Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 3: Convex analysis and complexity

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2017)

License Information for Mathematics of Data Slides

This work is released under a <u>Creative Commons License</u> with the following terms:

Attribution

The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

Non-Commercial

 The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.

▶ Share ∆like

- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

- This lecture
 - 1. Learning as an optimization problem
 - 2. Basic concepts in convex analysis
 - 3. Complexity theory review
 - Asymptotic notation
 - Computational complexity
 - Hardness result: certifying optimality in non-convex problems
- Next lecture
 - 1. Unconstrained convex optimization: the basics
 - 2. Gradient descent methods

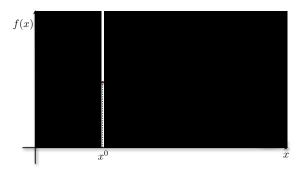
Recommended reading

- Chapter 2 & 3 in S. Boyd, and L. Vandenberghe, Convex Optimization, Cambridge Univ. Press, 2009.
- Appendices A & B in D. Bertsekas, Nonlinear Programming, Athena Scientific, 1999.
- Chapter 3 & 34 in Cormen, Thomas H., et al. Introduction to algorithms. Vol. 2. Cambridge: MIT press, 2001.
- ► Sections 3.1, 3.2, 5.3, 6.3, 7.2-7.5 in Sipser, Michael. Introduction to the Theory of Computation. Cengage Learning, 2012.

Motivation

Motivation

- ► The first part of this recitation introduces basic notions in convex analysis.
- ► The second part is intended to help you understand some concepts in the theory of computation that you will encounter in discussions concerned with efficient computation, and some of the notation involved.

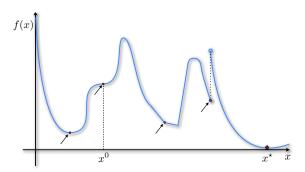


Challenges for an iterative optimization algorithm

Problem

Find the minimum x^{\star} of f(x), given starting point x^0 based on only local information.

► Fog of war

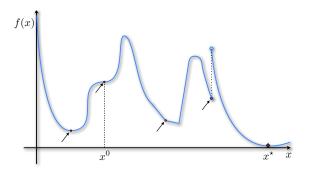


Challenges for an iterative optimization algorithm

Problem

Find the minimum x^{\star} of f(x), given starting point x^0 based on only local information.

▶ Fog of war, non-differentiability, discontinuities, local minima, stationary points...



Challenges for an iterative optimization algorithm

Problem

Find the minimum x^{\star} of f(x), given starting point x^0 based on only local information.

▶ Fog of war, non-differentiability, discontinuities, local minima, stationary points...

We need a key structure on the function local minima: Convexity.

Basics of functions

Definition (Function)

A function f with domain $\mathcal{Q}\subseteq\mathbb{R}^p$ and codomain $\mathcal{U}\subseteq\mathbb{R}$ is denoted as:

$$f: \mathcal{Q} \to \mathcal{U}$$
.

The domain $\mathcal Q$ represents the set of values in $\mathbb R^p$ on which f is defined and is denoted as $\mathrm{dom}(f) \equiv \mathcal Q = \{\mathbf x : -\infty < f(\mathbf x) < +\infty\}$. The codomain $\mathcal U$ is the set of function values of f for any input in $\mathcal Q$.

Continuity in functions

Definition (Continuity)

Let $f:\mathcal{Q}\to\mathbb{R}$ where $\mathcal{Q}\subseteq\mathbb{R}^p.$ Then, f is a continuous function over its domain \mathcal{Q} if and only if

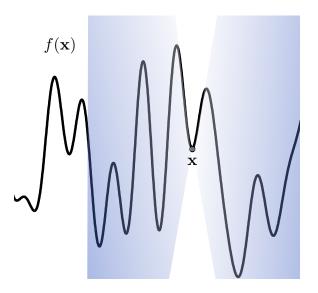
$$\lim_{\mathbf{x} \to \mathbf{y}} f(\mathbf{x}) = f(\mathbf{y}), \quad \forall \mathbf{y} \in \mathcal{Q},$$

i.e., the limit of f—as x approaches y—exists and is equal to f(y).

Definition (Class of continuous functions)

We denote the class of continuous functions f over the domain \mathcal{Q} as $f \in \mathcal{C}(\mathcal{Q})$.

Definition (Lipschitz continuity)

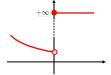

Let $f:\mathcal{Q}\to\mathbb{R}$ where $\mathcal{Q}\subseteq\mathbb{R}^p$. Then, f is called Lipschitz continuous if there exists a constant value $K\geq 0$ such that:

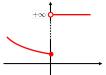
$$|f(\mathbf{y}) - f(\mathbf{x})| \le K ||\mathbf{y} - \mathbf{x}||_2, \quad \forall \mathbf{x}, \ \mathbf{y} \in \mathcal{Q}.$$

▶ "Small" changes in the input result into "small" changes in the function values.

Continuity in functions

Lower semi-continuity

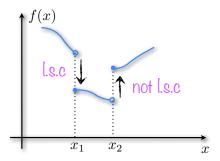

Definition


A function $f:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is lower semi-continuous (l.s.c.) if

$$\liminf_{\mathbf{x} \to \mathbf{y}} f(\mathbf{x}) \ge f(\mathbf{y}), \ \text{ for any } \mathbf{y} \in \text{dom}(f).$$

$$f(x) = \left\{ \begin{array}{ll} e^{-x}, & \text{if } x < 0 \\ +\infty, & \text{if } x \geq 0 \end{array} \right.$$

$$f(x) = \begin{cases} e^{-x}, & \text{if } x \le 0\\ +\infty, & \text{if } x > 0 \end{cases}$$


Unless stated otherwise, we only consider l.s.c. functions.

Lower semi-continuity

Definition

A function $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is lower semi-continuous (l.s.c.) if $\liminf_{\mathbf{x} \to \mathbf{y}} f(\mathbf{x}) \geq f(\mathbf{y}), \ \text{ for any } \mathbf{y} \in \text{dom}(f).$

▶ Intuition: A lower semi-continuous function *only jumps down*.

Differentiability in functions

We use $\nabla f(\mathbf{x})$ to denote the *gradient* of f at $\mathbf{x} \in \mathbb{R}^p$ such that:

$$\nabla f(\mathbf{x}) = \sum_{i=1}^p \frac{\partial f}{\partial x_i} \mathbf{e}_i = \left[\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_p} \right]^T \quad \frac{\text{Example: } f(\mathbf{x}) = \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2}{\nabla f(\mathbf{x}) = -2\mathbf{A}^T (\mathbf{b} - \mathbf{A}\mathbf{x}).}$$

Definition (Differentiability)

Let $f \in \mathcal{C}(\mathcal{Q})$ where $\mathcal{Q} \subseteq \mathbb{R}^p$. Then, f is a k-times continuously differentiable on \mathcal{Q} if its partial derivatives up to k-th order exist and are continuous $\forall \mathbf{x} \in \mathcal{Q}$.

Definition (Class of differentiable functions)

We denote the class of k-times continuously differentiable functions f on $\mathcal Q$ as $f\in \mathcal C^k(\mathcal Q).$

- In the special case of k=2, we dub $\nabla^2 f(\mathbf{x})$ the **Hessian** of $f(\mathbf{x})$, where $[\nabla^2 f(\mathbf{x})]_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j}$.
- We have $\mathcal{C}^q(\mathcal{Q}) \subseteq \mathcal{C}^k(\mathcal{Q})$ where $q \leq k$. For example, a twice differentiable function is also once differentiable.
- For the case of complex-valued matrices, we refer to the Matrix Cookbook online.

Differentiability in functions

► Some examples:

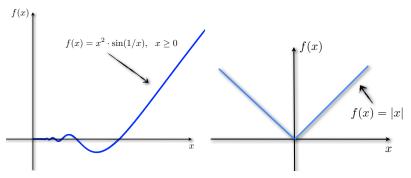


Figure: (Left panel) ∞ -times continuously differentiable function in \mathbb{R} . (Right panel) Non-differentiable f(x)=|x| in \mathbb{R} .

Stationary points of differentiable functions

Definition (Stationary point)

A point $\bar{\mathbf{x}}$ is called a stationary point of a twice differentiable function $f(\mathbf{x})$ if

$$\nabla f(\bar{\mathbf{x}}) = \mathbf{0}.$$

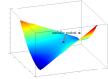
Definition (Local minima, maxima, and saddle points)

Let $\bar{\mathbf{x}}$ be a stationary point of a twice differentiable function $f(\mathbf{x})$.

- ▶ If $\nabla^2 f(\bar{\mathbf{x}}) \succ 0$, then the point $\bar{\mathbf{x}}$ is called a local minimum.
- If $abla^2 f(\bar{\mathbf{x}}) \prec 0$, then the point $\bar{\mathbf{x}}$ is called a local maximum.
- Fig. If $abla^2 f(\bar{\mathbf{x}}) = 0$, then the point $\bar{\mathbf{x}}$ can be a saddle point depending on the sign change.

Stationary points of smooth functions contd.

Intuition


Recall Taylor's theorem for the function f around $\bar{\mathbf{x}}$ for all \mathbf{y} that satisfy $\|\mathbf{y} - \bar{\mathbf{x}}\|_2 \le r$ in a local region with radius r as follows

$$f(\mathbf{y}) = f(\bar{\mathbf{x}}) + \langle \nabla f(\bar{\mathbf{x}}), \mathbf{y} - \bar{\mathbf{x}} \rangle + \frac{1}{2} (\mathbf{y} - \bar{\mathbf{x}})^T \nabla^2 f(\mathbf{z}) (\mathbf{y} - \bar{\mathbf{x}}),$$

where \mathbf{z} is a point between $\bar{\mathbf{x}}$ and \mathbf{y} . When $r \to 0$, the second-order term becomes $\nabla^2 f(\mathbf{z}) \to \nabla^2 f(\bar{\mathbf{x}})$. Since $\nabla f(\bar{\mathbf{x}}) = 0$, Taylor's theorem leads to

- $f(\mathbf{y}) > f(\bar{\mathbf{x}})$ when $\nabla^2 f(\bar{\mathbf{x}}) \succ 0$. Hence, the point $\bar{\mathbf{x}}$ is a local minimum.
- $f(\mathbf{y}) < f(\bar{\mathbf{x}})$ when $\nabla^2 f(\bar{\mathbf{x}}) \prec 0$. Hence, the point $\bar{\mathbf{x}}$ is a local maximum.
- ▶ $f(\mathbf{y}) \ge f(\bar{\mathbf{x}})$ when $\nabla^2 f(\bar{\mathbf{x}}) = 0$. Hence, the point $\bar{\mathbf{x}}$ can be a saddle point (i.e., $f(x) = x^3$ at $\bar{x} = 0$), a local minima (i.e., $f(x) = x^4$ at $\bar{x} = 0$) or a local maxima (i.e., $f(x) = -x^4$ at $\bar{x} = 0$).

Convexity

Definition

A function $f:\mathcal{Q}\to\mathbb{R}\cup\{+\infty\}$ is called convex on its domain \mathcal{Q} if, for any $\mathbf{x}_1,\ \mathbf{x}_2\in\mathcal{Q}$ and $\alpha\in[0,1]$, we have:

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2).$$

▶ If $-f(\mathbf{x})$ is convex, then $f(\mathbf{x})$ is called concave.

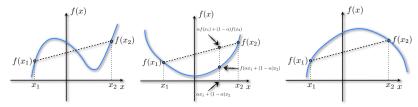


Figure: (Left) Non-convex (Middle) Convex (Right) Concave

Convexity

Definition

A function $f:\mathcal{Q}\to\mathbb{R}\cup\{+\infty\}$ is called convex on its domain \mathcal{Q} if, for any $\mathbf{x}_1,\ \mathbf{x}_2\in\mathcal{Q}$ and $\alpha\in[0,1]$, we have:

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2).$$

Additional terms that you will encounter in the literature

Definition (Proper)

A convex function f is called proper if its domain satisfies $dom(f) \neq \emptyset$ and, $f(\mathbf{x}) > -\infty, \ \forall x \in dom(f).$

Definition (Extended real-valued convex functions)

We define the extended real-valued convex functions f as

$$f(\mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{if } \mathbf{x} \in \text{dom}(f) \\ +\infty & \text{if otherwise} \end{cases}$$

To denote this concept, we use $f: \mathrm{dom}(f) \to \mathbb{R} \cup \{+\infty\}$. (Note how I.s.c. might be useful)

Convexity

Definition

A function $f:\mathcal{Q}\to\mathbb{R}\cup\{+\infty\}$ is called convex on its domain \mathcal{Q} if, for any $\mathbf{x}_1,\ \mathbf{x}_2\in\mathcal{Q}$ and $\alpha\in[0,1]$, we have:

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2).$$

Function	Example	Attributes
ℓ_p vector norms, $p \geq 1$	$\ \mathbf{x}\ _{2}, \ \mathbf{x}\ _{1}, \ \mathbf{x}\ _{\infty}$	convex
ℓ_p matrix norms, $p \geq 1$	$\ \mathbf{X}\ _* = \sum_{i=1}^{rank(\mathbf{X})} \sigma_i$	convex
Square root function	\sqrt{x}	concave, nondecreasing
Maximum of functions	$\max\{x_1,\ldots,x_n\}$	convex, nondecreasing
Minimum of functions	$\min\{x_1,\ldots,x_n\}$	concave, nondecreasing
Sum of convex functions	$\sum_{i=1}^n f_i, f_i$ convex	convex
Logarithmic functions	$\log\left(det(\mathbf{X}) ight)$	concave, assumes $\mathbf{X}\succ 0$
Affine/linear functions	$\sum_{i=1}^{n} X_{ii}$	both convex and concave
Eigenvalue functions	$\lambda_{max}(\mathbf{X})$	convex, assumes $\mathbf{X} = \mathbf{X}^T$

Strict convexity

Definition

A function $f:\mathcal{Q}\to\mathbb{R}\cup\{+\infty\}$ is called *strictly convex* on its domain \mathcal{Q} if and only if for any $\mathbf{x}_1,\ \mathbf{x}_2\in\mathcal{Q}$ and $\alpha\in[0,1]$ we have:

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) < \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2).$$

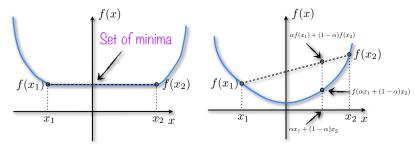
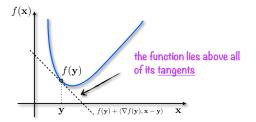


Figure: (Left panel) Convex function. (Right panel) Strictly convex function.



Revisiting: Alternative definitions of function convexity II

Definition

A function $f \in \mathcal{C}^1(\mathcal{Q})$ is called convex on its domain if for any $\mathbf{x},\ \mathbf{y} \in \mathcal{Q}$:

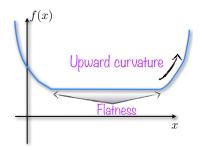
$$f(\mathbf{x}) \ge f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \ \mathbf{x} - \mathbf{y} \rangle.$$

Definition

A function $f \in \mathcal{C}^1(\mathcal{Q})$ is called convex on its domain if for any $\mathbf{x}, \ \mathbf{y} \in \mathcal{Q}$:

$$\langle \nabla f(\mathbf{y}) - \nabla f(\mathbf{x}), \ \mathbf{y} - \mathbf{x} \rangle > 0.$$

*That is, if its gradient is a monotone operator.


Revisiting: Alternative definitions of function convexity III

Definition

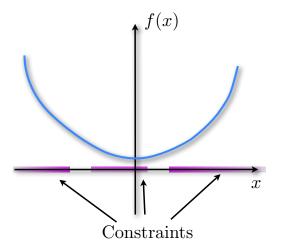
A function $f \in \mathcal{C}^2(\mathbb{R}^p)$ is called convex on its domain if for any $\mathbf{x},\ \mathbf{y} \in \mathbb{R}^p$:

$$\nabla^2 f(\mathbf{x}) \succeq 0.$$

- Geometrical interpretation: the graph of f has zero or positive (upward) curvature.
- ▶ However, this does not exclude flatness of f.
- ▶ $\nabla^2 f(\mathbf{x}) \succ 0$ is a sufficient condition for *strict* convexity.

Stationary points and convexity

Lemma


Let f be a smooth convex function, i.e., $f \in \mathcal{F}^1$. Then, any stationary point of f is also a global minimum.

Proof.

Let \mathbf{x}^{\star} be a stationary point, i.e., $\nabla f(\mathbf{x}^{\star}) = 0$. By convexity, we have:

$$f(\mathbf{x}) \geq f(\mathbf{x}^\star) + \left\langle \nabla f(\mathbf{x}^\star), \ \mathbf{x} - \mathbf{x}^\star \right\rangle \stackrel{\nabla f(\mathbf{x}^\star) = 0}{=} f(\mathbf{x}^\star) \quad \text{for all } \mathbf{x} \in \mathbb{R}^p.$$

Is convexity of f enough for an iterative optimization algorithm?

Convexity over sets

Definition

- $\blacktriangleright \ \mathcal{Q} \subseteq \mathbb{R}^p \text{ is a convex set if } \mathbf{x}_1, \ \mathbf{x}_2 \in \mathcal{Q} \Rightarrow \forall \alpha \in [0,1], \quad \alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2 \in \mathcal{Q}.$
- $Q \subseteq \mathbb{R}^p$ is a strictly convex set if $\mathbf{x}_1, \ \mathbf{x}_2 \in Q \Longrightarrow \forall \alpha \in (0,1), \ \alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2 \in \mathrm{interior}(Q).$



Figure: (Left) Strictly convex (Middle) Convex (Right) Non-convex

Convexity over sets

Definition

- $\blacktriangleright \ \mathcal{Q} \subseteq \mathbb{R}^p \text{ is a convex set if } \mathbf{x}_1, \ \mathbf{x}_2 \in \mathcal{Q} \Rightarrow \forall \alpha \in [0,1], \quad \alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2 \in \mathcal{Q}.$
- $\begin{array}{c} \blacktriangleright \ \mathcal{Q} \subseteq \mathbb{R}^p \text{ is a } \textit{strictly} \text{ convex set if} \\ \mathbf{x}_1, \ \mathbf{x}_2 \in \mathcal{Q} \Longrightarrow \forall \alpha \in (0,1), \quad \alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2 \in \mathsf{interior}(\mathcal{Q}). \end{array}$

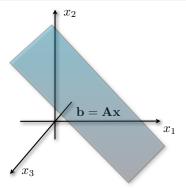


Figure: A linear set of equations $\mathbf{b} = \mathbf{A}\mathbf{x}$ defines an affine (thus convex) set.

Convexity over sets

Definition

- $Q \subseteq \mathbb{R}^p$ is a convex set if $\mathbf{x}_1, \ \mathbf{x}_2 \in \mathcal{Q} \Rightarrow \forall \alpha \in [0,1], \ \alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2 \in \mathcal{Q}.$
- $Q \subseteq \mathbb{R}^p$ is a *strictly* convex set if $\mathbf{x}_1, \ \mathbf{x}_2 \in Q \Longrightarrow \forall \alpha \in (0,1), \ \alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2 \in \mathsf{interior}(Q).$

Why is this also important/useful?

convex sets <> convex optimization constraints

minimize $f_0(\mathbf{x})$

subject to constraints

Some basic notions on sets

Definition (Closed set)

A set is called *closed* if it contains all its limit points.

Definition (Closure of a set)

Let $\mathcal{Q} \subseteq \mathbb{R}^p$ be a given open set, i.e., the limit points on the boundaries of \mathcal{Q} do not belong into \mathcal{Q} . Then, the closure of \mathcal{Q} , denoted as $\operatorname{cl}(\mathcal{Q})$, is the smallest set in \mathbb{R}^p that includes \mathcal{Q} with its boundary points.

Figure: (Left panel) Closed set \mathcal{Q} . (Middle panel) Open set \mathcal{Q} and its closure $cl(\mathcal{Q})$ (Right panel).

Convex hull

Definition (Convex hull)

Let $\mathcal{V} \subseteq \mathbb{R}^p$ be a set. The convex hull of \mathcal{V} , i.e., $\mathsf{conv}(\mathcal{V})$, is the *smallest* convex set that contains \mathcal{V} .

Definition (Convex hull of points)

Let $\mathcal{V}\subseteq\mathbb{R}^p$ be a finite set of points with cardinality $|\mathcal{V}|$. The convex hull of \mathcal{V} is the set of all convex combinations of its points, i.e.,

$$\mathrm{conv}(\mathcal{V}) = \left\{ \sum_{i=1}^{|\mathcal{V}|} \alpha_i \mathbf{x}_i \ : \ \sum_{i=1}^{|\mathcal{V}|} \alpha_i = 1, \ \alpha_i \geq 0, \forall i, \ \mathbf{x}_i \in \mathcal{V} \right\}.$$

Figure: (Left) Discrete set of points V. (Right) Convex hull conv(V).

Revisiting: Alternative definitions of function convexity IV

Definition

The epigraph of a function $f: \mathcal{Q} \to \mathbb{R}, \mathcal{Q} \subseteq \mathbb{R}^p$ is the subset of \mathbb{R}^{p+1} given by:

$$\operatorname{epi}(f) = \left\{ (\mathbf{x}, w) : \mathbf{x} \in \mathcal{Q}, w \in \mathbb{R}, f(\mathbf{x}) \leq w \right\}.$$

Lemma

A function $f: \mathcal{Q} \to \mathbb{R}$ is convex if and only if its epigraph, i.e, the region above its graph, is a convex set.

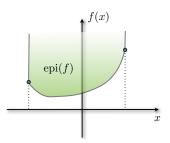


Figure: Epigraph — the region in green above graph $f(\cdot)$.

Unfortunately, convexity does not imply tractability

But first...

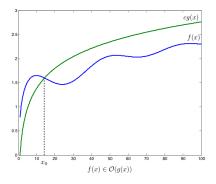
- 1. How do we define tractability?
- 2. How do we classify running times of algorithms?

Asymptotic Notation

What is this notation?

- Asymptotic Notation (Big-Oh Notation, Landau's notation) describes asymptotic growth of functions.
- It is usually used to describe:
 - Running time of an algorithm
 - Memory storage require by an algorithm
 - Error achieved by an approximation
- Exact computation of the running time, memory, or error is usually not important:
 For large inputs, multiplicative constants and lower-order terms "do not matter."

- ▶ Binary search's running time in a sorted list of n elements. [1]: $O(\log(n))$
- ▶ Number of comparisons required for sorting a list of n elements [1]: $\Omega(n \log(n))$



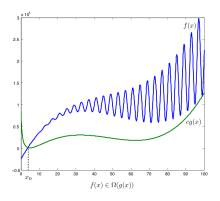
Asymptotic Notation: Big-Oh

Definition (Big-Oh)

Let f,g be two functions defined on some subset of the real numbers:

$$f(x) \in O(g(x))$$
 iff $\exists c > 0, \exists x_0, \text{ such that } |f(x)| \le c|g(x)|, \forall x \ge x_0$

In computer science, the definition is taken over positive integers.


- $x \in O(x^2)$
- $\blacktriangleright \log(n!) \in O(n\log(n))$
- $n^{1+\sin(n)} \in O(n^2)$

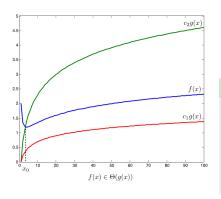
Asymptotic Notation: Big-Omega

Definition (Big-Omega)

Let f,g be two functions defined on some subset of the real numbers:

$$f(x) \in \Omega(g(x))$$
 iff $\exists c > 0, \exists x_0, \text{such that } |f(x)| \ge c|g(x)|, \forall x \ge x_0$

- ▶ Intuition: g is a lower bound of f iff f is an upper bound of g.
- $\quad \bullet \ f(x) \in \Omega(g(x)) \Leftrightarrow g(x) \in O(f(x)).$


- $x^2 \in \Omega(x)$
- $n^{1+\sin(n)} \in \Omega(1)$

Asymptotic Notation: Theta

Definition (Theta)

Let f,g be two functions defined on some subset of the real numbers:

$$f(x) \in \Theta(g(x)) \text{ iff } \exists c_1, c_2 > 0, \exists x_0, \text{such that } c_1 \leq \frac{|f(x)|}{|g(x)|} \leq c_2, \forall x \geq x_0$$

- Intuition: g is a tight bound for f iff it is both an upper and a lower bound of it.
- $f(x) \in \Theta(g(x)) \text{ iff } f(x) \in O(g(x)) \text{ and } f(x) \in \Omega(g(x)).$
- $f(x) \in \Theta(q(x))$ iff $q(x) \in \Theta(f(x))$.

- $\cdot \sin(x) \in \Theta(1)$
- $x + \log(x) \in \Theta(x)$
- ► Stirling's approximation: $n! \in \sqrt{2\pi n} (\frac{n}{e})^n (1 + \Theta(\frac{1}{n}))$

Asymptotic Notation: small-oh and small-omega

Definition (small-oh, small-omega)

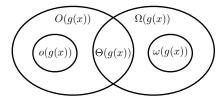
Let f,g be two functions defined on some subset of the real numbers:

$$f(x) \in o(g(x))$$
 iff $\forall c > 0, \exists x_0, \text{ such that } |f(x)| \le c|g(x)|, \forall x \ge x_0,$

or equivalently $\lim_{x\to\infty} \frac{|f(x)|}{|g(x)|} = 0$.

$$f(x) \in \omega(g(x))$$
 iff $\forall c > 0, \exists x_0, \text{ such that } |f(x)| \ge c|g(x)|, \forall x \ge x_0,$

or equivalently $\lim_{x\to\infty}\frac{|f(x)|}{|g(x)|}=\infty.$


- ► These are non-tight upper/lower bounds.
- ▶ $g(x) \in o(f(x))$: g is dominated by f asymptotically.
- $f(x) \in \omega(g(x))$: f dominates g asymptotically.
- $f(x) \in \omega(g(x)) \Leftrightarrow g(x) \in o(f(x)).$

Example

- $\frac{1}{x} \in o(1)$
- $5 \in \omega(\frac{1}{x})$
- $n! \in \omega(2^n)$

Hierarchy of asymptotic notation classes

Relation between the different asymptotic notations:

Analogy with real numbers comparison:

Aymptotic function comparison	Real numbers comparison
f(x) = O(g(x))	$a \leq b$
$f(x) = \Omega(g(x))$	$a \ge b$
$f(x) = \Theta(g(x))$	a = b
f(x) = o(g(x))	a < b
$f(x) = \omega(g(x))$	a > b

▶ Difference from real numbers comparison: Not all functions are **asymptotically comparable**, e.g., n, $n^{1+\sin(n)}$.

Asymptotic Notation: some remarks

Some notation abuse:

▶ Use of equality: f(x) = O(g(x))

Some variations:

- ▶ Soft-Oh: $\tilde{O}(\cdot)$ notation ignores log terms, i.e., $O(x^c \log^k(x)) = \tilde{O}(x^c)$.
- Asymptotic notation can also describe limiting behavior as $x \to a$, e.g., $e^x = 1 + x + \frac{x^2}{2} + o(x^2), x \to 0$ (by Taylor's theorem).

Decision problems: "yes" or "no" answers.

How hard are these problems?

- ▶ Shortest path: Is there a path from point a to point b shorter than d?
- \triangleright Subset sum problem: Is there a subset of some given integers that sums up to d

For d = 5?

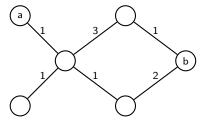


Figure: Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$.

Applications:

- Driving directions in google maps.
- Minimum delay path for data packets in networking.

Decision problems: "yes" or "no" answers.

How hard are these problems?

- ► Shortest path: Is there a path from point a to point b shorter than d?
- Subset sum problem: Is there a subset of some given integers that sums up to d?

For d = 5? yes.

Shortest path can be computed by Dijkstra in $O(|\mathcal{V}|^2)$ [1]

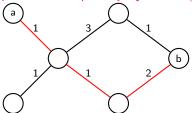


Figure: Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$.

Applications:

- Driving directions in google maps.
- Minimum delay path for data packets in networking.

Decision problems: "yes" or "no" answers.

How hard are these problems?

- ► Shortest path: Is there a path from point a to point b shorter than d?
- ightharpoonup Subset sum problem: Is there a subset of some given integers that sums up to d?

For d = 0?

Consider these two lists of integers:

$$A: -2, 5, 4, 9, 19, -11$$

$$B:-2,5,4,9,19,-6$$

Applications:

 In cryptography: public key system, computer passwords, message verification.

Decision problems: "yes" or "no" answers.

How hard are these problems?

- ► Shortest path: Is there a path from point a to point b shorter than d?
- \blacktriangleright Subset sum problem: Is there a subset of some given integers that sums up to d?

For d = 0?

Consider these two lists of integers:

$$A: -2, 5, 4, 9, 19, -11$$

$$B:-2,5,4,9,19,-6$$

Applications:

 In cryptography: public key system, computer passwords, message verification.

Decision problems: "yes" or "no" answers.

How hard are these problems?

- Shortest path: Is there a path from point a to point b shorter than d?
- ightharpoonup Subset sum problem: Is there a subset of some given integers that sums up to d?

No known "efficient" algorithm can decide if a general list has a d-subset sum

-84	348	422	818	-364	44	-843	222	978	-934	452	83	-819	-100	474	179	-134
-951	515	-790	779	912	291	-560	585	-30	-255	693	-803	-932	-675	668	746	-323
46	-636	918	980	-943	22	-30	676	-766	-287	108	715	-352	530	673	-92	-91
979	239	-153	-353	-206	324	31	375	717	-451	685	-915	-668	967	-934	968	540
447	540	120	975	-445	-538	678	-838	-316	-471	-903	-716	997	-714	825	-480	512
-206	-158	-803	228	-276	966	-174	613	-367	489	518	-565	-169	656	-811	382	985
182	-122	-34	304	561	-829	-196	-731	-245	-737	352	555	509	763	702	194	-594
146	-22	-693	203	-109	-175	906	140	740	606	749	-285	387	-860	44	-442	-249
15	-567	-383	596	-886	971	-330	149	63	-391	-338	-950	542	-44	-968	-442	418
-709	666	-739	221	-904	-29	-733	-968	-950	-314	37	668	825	478	-742	368	-673
-418	3	-313	-246	62	224	391	870	-504	319	-92	-274	-379	468	186	623	-352
2	-795	326	-651	534	-978	846	230	448	-923	-641	577	-591	633	444	-848	618
-717	-271	32	-881	229	537	-25	337	-135	545	695	760	-855	67	-926	-261	-562
-187	642	594	-696	865	483	11	-157	-477	380	-908	353	174	122	-648	613	-343
186	-755	153	-233	563	-566	-991	406	-621	855	47	91	85	-307	-535	917	-76
619	299	-867	-974	510	-205	-623	-59	-571	-876	-535	798	288	102	430	988	-295
-59	473	-503	931	-348	-475	560	-182	-10	375	807	-801	196	-958	541	-149	-853

Applications:

 In cryptography: public key system, computer passwords, message verification.

Computational complexity: Class \mathcal{P}

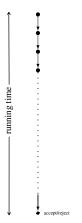


Figure: Deterministic Turing machine

Definition (Class \mathcal{P})

 ${\cal P}$ (polynomial time): decision problems solvable in polynomial time.

Definition (Turing machine)

(Deterministic) Turing machine (DTM): mathematical computational model, think of it as your regular computer. For formal definition, refer to [4].

- Problems in P can be solved by a DTM in polynomial time.
- Polynomial time means $O(n^k)$ time for some $k \in \mathbb{N}$, where n is the size of the input.

Example (Shortest path problem)

Shortest path can be computed by Dijkstra in $O(|\mathcal{V}|^2)$ [1]

Computational complexity: Class \mathcal{NP}

Figure: Deterministic Turing machine

Definition (Class \mathcal{NP})

 \mathcal{NP} (nondeterministic polynomial time): decision problems such that "yes" answer can be "checked" in poly-time via a deterministic Turing machine, i.e., there exists a certificate (proof) whose correctness can be verified in poly-time.

- Polynomial time means $O(n^k)$ time for some $k \in \mathbb{N}$, where n is the size of the input.
- It follows then that the certificate should be of polynomial length.
- $P \subset \mathcal{NP}$

Example

- Subset sum problem:
 - Proof: Subset of integers that do sum up to d.
 - Verification: Addition of can be done in polynomial time.
- Shortest path problem.

Computational complexity: Class \mathcal{NP}

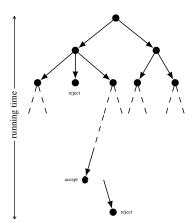


Figure: Non-Deterministic (decider) Turing machine

Definition (Class \mathcal{NP})

NP (nondeterministic polynomial time): decision problems such that "yes" answer can be "checked" in poly-time via a deterministic Turing machine, i.e., there exists a certificate (proof) whose correctness can be verified in poly-time.

Definition (Non-deterministic TM)

Non-deterministic Turing machine (NTM): A fictional "super" computer than can "clone" itself every time it reaches a decision, each clone continue with one of the possible choices. For formal definition, refer to [4].

Problems in \mathcal{NP} can be solved by a NTM in polynomial time.

Computational complexity: Open Problem

Open problem: \mathcal{P} vs \mathcal{NP}

- $ightharpoonup \mathcal{P} \stackrel{?}{=} \mathcal{NP}$: Is generating a proof as easy as checking it ?
- One of the 7 Millennium Prize Problems by the Clay Mathematics Institute.
- ▶ Conjecture: $P \neq \mathcal{NP}$.
- Many other open problems in complexity.

Computational complexity: Hardness

Definition (\mathcal{NP} -Hard)

- $ightharpoonup \mathcal{NP} ext{-Hard:}$ Problems (not necessarily decision) that are at least as hard as the hardest problems in \mathcal{NP} .
- Examples: search version of subset sum, candy crush.

Definition (\mathcal{NP} -Complete)

- \mathcal{NP} -Complete: Decision problems in \mathcal{NP} , that are at least as hard as the hardest problems in \mathcal{NP} .
- \mathcal{NP} -Complete = $\mathcal{NP} \cap \mathcal{NP}$ -Hard.
- ► Subset sum, Karp's 21 NP-complete problems [2].

Slide 38/ 43

Hardness result: Certifying optimality in mathematical programming

Problem (Smooth constrained optimization problems)

We consider smooth constrained optimization problems:

$$\min_{\mathbf{x} \in \mathbb{R}^p} \ f(\mathbf{x})$$
 such that $\ g_i(\mathbf{x}) \leq 0, orall i \in [1,\cdots,m]$

Smooth: we assume that f and all q_i 's are infinitely differentiable.

How hard is it to check that a given solution $\mathbf{x} \in \mathbb{R}^p$ is optimal?

Why should we care?

- Optimization is ubiquitous: applications in control, estimation, signal processing, electronics design, communications, finance, ...
- ► Emphasize the importance of convexity: smoothness alone is not enough.

Hardness result: Certifying optimality in mathematical programming

Problem (Smooth constrained optimization problems)

We consider smooth constrained optimization problems:

$$\min_{\mathbf{x} \in \mathbb{R}^p} \ f(\mathbf{x})$$
 such that $\ g_i(\mathbf{x}) \leq 0, orall i \in [1,\cdots,m]$

Smooth: we assume that f and all g_i 's are infinitely differentiable.

How hard is it to check that a given solution $\mathbf{x} \in \mathbb{R}^p$ is optimal?

- Checking if a point is the global minimum of a smooth constrained optimization problem is NP-Hard [3] in general.
- It can be rewritten as an instance of Subset sum problem, known to be NP-complete.
- Checking if a point is a local minimum of a smooth constrained optimization problem is coNP-Hard [3] in general.
- ▶ We need a structure beyond smoothness that avoids such problems: Convexity?

Unfortunately, convexity does not imply tractability

Consider the following NP-Hard problem:

Problem (Maximum Cut)

Given a graph $\mathcal{G}(\mathcal{V},\mathcal{E})$, such that $n=|\mathcal{V}|, m=|\mathcal{E}|$, the maximum cut problem is the problem of finding a cut (i.e., a partition of the vertices of a graph into two disjoint subsets \mathcal{S} and $\bar{\mathcal{S}}$) with a cut-set (edges between \mathcal{S} and $\bar{\mathcal{S}}$) of maximum weight.

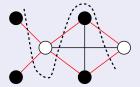


Figure: The set S of black nodes corresponds to the cut-set $\delta(S)$ of red edges.

Max-Cut problem can be formulated as: $\max_{\mathcal{S}\subseteq\mathcal{V}}\mathbf{w}^T\delta(\mathcal{S})$, where $\mathbf{w}\in\mathbb{R}^m$ denote the edge weights.

Unfortunately, convexity does not imply tractability

Example (Cut polytope)

Consider the following smooth convex constrained optimization problem:

$$\max_{\mathbf{x} \subseteq \mathsf{Cut}_n} \mathbf{w}^T \mathbf{x} \tag{1}$$

where Cut_n is the convex hull of the characteristic vectors of cut sets, i.e., $\operatorname{Cut}_n = \operatorname{conv}(\{1_{\mathcal{S}}, \mathcal{S} \in \mathcal{V}\})$. It is called the cut polytope. Problem (1) is NP-Hard, since Max-Cut problem can be reformulated as (1).

Convexity is still helpful

- Convexity does not imply tractability in general.
- Convexity implies that finding a local minimum is enough to find a global minimum.

References |

- T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction To Algorithms.
 MIT Press, 2001.
- [2] Richard M Karp. Reducibility among combinatorial problems. Springer. 1972.
- [3] Katta G Murty and Santosh N Kabadi. Some np-complete problems in quadratic and nonlinear programming. Mathematical programming, 39(2):117–129, 1987.
- [4] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2012.