. Therefore, we can write

x? − x0 = a0p0 + a1p1 + · · ·+ ap−1pp−1

for some values of the coefficients ak . By multiplying on the left by (pk)T Φ and using
the conjugacy property, we obtain

ak =
〈pk ,Φ(x? − x0)〉
〈pk ,Φpk〉

.

Since xk = xk−1 + αk−1pk−1, we have xk = x0 + α0p0 + α1p1 + · · ·+ αk−1pk−1.
By premultiplying by (pk)T Φ and using the conjugacy property, we obtain
〈pk ,Φ(xk − x0)〉 = 0 which implies

〈pk ,Φ(x? − x0)〉 = 〈pk ,Φ(x? − xk)〉 = 〈pk ,y−Φx0)〉 = −〈pk , rk〉

so that ak = − 〈pk ,rk〉
〈pk ,Φpk〉 = αk . �
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Conjugate gradients method

How can we efficiently generate a set of conjugate directions?
Iteratively generate the new descent direction pk from the previous one:

pk = −rk + βkpk−1

For ensuring conjugacy 〈pk ,Φpk−1〉 = 0, we need to choose βk as

βk =
〈rk ,Φpk−1〉
〈pk−1,Φpk−1〉

.

Lemma
The directions {p0,p1, . . . ,pp} form a conjugate directions set.
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Conjugate gradients method

Conjugate gradients (CG) method

1 Initialization:
1.a Choose x0 ∈ dom(f ) arbitrarily as a starting point.
1.b Set r0 = Φx0 − y, p0 = −r0, k = 0.

2. While rk , 0, generate a sequence {xk}k≥0 as:

αk = − 〈rk ,pk〉
〈pk ,Φpk〉

xk+1 = xk + αkpk

rk+1 = Φxk+1 − y
βk+1 = 〈rk+1,Φpk〉

〈pk ,Φpk〉
pk+1 = −rk+1 + βk+1pk

k = k + 1

Theorem
Since the directions {p0,p1, . . . ,pk} are conjugate, CG converges in at most p steps.
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Other properties of the conjugate gradient method

Theorem
if Φ has only r distinct eigenvalues, then the CG iterations will terminate at the
solution in at most r iterations.

Theorem
If Φ has eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λp, we have that

‖xk+1 − x?‖Φ ≤
(
λp−k − λ1

λp−k + λ1

)
‖x0 − x?‖Φ,

where the local norm is given by ‖x‖Φ =
√

xT Φx.

Theorem
Conjugate gradients algorithm satisfy the following iteration invariant for the solution
of Φx = y

‖xk+1 − x?‖Φ ≤ 2

(√
κ(Φ)− 1√
κ(Φ) + 1

)k

‖x0 − x?‖Φ,

where the condition number of Φ is defined as κ(Φ) := ‖Φ‖‖Φ−1‖ = λp
λ1
.
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GD and AGD for the quadratic case: choice of the step size

Gradient Descent

αk =
2

L + µ
with L = λp(Φ) and µ = λ1(Φ)

Steepest descent
Choose αk so as to minimize f (xk+1).

αk =
‖∇f (xk)‖2

〈∇f (xk),Φ∇f (xk)〉
(13)

Barzilai-Borwein

αk =
‖∇f (xk−1)‖2

〈∇f (xk−1),Φ∇f (xk−1)〉
(14)
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The quadratic case - convergence rates summary

Convergence rates

Gradient descent
(
αk = 2

L+µ

)
: ‖xk − x?‖2 ≤

(
λp−λ1
λp

)k
‖x0 − x?‖2

Steepest descent: ‖xk+1 − x?‖Φ ≤
(
λp−λ1
λp+λ1

)k
‖x0 − x?‖Φ

Barzilai-Borwein (λp < 2λ1) : ‖xk+1 − x?‖2 ≤
(
λp−λ1
λ1

)k
‖x0 − x?‖2

AGD-µL: ‖xk − x?‖2 ≤
( √

λp−
√
λ1√

λp

) k
2
‖x0 − x?‖2

Conjugate gradient method: ‖xk+1 − x?‖Φ ≤
( √

λp−
√
λ1√

λp+
√
λ1

)k
‖x0 − x?‖Φ
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Example: Quadratic function
Case 1: n = p = 1000, κ(A) = 100
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Case 2: n = p = 1000, κ(A) = 1000
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Lecture 03 – Convex unconstrained, smooth minimization

Time-data tradeoff for solving linear systems

Can we trade time with data?
It seems counter-intuitive that we could do so, but...
I The condition number of Φ = AT A decreases as n increases;
I The convergence rate is faster as the condition number decreases;
I The computational cost of each CG iteration increases as n increases.

Can we find a trade-off between these two trends?

Example (Inverse problem with Gaussian coefficient matrix)
Consider the inverse problem with coefficient matrix A ∈ Rn×p whose entries are
independent identically distributed Gaussian random variables, Aij ∼ N (0, 1). We
want to recover x\ ∈ Rp from the noisy oversampled observation b ∈ Rn ,

b = Ax\ + w

where wi ∼ N (0, σ2). Using conjugate gradient method, ‖xk − x\‖2 ≤ ε with very
high probability after k iterations where

k ≥ 2 log n
p

2
(
(
√

n + √p)‖x0‖2 + ‖b‖2 + σ n+p√
n−√p

)
ε(
√

n − √p)− σ√p
+ 1. (15)
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Time-data tradeoff for solving linear systems
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Time-data tradeoff

Lemma 1 (Tail bounds for eigenvalues of Wishart matrices) [3]
Maximum and minimum eigenvalues of p × p random matrix Φ = AT A where the
entries of n × p matrix A are independent identically distributed Gaussian random
variables satisfy for any t > 0

P

(∣∣∣√λp − (
√

n + √p)
∣∣∣ ≥ t

)
≤ 2e−t2/2

P

(∣∣∣√λ1 − (
√

n − √p)
∣∣∣ ≥ t

)
≤ 2e−t2/2

Lemma 2 (Exponential estimates for chi-square distributions)
Let w be an n dimensional vector with independent identically distributed Gaussian
random entries wi ∼ N (0, σ2), then for any t > 0

P
(∣∣‖w‖2 ≥ σ

√
n
∣∣ ≥ t

)
≤ 2e−n(t2−t3)/4
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Time-data tradeoff

Proof.
Considering the convergence rate of the conjugate gradient method we can show

‖xk − x?‖2 ≤
1
√
µ
‖xk − x?‖Φ ≤

2
√
µ

( √
L − √µ
√

L + √µ

)k−1

‖x0 − x?‖Φ

which implies

‖xk − x\‖2 ≤ ‖x\ − x?‖2 + ‖x? − xk‖2

≤ ‖x\ − x?‖2 +
2
√
µ

( √
L − √µ
√

L + √µ

)k−1

‖x0 − x?‖Φ.

Proof follows by equating the right hand side to ε and solving for k, after considering

‖x0 − x?‖Φ ≤ ‖x0 − x\‖Φ + ‖x\ − x?‖Φ

≤
√

L‖x0‖2 + ‖b‖2 + ‖w‖2 +
√

L‖x\ − x?‖2.

and the concentration inequalities given in Lemma 1 and 2. �
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Time-data tradeoff - Numerical results
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Specifications
Results above are averaged over 100 simulations. p, σ, ε and x0 are chosen as 200,
10−2, 0.2 and all zero vector respectively. Stopping conditions is defined as:
I (Numerical): Stop when ‖xk − x\‖2 ≤ ε

For conjugate gradient method, computational complexity per iteration is proportional
to n. Scaled computations considered above are obtained by taking n times number
of iterations and scaling it by the minimum value obtained for computation with
stopping condition explained above (numerical). We compare the theoretical
computation with the runtime and the computation for numerical case.
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Krylov subspaces
Let y ∈ Rp and Φ be an invertible p × p matrix.

Definition (Krylov subspaces)
Krylov subspaces are a sequence of nested subspaces {K0 ⊆ K1 ⊆ · · · } such that

K0 = {∅}, Kk = span{y,Φy,Φ2y, . . . ,Φk−1y}.

Theorem (Key property)
Inverse of a matrix can be found in terms of linear combinations of its powers:

Φ−1y ∈ Kp

Proof.
Let p(λ) = λp + a1λp−1 + . . .+ ap−1λ+ ap be a p-th order polynomial. We call p(λ)
the characteristic polynomial of Φ if it evaluates to zero for all the eigenvalues of Φ.
The Cayley-Hamilton theorem states that every matrix should satisfy its characteristic
polynomial. Hence, we have p(Φ) = Φp + a1Φp−1 + · · ·+ apI = 0. By multiplying
the previous equation by Φ−1y and dividing by ap, we obtain

Φ−1y = −
1
ap

(
Φp−1y + a1Φp−2y + · · ·+ ap−1y

)
∈ Kp.
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Krylov subspaces methods and conjugate gradients

Krylov subspace methods
Given fΦ,y(x) := 1

2 〈Φx,x〉 − 〈y,x〉, the Krylov sequence is defined as

xk = arg min
x∈Kk

fΦ,y(x)

I By the key property of Krylov subspaces, we have xp = Φ−1y.
I Krylov methods are ways of computing the Krylov sequence iteratively.

Remark
Conjugate gradient is an efficient iterative way for computing the Krylov sequence
when Φ is symmetric and positive definite.
Depending on the linear system, we can also use other Krylov subspace methods, such
as the Arnoldi, Lanczos, GMRES (generalized minimum residual), BiCGSTAB
(biconjugate gradient stabilized), QMR (quasi minimal residual), TFQMR
(transpose-free QMR), and MINRES (minimal residual) methods.
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?Nonlinear Conjugate Gradient method
Two changes:
1. Line-search instead of closed-form expression for the step-size;
2. Replace the residual r by the gradient of the non-linear function f (x).

Non-Linear Conjugate Gradient (NLCG) method

1 Initialization:
1.a Choose x0 ∈ dom(f ) arbitrarily as a starting point.
1.b Let f0 = f (x0) and ∇f0 = ∇f (x0).
1.c Set p0 = −∇f0, k = 0.

2. While ∇fk , 0
2.a Compute the step-size αk by line search;
2.b Set xk+1 = xk + αkpk ;
2.c Evaluate ∇fk+1;
2.d Compute the updates:

βk+1 = 〈∇fk+1,∇fk+1〉
〈∇fk ,∇fk〉

pk+1 = −∇fk+1 + βk+1pk

k = k + 1
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?Non-linear Conjugate Gradient method - convergence

Theorem
Suppose that
I the level set L := {x|f (x) ≤ f (x0)} is bounded;
I f is Lipschitz differentiable in an open neighborhood N of L;
I NLCG is implemented with a line-search that satisfies the strong Wolfe conditions
with 0 < c1 < c2 <

1
2 .

Then
lim inf
k→∞

‖∇fk‖ = 0
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?Nonlinear Conjugate Gradient method - step-size choice

Line-search
We want pk to be a descent direction. It must hold 〈∇fk ,pk〉 < 0.

〈∇fk ,pk〉 = −‖∇fk‖2
2 + βk〈∇fk ,pk−1〉 (16)

I Exact line search: αk−1 is the local minimizer of f along the direction pk−1,
then 〈∇fk ,pk−1〉 = 0.
In this case 〈∇fk ,pk〉 < 0, so pk is indeed a descent direction.

I Exact line search:
I the second term in (16) may dominate the first, implying that 〈∇fk ,pk〉 > 0.
I To avoid this situation, αk must satisfy the strong Wolfe conditions:

f (xk + αkpk) ≤ f (xk) + c1αk〈∇fk ,pk〉 (17)

|〈∇f (xk + αkpk),pk〉| ≤ −c2〈∇fk ,pk〉, (18)

where 0 < c1 < c2 <
1
2 .
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?The Wolfe conditions for line search

Sufficient decrease
The first condition stipulates that the step-size αk should give sufficient decrease in
the objective value

ψ(α) := f (xk + αpk) ≤ f (xk) + c1α〈∇f (xk),pk〉 := l(α)

for some constant c1 ∈ (0, 1) (usually a small value like 10−4 is used).

 (↵) = f(xk + ↵pk)

l(↵)

acceptable

↵
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?The Wolfe conditions for line search
Curvature condition
The sufficient decrease condition is satisfied for all small step-sizes.
To avoid making small progress, the curvature condition requires

ψ′(α) := 〈∇f (xk + αpk),pk〉 ≥ c2〈∇f (xk),pk〉

for some constant c2 ∈ (c1, 1) (usually between 0.1 and 0.9).
I The slope of ψ at αk must be greater than c2 times the slope at 0.
I Strong version: |ψ′(α)| ≤ −c2〈∇f (xk),pk〉.

 (↵) = f(xk + ↵pk)

↵

tangent at 0

desired slope

acceptable
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?The Wolfe conditions for line search

Wolfe conditions
I Sufficient decrease

f (xk + αpk) ≤ f (xk) + c1α〈∇f (xk),pk〉 := l(α) for c1 ∈ (0, 1)

I Curvature condition

〈∇f (xk + αpk),pk〉 ≥ c2〈∇f (xk),pk〉 for c2 ∈ (c1, 1)

 (↵) = f(xk + ↵pk)

↵

tangent at 0

desired slope

acceptable

l(↵)
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How can we better adapt to the local geometry?

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

L

2
kx � xkk2

2

�

f(xk)

QL(x,xk)

Global quadratic upper bound
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How can we better adapt to the local geometry?

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

Lk

2
kx � xkk2

2

�

f(xk)

QLk
(x,xk)

Local quadratic upper bound

applies only locally
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How can we better adapt to the local geometry?

�f(xk)

x1

x2 f(x)  f(xk) +rf(xk)T (x� x

k) +
L

2
kx� x

kk22

f(x)  f(xk) + rf(xk)T (x � xk) +
1

2
kx � xkk2

H�1
k

L is a global worst-case constant

krf(x)�rf(y)k  Lky � xk

f(x)

x

k+1 = argmin
x

⇢
f(xk) + hrf(xk),x� x

ki+ L

2
kx� x

kk22
�

f(xk)
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Variable metric gradient descent algorithm

Variable metric gradient descent algorithm

1. Choose x0 ∈ Rp as a starting point and H0 � 0.
2. For k = 0, 1, · · · , perform:{

dk = Hk∇f (xk),
xk+1 = xk − αkdk ,

(19)

where αk ∈ (0, 1] is a given step size. Update Hk+1 � 0 if
necessary.

Common choices of Hk

I Hk = λkI, we obtain a gradient descent method.
I Hk = D a diagonal matrix, we obtain a gradient descent method.
I Hk = ∇2f (xk)−1, we obtain a Newton method, which requires solving the linear
system ∇2f (xk)dk = ∇f (xk) at each iteration.

I Hk ≈ ∇2f (xk)−1, subject to certain conditions, yields a quasi-Newton method,
which needs an efficient update of the metric Hk at each iteration.
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Variable metric gradient descent algorithm

1. Choose x0 ∈ Rp as a starting point and H0 � 0.
2. For k = 0, 1, · · · , perform:{

dk = Hk∇f (xk),
xk+1 = xk − αkdk ,

(19)

where αk ∈ (0, 1] is a given step size. Update Hk+1 � 0 if
necessary.

Common choices of Hk

I Hk = λkI, we obtain a gradient descent method.
I Hk = D a diagonal matrix, we obtain a gradient descent method.
I Hk = ∇2f (xk)−1, we obtain a Newton method, which requires solving the linear
system ∇2f (xk)dk = ∇f (xk) at each iteration.

I Hk ≈ ∇2f (xk)−1, subject to certain conditions, yields a quasi-Newton method,
which needs an efficient update of the metric Hk at each iteration.
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Quasi-Newton methods
In many problems, estimating the Hessian is expensive. Quasi-Newton methods use an
approximate Hessian oracle.

Quadratic model and step-size

I Iteratively build a quadratic model of the objective function

f (xk + p) ≈ f (xk) + 〈p,∇f (xk)〉+
1
2
〈p,Bkp〉 := mk(p) ,

where the symmetric positive definite matrix Bk is an approximation of ∇2f (xk).
I The search direction is the minimizer of mk(p), namely

pk = −B−1
k ∇f (xk) .

I The iterates are then given by xk+1 = xk + αkpk .

I The step-size αk is chosen to satisfy the Wolfe conditions:

f (xk + αkpk) ≤ f (xk) + c1αk〈∇f (xk),pk〉 (sufficient decrease)

〈∇f (xk + αkpk),pk〉 ≥ c2〈∇f (xk),pk〉 (curvature condition)

with 0 < c1 < c2 < 1. For quasi-Newton methods, we usually use c1 = 0.1.
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Quasi-Newton method - convergence

Dennis & Moré condition [2]
In order for the quasi-newton methods to converge, it is necessary and sufficient that
the matrices Bk satisfy the following condition on the quasi-Newton directions
pk = −B−1

k ∇f (xk):

lim
k→∞

‖(Bk −∇2f (x?))pk‖
‖pk‖

= 0 (20)

I It is not necessary that Bk converges to ∇2f (x?).
I Bk needs to converge only along the search directions pk (not conjugate this
time!).

Theorem (Convergence of quasi-Newton methods)

I Suppose that f ∈ C2.
I Consider the iteration xk+1 = xk −B−1

k ∇f (xk), (i.e., αk = 1 for all k).
I Assume also that {xk} converges to a point x? such that ∇f (x?) = 0 and
∇2f (x?) is positive definite.

Then {xk} converges superlinearly to x? if and only if (20) holds.
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?Quasi-Newton methods

How do we update Bk+1?
Suppose we have (note the coordinate change from p to p̄)

mk+1(p̄) := f (xk+1) + 〈∇f (xk+1), p̄− xk+1〉+
1
2
〈

Bk+1(p̄− xk+1), (p̄− xk+1))
〉
.

We require the gradient of mk+1 to match the gradient of f at xk and xk+1.
I ∇mk+1(xk+1) = ∇f (xk+1) as desired;
I For xk , we have

∇mk+1(xk) = ∇f (xk+1) + Bk+1(xk − xk+1)

which must be equal to ∇f (xk).
I Rearranging, we have that Bk+1 must satisfy the secant equation

Bk+1sk = yk

where sk = xk+1 − xk and yk = ∇f (xk+1)−∇f (xk).
I The secant equation can be satisfied only if 〈sk ,yk〉 > 0, which is guaranteed to
hold if the step-size αk satisfies the Wolfe conditions.
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?Quasi-Newton methods

How do we update Bk?

I There might be an infinite number of matrices satisfying the secant equation.
I To determine Bk+1 uniquely, we find the symmetric matrix that is closest to Bk :

Bk+1 = arg min
B
‖B−Bk‖W subject to B = BT and Bsk = yk (21)

I The choice ‖A‖W = ‖W
1
2 AW

1
2 ‖F where W can be any matrix satisfying

Wyk = sk , leads to an easy solution of (21) and a scale-invariant method.

DFP method (from Davidon, Fletcher & Powell)

I The DFP method arises from W = G−1, where G is the average Hessian

G =
∫ 1

0
∇2f (xk + ταkpk)dτ.

I It yields the following update for Bk

Bk+1 = VT
k BkVk + ηkyk(yk)T ,

where ηk = 1
〈yk ,sk〉 and Vk = I− ηkyk(sk)T .
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?Quasi-Newton methods

BFGS method [5] (from Broyden, Fletcher, Goldfarb & Shanno)
The BFGS method arises from directly updating Hk = B−1

k . It interchanges the roles
of sk and yk in the DFP method. The update on the inverse B is found by solving

min
H
‖H−Hk‖W subject to H = HT and Hyk = sk (22)

Also in this case, W = G−1. The solution is a rank-2 update of the matrix Hk :

Hk+1 = VT
k HkVk + ηksk(sk)T ,

where Vk = I− ηksk(yk)T .
I Initialization of H0 is an art. We can choose to set it to be an approximation of
∇2f (x0) obtained by finite differences or just a multiple of the identity matrix.
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?Quasi-Newton methods

BFGS method [5] (from Broyden, Fletcher, Goldfarb & Shanno)
The BFGS method arises from directly updating Hk = B−1

k . It interchanges the roles
of sk and yk in the DFP method. The update on the inverse B is found by solving

min
H
‖H−Hk‖W subject to H = HT and Hyk = sk (22)

Also in this case, W = G−1. The solution is a rank-2 update of the matrix Hk :

Hk+1 = VT
k HkVk + ηksk(sk)T ,

where Vk = I− ηksk(yk)T .

Theorem (Convergence of BFGS)
Let f ∈ C2. Assume that the BFGS sequence {xk} converges to a point x? and∑∞

k=1 ‖x
k − x?‖ ≤ ∞. Assume also that ∇2f (x) is Lipschitz continuous at x?.

Then xk converges to x? at a superlinear rate.

Remarks
The proof shows that given the assumptions, the BFGS updates for Bk satisfy the
Dennis & Moré condition, which in turn imply superlinear convergence.
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?Quasi-Newton methods

BFGS method [5] (from Broyden, Fletcher, Goldfarb & Shanno)
The BFGS method arises from directly updating Hk = B−1

k . It interchanges the roles
of sk and yk in the DFP method. The update on the inverse B is found by solving

min
H
‖H−Hk‖W subject to H = HT and Hyk = sk (22)

Also in this case, W = G−1. The solution is a rank-2 update of the matrix Hk :

Hk+1 = VT
k HkVk + ηksk(sk)T ,

where Vk = I− ηksk(yk)T .

SR1 (Symmetric-rank-1)
The SR method performs rank-1 updates of the matrix Hk :

Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)T

〈sk −Hkyk ,yk〉
.

Hk+1 is not guaranteed to be positive definite, but SR1 performs very well in practice.
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L-BFGS
Challenges for BFGS

I BFGS approach stores and applies a dense p × p matrix Hk .
I When p is very large, Hk can prohibitively expensive to store and apply.

L(imited memory)-BFGS

I Do not of store Hk , but keep only the m most recent pairs {(si ,yi)}.
I Compute Hk∇f (xk) by performing a sequence of operations with si and yi :

I Choose a temporary initial approximation H0
k .

I Recursively apply Hk+1 = VT
k HkVk + ηksk(sk)T , m times starting from H0

k :

Hk =
(

VT
k−1 · · ·V

T
k−m

)
H0

k (Vk−m · · ·Vk−1)

+ ηk−m
(

VT
k−1 · · ·V

T
k−m+1

)
sk−m(sk−m)T (Vk−m+1 · · ·Vk−1)

+ · · ·

+ ηk−1sk−1(sk−1)T

I From the previous expression, we can compute Hk∇f (xk) recursively.
I Replace the oldest element in {si ,yi} with (sk ,yk).
I From practical experience, m ∈ (3, 50) does the trick.
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L-BFGS: A quasi-Newton method
Procedure for computing Hk∇f (xk)

0. Recall ηk = 1/〈yk , sk〉.
1. q = ∇f (xk).
2. For i = k − 1, . . . , k −m

αi = ηi〈si ,q〉
q = q − αiyi .

3. r = H0
kq.

4. For i = k −m, . . . , k − 1
β = ηi〈yi , r〉
r = r + (αi − β)si .

5. Hk∇f (xk) = r.

Remarks
I Apart from the step r = H0

kq, the algorithm requires only 4mp multiplications.
I If H0

k is chosen to be diagonal, another p multiplications are needed.
I An effective initial choice is H0

k = γkI, where

γk =
〈sk−1,yk−1〉
〈yk−1,yk−1〉
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L-BFGS: A quasi-Newton method for big data

L-BFGS

1. Choose starting point x0 and m > 0.
2. For k = 0, 1, . . .

2.a Choose H0
k .

2.b Compute pk = −Hk∇f (xk) using the previous algorithm.
2.c Set xk+1 = xk + αkpk , where αk satisfies the Wolfe conditions.

if k > m, discard the pair {sk−m ,pk−m} from storage.
2.d Compute and store sk = xk+1 − xk , yk = ∇f (xk+1)−∇f (xk).

Warning
L-BFGS updates does not guarantee positive semidefiniteness of the variable metric
Hk in contrast to BFGS.
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Newton method

Local quadratic approximation using the Hessian

I Obtain a local quadratic approximation using the second-order Taylor series
approximation to f (xk + p):

f (xk + p) ≈ f (xk) + 〈p,∇f (xk)〉+
1
2
〈p,∇2f (xk)p〉 := mk(p)

I Assuming that the Hessian ∇2fk is positive definite, the Newton direction is the
vector pk that minimizes mk(p):

pk = −
(
∇2f (xk)

)−1
∇f (xk) .

I A unit step-size αk = 1 can be chosen near convergence. Then, the iterates
become

xk+1 = xk −
(
∇2f (xk)

)−1
∇f (xk) .

Remarks
I For f ∈ F2,1

L but f < F2,1
L,µ, the Hessian may not always be positive definite.
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(Local) Convergence of Newton method

Lemma
Assume f is a twice differentiable convex function with minimum at x? such that:
I ∇2f (x?) � µI for some µ > 0,
I ‖∇2f (x)−∇2f (y)‖2→2 ≤ M‖x− y‖2 for some constant M > 0 and all

x,y ∈ dom(f ).
Moreover, assume the starting point x0 ∈ dom(f ) is such that ‖x0 − x?‖2 <

2µ
3M .

Then, the Newton method iterates converge quadratically:

‖xk+1 − x?‖ ≤
M‖xk − x?‖2

2
2 (µ−M‖xk − x?‖2)

.

Remark
This is the fastest convergence rate we have seen so far, but it requires to solve a
p × p linear system at each iteration, ∇2f (xk)pk = −∇f (xk)!
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Newton’s method local quadratic convergence - Proof I/II [5]
Since ∇f (x?) = 0 we have

xk+1 − x? = xk − x? − (∇2f (xk))−1∇f (xk)

= (∇2f (xk))−1
(
∇2f (xk)(xk − x?)− (∇f (xk)−∇f (x?))

)
By Taylor’s theorem, we also have

∇f (xk)−∇f (x?) =
∫ 1

0
∇2f (xk + t(x? − xk))(xk − x?)dt

Combining the two above, we obtain

‖∇2f (xk)(xk − x?)− (∇f (xk)−∇f (x?))‖

=

∥∥∥∥∫ 1

0

(
∇2f (xk)−∇2f (xk + t(x? − xk))

)
(xk − x?)dt

∥∥∥∥
≤
∫ 1

0

∥∥∇2f (xk)−∇2f (xk + t(x? − xk))
∥∥ ‖xk − x?‖dt

≤ M‖xk − x?‖2
∫ 1

0
tdt =

1
2

M‖xk − x?‖2
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Newton’s method local quadratic convergence - Proof II/II [5].
I Recall

xk+1 − x? = (∇2f (xk))−1
(
∇2f (xk)(xk − x?)− (∇f (xk)−∇f (x?))

)
‖∇2f (xk)(xk − x?)− (∇f (xk)−∇f (x?))‖ ≤

1
2

M‖xk − x?‖2

I Since ∇2f (x?) is nonsingular, there must exist a radius r such that
‖(∇2f (xk))−1‖ ≤ 2‖(∇2f (x?))−1‖ for all xk with ‖xk − x∗‖ ≤ r .

I Substituting, we obtain

‖xk+1 − x?‖ ≤ M‖(∇2f (x?))−1‖‖xk − x?‖2 = M̃‖xk − x?‖2,

where M̃ = M‖(∇2f (x?))−1‖.
I If we choose ‖x0 − x?‖ ≤ min(r , 1/(2M̃)), we obtain by induction that the
iterates xk converge quadratically to x?.

�
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Example: Logistic regression

Problem (Logistic regression)
Given A ∈ {0, 1}n×p and b ∈ {−1,+1}n , solve:

f ? := min
x,β

{
f (x) :=

1
n

n∑
j=1

log
(

1 + exp
(
−bj(aT

j x + β)
))}

.

Real data
I Real data: w5a with n = 9888 data points, p = 300 features
I Available at

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.
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Example: Logistic regression - numerical results
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Pure Newton
Quasi-Newton with BFGS
Quasi-Newton with L-BFGS
Accelerated gradient method
Line Search AGD with adaptive restart

Parameters
I For BFGS, L-BFGS and Newton’s method: maximum number of iterations 200,
tolerance 10−6. L-BFGS memory m = 50.

I For accelerated gradient method: maximum number of iterations 20000,
tolerance 10−6.

I Ground truth: Get a high accuracy approximation of x? and f ? by applying
Newton’s method for 200 iterations.
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Affine invariance of Newton method

Lemma
The convergence characterization above changes when we apply an affine transform to
the space. However, each Newton step is affine invariant. That is, the Newton’s step
in the transformed space results into estimates that easily lead to corresponding
estimates of the original space through the inverse affine transformation.

Proof.
Let T ∈ Rp×p be a nonsingular affine transformation of Rp×p. We define
f̄ (y) = f (Ty) where x = Ty. We compute the following quantities:

∇f̄ (y) = TT∇f (x) and ∇2 f̄ (y) = TT∇2f (x)T.

Then, in the iterates yk+1 = yk −
(
∇2 f̄ (y)

)−1
∇f̄ (y), we observe:

−
(
∇2 f̄ (y)

)−1
∇f̄ (y) = −T−1

(
∇2f (x)

)−1
∇f (x),

and thus,

xk+1 = xk −
(
∇2f (x)

)−1
∇f (x) = T

(
yk −

(
∇2 f̄ (y)

)−1
∇f̄ (y)

)
= Tyk+1

�

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 03 – Convex unconstrained, smooth minimization

Affine invariance in optimization

On the positive side...
I We have shown that Newton method is affine
invariant in practice: it is insensitive to the choice
of the coordinate system.

I Moreover, to apply Newton in practice, we often do
not require the knowledge of global constants such
as strongly convexity parameter µ or Lipschitz
constants M and L.

On the negative side...
I The analysis of classic Newton method includes
global constants µ,M and/or L, which are usually
unknown a priori and/or are very hard to
compute...

I As a by-product, we might not know in reality the
actual number of Newton steps required for a given
accuracy.

I While Newton method is affine invariant in
practice, the above analysis is not!
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accuracy.

I While Newton method is affine invariant in
practice, the above analysis is not!
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Self-concordant minimization

Self-concordant minimization (SCM) problem

F? := min
x∈dom(f )

f (x)

I f ∈ F2(dom(f )) - self-concordant on dom(f ) := {x ∈ Rp : f (x) < +∞}

“I’m not convinced... Why to use self-concordance in optimization?”
I A self-concordant function might not not necessarily be strongly convex or have a
continuous Lipschitz gradient.

L � Lipschitz gradient

µ � strongly convex Self-concordant

Wednesday, June 18, 14
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Fundamental self-concordant inequality

Fundamental inequality

‖y− x‖2
x

1 + ‖y− x‖x
≤ 〈∇f (y)−∇f (x),y− x〉 ≤

‖y− x‖2
x

1− ‖y− x‖x

I The left-hand side inequality holds for all x,y ∈ dom(f ).
I The right-hand side inequality holds for ‖y− x‖x < 1.

Recall: Local norm ‖b‖x :=
√
〈b,∇2f (x)b〉.

Previously seen...

µ‖x− y‖2
2 ≤ 〈∇f (y)−∇f (x),y− x〉 ≤ L‖x− y‖2

2

I The left-hand side inequality holds for f ∈ F2,1
µ and for all x,y ∈ dom(f ).

I The right-hand side inequality holds for f ∈ F2,1
L and for all x,y ∈ dom(f ).

I Both inequalities hold for f ∈ F2,1
L,µ and for all x,y ∈ dom(f ).
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Newton method for SCM

Damped Newton algorithm

1. Choose x0 ∈ dom(f ) as a starting point.
2. For k = 0, 1, · · · , perform:

dk = −
(
∇2f (xk)

)−1
∇f (xk) (Newton direction)

λk = ‖dk‖xk (Newton decrement)
αk = (1 + λk)−1 (step-size)
xk+1 = xk + αkdk

Complexity per iteration

I Evaluation of ∇2f (xk) and ∇f (xk) (closed form expressions).
I Computing the Newton direction requires solving the linear system
∇2f (xk)dk = −∇f (xk).

I Computing the Newton decrement λk requires 〈dk ,∇2f (x)dk〉.
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Global convergence

Lemma (Descent lemma)
Let {xk}k≥0 be the sequence generated by Damped Newton algorithm. Then

f (xk+1) ≤ f (xk)− ω(λk)

where ω(τ) := τ − ln(1 + τ) > 0 for τ > 0.

We observe that:
I [f (xk+1)− f ?] ≤ [f (xk)− f ?]− ω(λk) for all k ≥ 0.
I [f (xk)− f ?] ≤ [f (x0)− f ?]−

∑k−1
j=0 ω(λj).

I If λk ≥ λ > 0 for k = 0, . . . ,K , then

[f (xK )− f ?] ≤ [f (x0)− f ?]−Kω(λ).

The number of iterations to reach f (xK )− f ? ≤ ε is

K :=
⌊ [f (x0)− f ?]− ε

ω(λ)

⌋
+ 1.

I Global convergence rate is just sublinear, i.e., O(1/k).
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Proof of descent lemma

Sketch of proof.

I Let sk := xk + dk . We have xk+1 − xk = αkdk and xk+1 = (1− αk)xk + αksk .
I By self-concordance of f (upper bound inequality):

f (xk+1) ≤ f (xk) +∇f (xk)(xk+1 − xk) + ω∗(‖xk+1 − xk‖xk ),

under condition ‖xk+1 − xk‖xk < 1, where ω∗(τ) = −τ − ln(1− τ).
I Substituting xk+1 − xk = αkdk , we get

f (xk+1) ≤ f (xk) + αk∇f (xk)dk + ω∗(αk‖dk‖xk ).

I Substituting ∇f (xk) = −∇2f (xk)dk and using λk := ‖dk‖xk , we get

f (xk+1) ≤ f (xk)− αkλ
2
k + ω∗(αkλk).

I Let ψ(α) := αλ2
k − ω∗(αλk) = αλ2

k + αλk + ln(1− αλk). This function attains
the maximum at αk = (1 + λk)−1 and ψ(αk) = λk − ln(1 + λk). Hence, we have

f (xk+1) ≤ f (xk)− ω(λk).

�
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Local convergence
Newton algorithm

1. Choose x0 ∈ dom(f ) as a starting point.
2. For k = 0, 1, · · · , perform:{

dk = −
(
∇2f (xk)

)−1
∇f (xk) (Newton direction)

xk+1 = xk + dk (Unit step-size)

Theorem (Local quadratic convergence)
Let λk = ‖dk‖xk and {xk} be the sequence generated by Newton algorithm. If
λ0 < 0.3819 := λ̄ then

λk+1 ≤
(

λk
1− λk

)2
< λk

Consequently, {xk}k≥0 converges to x? at a quadratic rate.

Quadratic convergence region
Let σ := ω′∗(λ̄) = 0.6180. Then the quadratic convergence region Qσ is defined as:

Qσ := {x ∈ dom(f ) : ‖x− x?‖x? ≤ σ} .

For any x0 ∈ Qσ , {xk} converges to x? at a quadratic rate.
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A two-step approach for SCM
I Recall: λk = ‖dk‖xk :=

∥∥∥(∇2f (xk)
)−1
∇f (xk)

∥∥∥
xk
.

I Let λ̄ = 0.3819, which is the solution of λ/(1− λ)2 = 1.
I Choose a constant λ̂ ∈ (0, λ̄) and a starting point x0.

First stage: λk ≥ λ̂

I We apply the Damped Newton method, with guarantee:

f (xk+1) ≤ f (xk)− ω(λ̂)

I The number of iterations at this stage is bounded:

K ≤
1

ω(λ̂)

(
f (x0)− f (x?)

)
Second stage: λk ≤ λ̂

I We apply the standard Newton method, with quadratic convergence:

λk+1 ≤
(

λk
1− λk

)2
≤

λ̂λk

(1− λ̂)2
< λk
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Overall analytical worst-case complexity

quadratic convergence 
region

x⇤

x0 x1

xj

global convergence:!
sublinear!

local convergence

�k � �̂ > 0.3819

Q�

�k < �̂ � = !0
⇤(�̂)
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?From gradient descent to mirror descent

Gradient descent as a majorization-minimization scheme

I Majorize f at xk by using L-Lipschitz gradient continuity

f (x) ≤ f (xk) + 〈∇f (xk),x− xk〉+
L
2
‖x− xk‖2

2 := Q(x,xk)

I Minimize Q(x,xk) to obtain the next iterate xk+1

xk+1 = arg min
x

Q(x,xk)⇒ ∇f (xk) + L(xk+1 − xk) = 0

xk+1 = xk −
1
L
∇f (xk)

Other majorizers
We can re-write the majorization step as

f (x) ≤ f (xk) + 〈∇f (xk),x− xk〉+ αd(x,xk)

where d(x,xk) = 1
2‖x− xk‖2

2 is the Euclidean distance and α = L.

I Can we use a different function d(x,xk) that is better suited to minimizing f ?
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?Bregman divergences

Definition (Bregman divergence)
Let ψ : S → R be a continuously-differentiable and strictly convex function defined on
a closed convex set S. The Bregman divergence (dψ) associated with ψ for points x
and y is:

dψ(x,y) = ψ(x)− ψ(y)− 〈∇ψ(y),x− y〉

I ψ(·) is referred to as the Bregman or proximity function.

I The Bregman divergence satisfies the following properties:
(a) dψ(x,y) ≥ 0 for all x and y with equality if and only if x = y
(b) Define q(x) := dψ(x,y) for a fixed y, then ∇q(x) = ∇ψ(x)−∇ψ(y)
(c) For all x,y, z ∈ S, dψ(x,y) = dψ(x, z) + dψ(z,y) + 〈(x− z),∇ψ(y)−∇ψ(z)〉
(d) For all x,y ∈ S, dψ(x,y) + dψ(y,x) = 〈(x− y),∇ψ(x)−∇ψ(y)〉

I The Bregman divergence becomes a Bregman distance when it is symmetric (i.e.
dψ(x,y) = dψ(y,x)) and satisfies the triangle inequality.

I “All Bregman distances are Bregman divergences but the reverse is not true!”
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?Bregman divergences

I The Bregman divergence is the vertical distance at x between ψ and the tangent
of ψ at y, see figure below

 (y)

 (x)

 (y) + hr (y),x � yi

y x

} d (x,y)

I The Bregman divergence measures the strictness of convexity of ψ(·).
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?Bregman divergences

Table: Bregman functions ψ(x) & corresponding Bregman divergences/distances dψ(x,y)a .

Name (or Loss) Domainb ψ(x) dψ(x, y)

Squared loss R x2 (x − y)2

Itakura-Saito divergence R++ − log x
x

y
− log

(
x

y

)
− 1

Squared Euclidean distance Rp ‖x‖2
2 ‖x − y‖2

2
Squared Mahalanobis distance Rp 〈x,Ax〉 〈(x − y),A(x − y)〉c

Entropy distance p-simplexd
∑

i

xi log xi

∑
i

xi log

(
xi
yi

)
Generalized I-divergence R

p
+

∑
i

xi log xi

∑
i

(
log

(
xi
yi

)
− (xi − yi )

)
von Neumann divergence S

p×p
+ X log X −X tr (X (log X − log Y) −X + Y)e

logdet divergence S
p×p
+ − log det X tr

(
XY−1

)
− log det

(
XY−1

)
− p

a x, y ∈ R, x,y ∈ Rp and X,Y ∈ Rp×p.
b R+ and R++ denote non-negative and positive real numbers respectively.
c A ∈ Sp×p

+ , the set of symmetric positive semidefinite matrix.
d p-simplexB {x ∈ Rp :

∑p
i=1 xi = 1, xi ≥ 0, i = 1, . . . , p}

e tr(A) is the trace of A.
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?Mirror descent [1]

What happens if we use a Bregman distance dψ in gradient descent?
Let ψ : Rp → R be a µ-strongly convex and continuously differentiable function and
let the associated Bregman distance be dψ(x,y) = ψ(x)− ψ(y)− 〈x− y,∇ψ(y)〉.
Assume that the inverse mapping ψ? of ψ is easily computable (i.e., its convex
conjugate).
I Majorize: Find αk such that

f (x) ≤ f (xk) + 〈∇f (xk),x− xk〉+
1
αk

dψ(x,xk) := Qk
ψ(x,xk)

I Minimize

xk+1 = arg min
x

Qk
ψ(x,xk)⇒ ∇f (xk) +

1
αk

(
∇ψ(xk+1)−∇ψ(xk)

)
= 0

∇ψ(xk+1) = ∇ψ(xk)− αk∇f (xk)

xk+1 = ∇ψ∗(∇ψ(xk)− αk∇f (xk)) (∇ψ(·))−1 = ∇ψ∗(·)[6].

I Mirror descent is a generalization of gradient descent for functions that are
Lipschitz-gradient in norms other than the Euclidean.

I MD allows to deal with some constraints via a proper choice of ψ.
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?Convergence analysis of mirror descent

Problem

min
x∈X

f (x) (23)

where
I X is a closed convex subset of Rp;
I f is convex Lf -Lipschitz continuous with respect to some norm ‖ · ‖.

Theorem ([1])
Let {xk} be the sequence generated by mirror descent with x0 ∈ intX .
If the step-sizes are chosen as

αk =

√
2µdψ(x?,x0)

Lf

1
√

k

the following convergence rate holds

min
0≤s≤k

f (xk)− f ? ≤ Lf

√
2dψ(x?,x0)

µ

1
√

k

I This convergence rate is optimal for solving (23) with a first-order method.
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?Mirror descent example

How can we minimize a convex function over the unit simplex?

min
x∈∆

f (x),

where
I ∆ := {x ∈ Rp :

∑p
j=1 xj = 1,x ≥ 0} is the unit simplex;

I f is convex Lf -Lipschitz continuous with respect to some norm ‖ · ‖.

Entropy function

I Define the entropy function

ψe(x) =
p∑

j=1

xj lnxj if x ∈ ∆, +∞ otherwise.

I ψe is 1-strongly convex over int∆ with respect to ‖ · ‖1.
I ψ?e (z) = ln

∑p
j=1 ezj and ‖∇ψe(x)‖ → ∞ as x→ x̃ ∈ ∆.

I Let x0 = p−11, then dψ(x,x0) ≤ lnp for all x ∈ ∆.
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?Entropic descent algorithm [1]

Entropic descent algorithm (EDA)
Let x0 = p−11 and generate the following sequence

xk+1
j =

xk
j e−tk f ′j (xk)∑p

j=1 xk
j e−tk f ′j (xk)

, tk =
√

2lnp
Lf

1
√

k
,

where f ′(x) = (f1(x)′, . . . , fp(x)′)T ∈ ∂f (x), which is the subdifferential of f at x.
I This is an example of non-smooth and constrained optimization;
I The updates are multiplicative.

Convergence analysis

min
0≤s≤k

f (xs)− f ? ≤
√

2lnp
max0≤s≤k ‖f ′(xs)‖∞√

k
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Non-smooth unconstrained convex minimization

Problem (Mathematical formulation)
How can we find an optimal solution to the following optimization problem?

F? := min
x∈Rp

f (x) (24)

where f is proper, closed, convex, but not everywhere differentiable, f ∈ F .
Note that (24) is unconstrained.

Subgradient method
The subgradient method relies on the fact that even though f is non-smooth, we can
still compute its subgradients, informing of the local descent directions.

Subgradient method
1. Choose x0 ∈ Rp as a starting point.
2. For k = 0, 1, · · · , perform:{

xk+1 = xk − αkdk , (25)

where dk ∈ ∂f (xk) and αk ∈ (0, 1] is a given step size.
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Convergence of the subgradient method

Theorem
Assume that the following conditions are satisfied:
1. ‖g‖2 ≤ G for all g ∈ ∂f (x) for any x ∈ Rp.
2. ‖x0 − x?‖2 ≤ R

Let the stepsize be chosen as
αk =

R
G
√

k
then the iterates generated by the subgradient method satisfy

min
0≤i≤k

f (xi)− f ? ≤
RG
√

k
.

Remarks
I Condition (1) holds, for example, when f is G-Lipschitz.
I The convergence rate of O( 1√

k
) is the slowest we have seen so far!
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