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Outline

I This lecture
1. Learning as an optimization problem
2. Basic concepts in convex analysis
3. Complexity theory review

I Asymptotic notation
I Computational complexity
I Hardness result: certifying optimality in non-convex problems

I Next lecture
1. Unconstrained convex optimization: the basics
2. Gradient descent methods
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Recommended reading

I Chapter 2 & 3 in S. Boyd, and L. Vandenberghe, Convex Optimization,
Cambridge Univ. Press, 2009.

I Appendices A & B in D. Bertsekas, Nonlinear Programming, Athena Scientific,
1999.

I Chapter 3 & 34 in Cormen, Thomas H., et al. Introduction to algorithms. Vol. 2.
Cambridge: MIT press, 2001.

I Sections 3.1, 3.2, 5.3, 6.3, 7.2-7.5 in Sipser, Michael. Introduction to the Theory
of Computation. Cengage Learning, 2012.
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Motivation

Motivation

I The first part of this recitation introduces basic notions in convex analysis.
I The second part is intended to help you understand some concepts in the theory
of computation that you will encounter in discussions concerned with efficient
computation, and some of the notation involved.
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Practical Issues

Recall from Lecture 2:
Given an estimator x̂ ∈ arg minx∈X {F (x)} of x\, we discussed two key questions:

1. Is the formulation reasonable?
2. What is the role of the data size?

Consider the estimation error in the `2-norm:
∥∥x̂− x\

∥∥
2
.

I Is
∥∥x̂− x\

∥∥
2
enough to evaluate the performance of the estimator x̂?
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Practical Issues

No, because in general we can only numerically approximate the solution of

x̂ ∈ arg min
x∈Rp

{F (x)} .

Implementation
How do we numerically approximate x̂?

Practical performance
Denote the numerical approximation by x?ε . The practical performance is governed by∥∥x?ε − x\

∥∥
2
≤ ‖x?ε − x̂‖2︸         ︷︷         ︸

approximation error

+
∥∥x̂− x\

∥∥
2︸          ︷︷          ︸

statistical error

.

How do we evaluate ‖x?ε − x̂‖2?

I The ε-approximation solution x?ε will be defined rigorously in the later lectures.
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Practical issues

How do we numerically approximate x̂ ∈ arg minx∈Rp {F (x)} for a given F?

General idea of an optimization algorithm
Guess a solution, and then refine it based on oracle information.
Repeat the procedure until the result is good enough.

How do we evaluate the approximation error ‖x?ε − x̂‖2?

General concept about the approximation error
It depends on the characteristics of the function F and the chosen numerical
optimization algorithm.
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Need for convex analysis

General idea of an optimization algorithm
Guess a solution, and then refine it based on oracle information.
Repeat the procedure until the result is good enough.

General concept about the approximation error
It depends on the characteristics of the function F and the chosen numerical
optimization algorithm.

Role of convexity
Convexity provides a key optimization framework in obtaining numerical
approximations at theoretically well-understood computational costs.

To precisely understand these ideas, we need to understand basics of convex analysis.
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Challenges for an iterative optimization algorithm

Problem
Find the minimum x? of f(x), given starting point x0 based on only local information.

I Fog of war

x

f(x)

x0
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Challenges for an iterative optimization algorithm

Problem
Find the minimum x? of f(x), given starting point x0 based on only local information.

I Fog of war, non-differentiability, discontinuities, local minima, stationary points...

x

f(x)

x?x0
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Challenges for an iterative optimization algorithm

Problem
Find the minimum x? of f(x), given starting point x0 based on only local information.

I Fog of war, non-differentiability, discontinuities, local minima, stationary points...

x

f(x)

x?x0

We need a key structure on the function local minima: Convexity.
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Basics of functions

Definition (Function)
A function f with domain Q ⊆ Rp and codomain U ⊆ R is denoted as:

f : Q → U .

The domain Q represents the set of values in Rp on which f is defined and is denoted
as dom(f) ≡ Q = {x : −∞ < f(x) < +∞}. The codomain U is the set of function
values of f for any input in Q.
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Continuity in functions

Definition (Continuity)
Let f : Q → R where Q ⊆ Rp. Then, f is a continuous function over its domain Q if
and only if

lim
x→y

f(x) = f(y), ∀y ∈ Q,

i.e., the limit of f—as x approaches y—exists and is equal to f(y).

Definition (Class of continuous functions)
We denote the class of continuous functions f over the domain Q as f ∈ C(Q).

Definition (Lipschitz continuity)
Let f : Q → R where Q ⊆ Rp. Then, f is called Lipschitz continuous if there exists a
constant value K ≥ 0 such that:

|f(y)− f(x)| ≤ K‖y− x‖2, ∀x, y ∈ Q.

I "Small" changes in the input result into "small" changes in the function values.
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Continuity in functions
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Lower semi-continuity

Definition
A function f : Rn → R ∪ {+∞} is lower semi-continuous (l.s.c.) if

lim inf
x→y

f(x) ≥ f(y), for any y ∈ dom(f).

f(x) =
{

e−x, if x < 0
+∞, if x ≥ 0 f(x) =

{
e−x, if x ≤ 0
+∞, if x > 0

Unless stated otherwise, we only consider l.s.c. functions.
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Lower semi-continuity

Definition
A function f : Rn → R ∪ {+∞} is lower semi-continuous (l.s.c.) if

lim inf
x→y

f(x) ≥ f(y), for any y ∈ dom(f).

I Intuition: A lower semi-continuous function only jumps down.

f(x)

xx1 x2

l.s.c
not l.s.c

Monday, June 2, 14
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Differentiability in functions
I We use ∇f(x) to denote the gradient of f
at x ∈ Rp such that:

∇f(x) =
p∑
i=1

∂f

∂xi
ei =

[
∂f

∂x1
, · · · ,

∂f

∂xp

]T Example: f(x) = ‖b−Ax‖2
2

∇f(x) = −2AT (b−Ax).

Definition (Differentiability)
Let f ∈ C(Q) where Q ⊆ Rp. Then, f is a k-times continuously differentiable on Q if
its partial derivatives up to k-th order exist and are continuous ∀x ∈ Q.

Definition (Class of differentiable functions)
We denote the class of k-times continuously differentiable functions f on Q as
f ∈ Ck(Q).

I In the special case of k = 2, we dub ∇2f(x) the Hessian of f(x), where
[∇2f(x)]i,j = ∂2f

∂xi∂xj
.

I We have Cq(Q) ⊆ Ck(Q) where q ≤ k. For example, a twice differentiable
function is also once differentiable.

I For the case of complex-valued matrices, we refer to the Matrix Cookbook online.
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Differentiability in functions

I Some examples:

f(x) = x2 · sin(1/x), x � 0

f(x)

x

Thursday, May 22, 14

x

f(x)

f(x) = |x|

Wednesday, June 18, 14

Figure: (Left panel) ∞-times continuously differentiable function in R. (Right panel)
Non-differentiable f(x) = |x| in R.
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Stationary points of differentiable functions

Definition (Stationary point)
A point x̄ is called a stationary point of a twice differentiable function f(x) if

∇f(x̄) = 0.

Definition (Local minima, maxima, and saddle points)
Let x̄ be a stationary point of a twice differentiable function f(x).
I If ∇2f(x̄) � 0, then the point x̄ is called a local minimum.
I If ∇2f(x̄) ≺ 0, then the point x̄ is called a local maximum.
I If ∇2f(x̄) = 0, then the point x̄ can be a saddle point depending on the sign
change.
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Stationary points of smooth functions contd.

Intuition
Recall Taylor’s theorem for the function f around x̄ for all y that satisfy ‖y− x̄‖2 ≤ r
in a local region with radius r as follows

f(y) = f(x̄) + 〈∇f(x̄),y− x̄〉+
1
2

(y− x̄)T∇2f(z)(y− x̄),

where z is a point between x̄ and y. When r → 0, the second-order term becomes
∇2f(z)→ ∇2f(x̄). Since ∇f(x̄) = 0, Taylor’s theorem leads to
I f(y) > f(x̄) when ∇2f(x̄) � 0. Hence, the point x̄ is a local minimum.
I f(y) < f(x̄) when ∇2f(x̄) ≺ 0. Hence, the point x̄ is a local maximum.
I f(y) ≷ f(x̄) when ∇2f(x̄) = 0. Hence, the point x̄ can be a saddle point (i.e., f(x) = x3

at x̄ = 0), a local minima (i.e., f(x) = x4 at x̄ = 0) or a local maxima (i.e., f(x) = −x4

at x̄ = 0).

f(x)

x
local minimum

local maximum

saddle point

saddle point x̄
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Convexity

Definition
A function f : Q → R ∪ {+∞} is called convex on its domain Q if, for any
x1, x2 ∈ Q and α ∈ [0, 1], we have:

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2).

I If −f(x) is convex, then f(x) is called concave.

x

f(x)

x1 x2

f(x2)

f(x1)

Monday, May 26, 14

x

f(x)

x1 x2

f(x2)

f(x1)

↵x1 + (1 � ↵)x2

f(↵x1 + (1 � ↵)x2)

↵f(x1) + (1 � ↵)f(x2)

Thursday, May 29, 14

x

f(x)

x1 x2

f(x2)

f(x1)

Monday, May 26, 14

Figure: (Left) Non-convex (Middle) Convex (Right) Concave
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Convexity

Definition
A function f : Q → R ∪ {+∞} is called convex on its domain Q if, for any
x1, x2 ∈ Q and α ∈ [0, 1], we have:

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2).

I Additional terms that you will encounter in the literature

Definition (Proper)
A convex function f is called proper if its domain satisfies dom(f) , ∅ and,
f(x) > −∞, ∀x ∈ dom(f).

Definition (Extended real-valued convex functions)
We define the extended real-valued convex functions f as

f(x) =
{

f(x) if x ∈ dom(f)
+∞ if otherwise

To denote this concept, we use f : dom(f)→ R ∪ {+∞}. (Note how l.s.c. might be
useful)
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Convexity

Definition
A function f : Q → R ∪ {+∞} is called convex on its domain Q if, for any
x1, x2 ∈ Q and α ∈ [0, 1], we have:

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2).

Example
Function Example Attributes

`p vector norms, p ≥ 1 ‖x‖2, ‖x‖1, ‖x‖∞ convex

`p matrix norms, p ≥ 1 ‖X‖∗ =
∑rank(X)

i=1
σi convex

Square root function
√
x concave, nondecreasing

Maximum of functions max{x1, . . . , xn} convex, nondecreasing
Minimum of functions min{x1, . . . , xn} concave, nondecreasing

Sum of convex functions
∑n

i=1
fi, fi convex convex

Logarithmic functions log (det(X)) concave, assumes X � 0
Affine/linear functions

∑n

i=1
Xii both convex and concave

Eigenvalue functions λmax(X) convex, assumes X = XT
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Strict convexity

Definition
A function f : Q → R ∪ {+∞} is called strictly convex on its domain Q if and only if
for any x1, x2 ∈ Q and α ∈ [0, 1] we have:

f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2).

x

f(x)

x1 x2

f(x2)f(x1)

Set of minima

Monday, June 16, 14

x

f(x)

x1 x2

f(x2)

f(x1)

↵x1 + (1 � ↵)x2

f(↵x1 + (1 � ↵)x2)

↵f(x1) + (1 � ↵)f(x2)

Thursday, May 29, 14

Figure: (Left panel) Convex function. (Right panel) Strictly convex function.
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Revisiting: Alternative definitions of function convexity II

Definition
A function f ∈ C1(Q) is called convex on its domain if for any x, y ∈ Q:

f(x) ≥ f(y) + 〈∇f(y), x− y〉.

f(x)

x

f(y)

y

the function lies above all 
of its tangents

f(y) + hrf(y),x � yi

Definition
A function f ∈ C1(Q) is called convex on its domain if for any x, y ∈ Q:

〈∇f(y)−∇f(x), y− x〉 ≥ 0.

?That is, if its gradient is a monotone operator.
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Revisiting: Alternative definitions of function convexity III

Definition
A function f ∈ C2(Rp) is called convex on its domain if for any x, y ∈ Rp:

∇2f(x) � 0.

I Geometrical interpretation: the graph of f has zero or positive (upward)
curvature.

I However, this does not exclude flatness of f .
I ∇2f(x) � 0 is a sufficient condition for strict convexity.

x

f(x)

Flatness

Upward curvature

Wednesday, June 18, 14
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Stationary points and convexity

Lemma
Let f be a smooth convex function, i.e., f ∈ F1. Then, any stationary point of f is
also a global minimum.

Proof.
Let x? be a stationary point, i.e., ∇f(x?) = 0. By convexity, we have:

f(x) ≥ f(x?) + 〈∇f(x?), x− x?〉
∇f(x?)=0

= f(x?) for all x ∈ Rp.

�
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Is convexity of f enough for an iterative optimization algorithm?

x

f(x)

Constraints

Wednesday, July 2, 14
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Convexity over sets

Definition
I Q ⊆ Rp is a convex set if x1, x2 ∈ Q ⇒ ∀α ∈ [0, 1], αx1 + (1− α)x2 ∈ Q.
I Q ⊆ Rp is a strictly convex set if

x1, x2 ∈ Q =⇒ ∀α ∈ (0, 1), αx1 + (1− α)x2 ∈ interior(Q).

x1

x2

↵x
1
+

(1
� ↵

)x
2

Monday, May 26, 14

x1

x2

↵x
1 +

(1�
↵)x

2

Monday, May 26, 14

x1

x2

↵x
1
+

(1
� ↵

)x
2

Monday, May 26, 14

Figure: (Left) Strictly convex (Middle) Convex (Right) Non-convex
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Convexity over sets

Definition
I Q ⊆ Rp is a convex set if x1, x2 ∈ Q ⇒ ∀α ∈ [0, 1], αx1 + (1− α)x2 ∈ Q.
I Q ⊆ Rp is a strictly convex set if

x1, x2 ∈ Q =⇒ ∀α ∈ (0, 1), αx1 + (1− α)x2 ∈ interior(Q).

b = Ax
x1

x2

x3

Thursday, June 19, 14

Figure: A linear set of equations b = Ax defines an affine (thus convex) set.
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Convexity over sets

Definition
I Q ⊆ Rp is a convex set if x1, x2 ∈ Q ⇒ ∀α ∈ [0, 1], αx1 + (1− α)x2 ∈ Q.
I Q ⊆ Rp is a strictly convex set if

x1, x2 ∈ Q =⇒ ∀α ∈ (0, 1), αx1 + (1− α)x2 ∈ interior(Q).

Why is this also important/useful?
I convex sets <> convex optimization constraints

minimize
x

f0(x)

subject to constraints
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Some basic notions on sets I

Definition (Closed set)
A set is called closed if it contains all its limit points.

Definition (Closure of a set)
Let Q ⊆ Rp be a given open set, i.e., the limit points on the boundaries of Q do not
belong into Q. Then, the closure of Q, denoted as cl(Q), is the smallest set in Rp
that includes Q with its boundary points.

Q

Friday, June 27, 14

Q

Friday, June 27, 14

Q

Friday, June 27, 14

Figure: (Left panel) Closed set Q. (Middle panel) Open set Q and its closure cl(Q) (Right
panel).
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Some basic notions on sets II

Definition (Interior)
Let Q ⊆ Rp. Then, a point x ∈ Rp is an interior of Q if a neighborhood with radius r
of x is also included in Q. That is, there exists r > 0, such that
{y : ‖y− x‖2 ≤ r} ∈ Q. The set of all interior points is denoted as int(Q).

Example

I The interior of an open set is the set itself.
I The interior of the set {x : ‖y− x‖2 ≤ r} is the open set {x : ‖y− x‖2 < r}.

Definition (Relative interior)
Let Q ⊆ Rp. Then, a point x ∈ Rp is a relative interior of Q if Q contains the
intersection of a neighborhood with radius r around x with the intersection of all
affine sets containing Q, i.e., aff(Q). The set of all relative interior points is denoted
as relint(Q).

Example
The interior of the affine set X = {x : Ax = b} is empty. However, its relative
interior is itself, i.e., relint(X ) = X .
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Some basic notions on sets II

Definition (Interior)
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Convex hull
Definition (Convex hull)
Let V ⊆ Rp be a set. The convex hull of V, i.e., conv(V), is the smallest convex set
that contains V.

Definition (Convex hull of points)
Let V ⊆ Rp be a finite set of points with cardinality |V|. The convex hull of V is the
set of all convex combinations of its points, i.e.,

conv(V) =

{ |V|∑
i=1

αixi :
|V|∑
i=1

αi = 1, αi ≥ 0, ∀i, xi ∈ V

}
.

Q

Tuesday, June 17, 14

conv(Q)

Tuesday, June 17, 14

Figure: (Left) Discrete set of points V. (Right) Convex hull conv(V).
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Revisiting: Alternative definitions of function convexity IV

Definition
The epigraph of a function f : Q → R,Q ⊆ Rp is the subset of Rp+1 given by:

epi(f) = {(x, w) : x ∈ Q, w ∈ R, f(x) ≤ w} .

Lemma
A function f : Q → R is convex if and only if its epigraph, i.e, the region above its
graph, is a convex set.

x

f(x)

epi(f)

Monday, May 26, 14

Figure: Epigraph — the region in green above graph f(·).
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Unfortunately, convexity does not imply tractability

But first...

1. How do we define tractability?
2. How do we classify running times of algorithms?
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Asymptotic Notation

What is this notation?
I Asymptotic Notation (Big-Oh Notation, Landau’s notation) describes asymptotic
growth of functions.

I It is usually used to describe:
I Running time of an algorithm
I Memory storage require by an algorithm
I Error achieved by an approximation

I Exact computation of the running time, memory, or error is usually not important:
For large inputs, multiplicative constants and lower-order terms “do not matter.”

Examples

I Binary search’s running time in a sorted list of n elements. [1]: O(log(n))
I Number of comparisons required for sorting a list of n elements [1]: Ω(n log(n))
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Asymptotic Notation: Big-Oh

Definition (Big-Oh)
Let f, g be two functions defined on some subset of the real numbers:

f(x) ∈ O(g(x)) iff ∃c > 0,∃x0, such that |f(x)| ≤ c|g(x)|, ∀x ≥ x0

I In computer science, the definition is
taken over positive integers.

Example

I x ∈ O(x2)
I log(n!) ∈ O(n log(n)) [cf., lab 1]
I n1+sin(n) ∈ O(n2)
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Asymptotic Notation: Big-Omega

Definition (Big-Omega)
Let f, g be two functions defined on some subset of the real numbers:

f(x) ∈ Ω(g(x)) iff ∃c > 0, ∃x0, such that |f(x)| ≥ c|g(x)|, ∀x ≥ x0

I Intuition: g is a lower bound of f iff f
is an upper bound of g.

I f(x) ∈ Ω(g(x))⇔ g(x) ∈ O(f(x)).

Example

I x2 ∈ Ω(x)
I log(n!) ∈ Ω(n log(n)) [cf., lab 1]
I n1+sin(n) ∈ Ω(1)
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Asymptotic Notation: Theta

Definition (Theta)
Let f, g be two functions defined on some subset of the real numbers:

f(x) ∈ Θ(g(x)) iff ∃c1, c2 > 0, ∃x0, such that c1 ≤
|f(x)|
|g(x)|

≤ c2, ∀x ≥ x0

I Intuition: g is a tight bound for f iff it is both
an upper and a lower bound of it.

I f(x) ∈ Θ(g(x)) iff f(x) ∈ O(g(x)) and
f(x) ∈ Ω(g(x)).

I f(x) ∈ Θ(g(x)) iff g(x) ∈ Θ(f(x)).

Example

I sin(x) ∈ Θ(1)
I x+ log(x) ∈ Θ(x)
I log(n!) ∈ Θ(n log(n)) [cf., lab 1]
I Stirling’s approximation:
n! ∈

√
2πn(n

e
)n(1 + Θ( 1

n
))
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Asymptotic Notation: small-oh and small-omega

Definition (small-oh, small-omega)
Let f, g be two functions defined on some subset of the real numbers:

f(x) ∈ o(g(x)) iff ∀c > 0,∃x0, such that |f(x)| ≤ c|g(x)|, ∀x ≥ x0,

or equivalently limx→∞
|f(x)|
|g(x)| = 0.

f(x) ∈ ω(g(x)) iff ∀c > 0, ∃x0, such that |f(x)| ≥ c|g(x)|,∀x ≥ x0,

or equivalently limx→∞
|f(x)|
|g(x)| =∞.

I These are non-tight upper/lower bounds.
I g(x) ∈ o(f(x)): g is dominated by f
asymptotically.

I f(x) ∈ ω(g(x)): f dominates g asymptotically.
I f(x) ∈ ω(g(x))⇔ g(x) ∈ o(f(x)).

Example

I 1
x
∈ o(1)

I 5 ∈ ω( 1
x

)
I n! ∈ o(nn) [cf., lab 1]
I n! ∈ ω(2n) [cf., lab 1]
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Hierarchy of asymptotic notation classes

I Relation between the different asymptotic notations:

⌦(g(x))

!(g(x))⇥(g(x))o(g(x))

O(g(x))

I Analogy with real numbers comparison:

Aymptotic function comparison Real numbers comparison
f(x) = O(g(x)) a ≤ b
f(x) = Ω(g(x)) a ≥ b
f(x) = Θ(g(x)) a = b
f(x) = o(g(x)) a < b
f(x) = ω(g(x)) a > b

I Difference from real numbers comparison: Not all functions are asymptotically
comparable, e.g., n, n1+sin(n).
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Asymptotic Notation: some remarks

Some notation abuse:
I Use of equality: f(x) = O(g(x))

Some variations:
I Soft-Oh: Õ(·) notation ignores log terms, i.e., O(xc logk(x)) = Õ(xc).
I Asymptotic notation can also describe limiting behavior as x→ a, e.g.,
ex = 1 + x+ x2

2 + o(x2), x→ 0 (by Taylor’s theorem).
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Computational complexity: Complexity of deciding

Decision problems: “yes” or “no” answers.

How hard are these problems?

I Shortest path: Is there a path from point a to point b shorter than d ?
I Subset sum problem: Is there a subset of some given integers that sums up to d ?

For d = 5?

a

b

1

1

3

1

1

2

Figure: Graph G(V, E).

Applications:
I Driving directions in
google maps.

I Minimum delay path
for data packets in
networking.
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Computational complexity: Complexity of deciding

Decision problems: “yes” or “no” answers.

How hard are these problems?

I Shortest path: Is there a path from point a to point b shorter than d ?
I Subset sum problem: Is there a subset of some given integers that sums up to d ?

For d = 5? yes.
Shortest path can be computed by Dijkstra in O(|V|2) [1]

a

b

1

1

3

1

1

2

Figure: Graph G(V, E).

Applications:
I Driving directions in
google maps.

I Minimum delay path
for data packets in
networking.
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Computational complexity: Complexity of deciding

Decision problems: “yes” or “no” answers.

How hard are these problems?

I Shortest path: Is there a path from point a to point b shorter than d ?
I Subset sum problem: Is there a subset of some given integers that sums up to d ?

For d = 0?

Consider these two lists of integers:

A : −2, 5, 4, 9, 19,−11

B : −2, 5, 4, 9, 19,−6

Applications:
I In cryptography:
public key system,
computer passwords,
message verification.
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Computational complexity: Complexity of deciding

Decision problems: “yes” or “no” answers.

How hard are these problems?

I Shortest path: Is there a path from point a to point b shorter than d ?
I Subset sum problem: Is there a subset of some given integers that sums up to d ?

For d = 0?

Consider these two lists of integers:

A : −2, 5,4,9, 19,−11 Yes

B : −2, 5, 4, 9, 19,−6 No

Applications:
I In cryptography:
public key system,
computer passwords,
message verification.
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Computational complexity: Complexity of deciding

Decision problems: “yes” or “no” answers.

How hard are these problems?

I Shortest path: Is there a path from point a to point b shorter than d ?
I Subset sum problem: Is there a subset of some given integers that sums up to d ?

No known “efficient” algorithm can decide if a general list has a d-subset sum

Applications:
I In cryptography:
public key system,
computer passwords,
message verification.
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Computational complexity: Class P

accept/reject

ru
nn

in
g

tim
e

Figure: Deterministic Turing
machine

Definition (Class P)
P (polynomial time): decision problems solvable in
polynomial time.

Definition (Turing machine)
(Deterministic) Turing machine (DTM): mathematical
computational model, think of it as your regular computer.
For formal definition, refer to [4].

I Problems in P can be solved by a DTM in polynomial
time.

I Polynomial time means O(nk) time for some k ∈ N,
where n is the size of the input.

Example (Shortest path problem)
Shortest path can be computed by Dijkstra in O(|V|2) [1]
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Computational complexity: Class N P

accept/reject

ru
nn

in
g

tim
e

Figure: Deterministic Turing
machine

Definition (Class N P)
NP (nondeterministic polynomial time): decision problems
such that “yes” answer can be “checked” in poly-time via a
deterministic Turing machine, i.e., there exists a certificate
(proof) whose correctness can be verified in poly-time.

I Polynomial time means O(nk) time for some k ∈ N,
where n is the size of the input.

I It follows then that the certificate should be of
polynomial length.

I P ⊆ NP

Example
I Subset sum problem:

I Proof: Subset of integers that do sum up to d.
I Verification: Addition of can be done in polynomial time.

I Shortest path problem.
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Computational complexity: Class N P
ru

nn
in

g
tim

e reject

reject

accept

Figure: Non-Deterministic (decider)
Turing machine

Definition (Class N P)
NP (nondeterministic polynomial time): decision
problems such that “yes” answer can be “checked”
in poly-time via a deterministic Turing machine,
i.e., there exists a certificate (proof) whose
correctness can be verified in poly-time.

Definition (Non-deterministic TM)
Non-deterministic Turing machine (NTM): A
fictional "super" computer than can "clone" itself
every time it reaches a decision, each clone
continue with one of the possible choices. For
formal definition, refer to [4].

I Problems in NP can be solved by a NTM in
polynomial time.
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Computational complexity: Open Problem

Open problem: P vs N P

I P ?= NP: Is generating a proof as easy as checking it ?
I One of the 7 Millennium Prize Problems by the Clay Mathematics Institute.
I Conjecture: P , NP.
I Many other open problems in complexity.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 42/ 53



Computational complexity: Reductions

Definition (Polynomial time reducibility)

I Reduction is a way of converting one problem to another such that the solution
to the second problem can be used to solved the first problem.

I Polynomial time reduction (mapping reducibility) [4]: We say a problem A is
poly-time mapping reducible to B, denoted by A ≤p B, iff there exists polynomial
time computable function f that converts any input of A into an input of B,
such that the transformed problem has the same output as the original problem.

I A’s answer is yes on input w ⇔ B’s answer is yes on input f(w).

I If A is poly-time reducible to B, then the existence of a poynomial algorithm of
B would imply the existence of a polynomial algorithm for A also.
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Computational complexity: Hardness

Definition (N P-Hard)

I NP-Hard: Problems (not necessarily decision) that are at least as hard as the
hardest problems in NP.

I B ∈ NP-Hard⇔ ∀A ∈ NP, A ≤p B.
I Examples: search version of subset sum, candy crush.

Definition (N P-Complete)

I NP-Complete: Decision problems in NP, that are at least as hard as the hardest
problems in NP.

I NP-Complete = NP ∩NP-Hard.
I Subset sum, Karp’s 21 NP-complete problems [2].
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Computational complexity: Class coN P

Definition (Class coN P)
coNP (complement nondeterministic polynomial time): decision problems such that
“no” answer can be “checked” in poly-time, i.e., there exists a certificate (or a
counter-example) whose correctness can be verified in poly-time.

Example (subset sum ∈ coN P)
Does every non-empty subset sums up to a non-zero sum?

I A ∈ coNP iff A ∈ NP
I P ∈ coNP ∩NP
I B ∈ coNP-Hard⇔ ∀A ∈ coNP, A ≤p B
I coNP-Complete: coNP ∩ coNP-Hard.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 45/ 53



Two of the possible worlds

co
m

pl
ex

ity

NP-complete coNP-complete

NP coNP

coNP-HardNP-Hard

P

co NP-Hard = NP-Hard

P = NP =co NP
= co NP-complete
= NP-complete

P 6= NP & NP 6= coNP P = NP
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Hardness result: Certifying optimality in mathematical
programming

Problem (Smooth constrained optimization problems)
We consider smooth constrained optimization problems:

min
x∈Rp

f(x) such that gi(x) ≤ 0, ∀i ∈ [1, · · · ,m]

Smooth: we assume that f and all gi’s are infinitely differentiable.

How hard is it to check that a given solution x ∈ Rp is optimal?

Why should we care ?
I Optimization is ubiquitous: applications in control, estimation, signal processing,
electronics design, communications, finance, ...

I Emphasize the importance of convexity: smoothness alone is not enough.
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Hardness result: Certifying optimality in mathematical
programming

Problem (Smooth constrained optimization problems)
We consider smooth constrained optimization problems:

min
x∈Rp

f(x) such that gi(x) ≤ 0, ∀i ∈ [1, · · · ,m]

Smooth: we assume that f and all gi’s are infinitely differentiable.

How hard is it to check that a given solution x ∈ Rp is optimal?

Example (Subset sum problem revisited)
Subset Sum problem: Given integers d1 · · · dp, is there a non-empty subset that sums
up to d0?

Equivalent smooth constrained optimization problem:

min
y∈Rp

(
p∑
i=1

diyi − d0

)2

+
p∑
i=1

yi(1− yi) such that 0 ≤ yi ≤ 1, ∀i ∈ [1, · · · , p]
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Hardness result: certifying optimality in mathematical
programming

Proposition
Checking if a point is the global minimum of a smooth constrained optimization
problem is NP-Hard [3] in general.

Proof.
Reduce an NP-complete problem to our problem:
I B: “Compute the global minimum of a smooth constrained optimization problem”.
I Subset sum problem (A) is known to be NP-complete.
I It has an equivalent formulation:

min
y∈Rp

(
p∑
i=1

diyi−d0)2+
p∑
i=1

yi(1−yi) such that 0 ≤ yi ≤ 1, ∀i ∈ [1, · · · , p] (1)

I Zero is the global minimum objective value of (1) iff there exists a subset of
[d1, · · · , dp] with sum d0.

I We showed that A ≤p B, and A ∈ NP-complete, then B ∈ NP-Hard.

�
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Hardness result: Certifying optimality in mathematical
programming

Proposition
Checking if a point is a local minimum of a smooth constrained optimization problem
is coNP-Hard [3] in general.

We need a structure beyond smoothness that avoids such problems: Convexity?
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Unfortunately, convexity does not imply tractability

Consider the following NP-Hard problem:

Problem (Maximum Cut)
Given a graph G(V, E), such that n = |V|,m = |E|, the maximum cut problem is the
problem of finding a cut (i.e., a partition of the vertices of a graph into two disjoint
subsets S and S̄) with a cut-set (edges between S and S̄) of maximum weight.

Figure: The set S of black nodes corresponds to the cut-set δ(S) of red edges.

Max-Cut problem can be formulated as: maxS⊆V wT δ(S), where w ∈ Rm denote the
edge weights.
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Unfortunately, convexity does not imply tractability

Example (Cut polytope)
Consider the following smooth convex constrained optimization problem:

max
x⊆Cutn

wTx (2)

where Cutn is the convex hull of the characteristic vectors of cut sets, i.e.,
Cutn = conv({1S ,S ∈ V}). It is called the cut polytope. Problem (2) is NP-Hard,
since Max-Cut problem can be reformulated as (2).
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Convexity is still helpful

I Convexity does not imply tractability in general.
I Convexity implies that finding a local minimum is enough to find a global
minimum.
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