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Lecture 04 – A motivation for constrained and non-smooth minimization

I This lecture
1. Deficiency of smooth models
2. Nonsmooth models via atomic norms
3. Statistical analysis of the basis pursuit denoising estimator
4. Restricted isometry property and its implications
5. Lasso, regularized least-squares and their relations to basis pursuit denoising
6. Selecting a good regularization coefficient

I Next lecture
1. Unconstrained, non-smooth composite minimization
2. Convergence and convergence rate characterization of various approaches
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Recommended Reading

I V. Chandrasekaran, et al., “The convex geometry of linear inverse problems,”
Found. Comput. Math., vol. 12, pp. 805–849, 2012.

I J. A. Tropp, “Convex recovery of a structured signal from independent random
linear measurements,” 2014, arXiv:1405.1102v1 [cs.IT].

I Chapter 2 & Chapter 6 in S. Foucart and H. Rauhut, A Mathematical
Introduction to Compressive Sensing. Birkhäuser, 2013.

I Chapter 7 in T. Hastie et al., The Elements of Statistical Learning. Springer,
2009.
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Motivation

Motivation
Nonsmooth convex models can help improve the statistical accuracy in estimation.

To this end, this lecture characterizes an important class of nonsmooth optimization
models and establishes rigorous estimation guarantees.

Nonsmooth convex models can also lead to regularized convex formulations for
estimation. This lecture also studies principled approaches to select the regularization
parameter.
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Deficiency of smooth models

Recall the practical performance of an estimator x̂.

Practical performance
Denote the numerical approximation by x?ε . The practical performance is determined
by ∥∥x?ε − x\

∥∥
2
≤ ‖x?ε − x̂‖2︸         ︷︷         ︸

approximation error

+
∥∥x̂− x\

∥∥
2︸          ︷︷          ︸

statistical error

.

Sometimes non-smooth convex models of x\ can help reduce the statistical error.
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Example: Least-squares estimation in the linear model

Recall the linear model and the LS estimator.

LS estimation in the linear model
Let x\ ∈ Rp and A ∈ Rn×p. The samples are given by b = Ax\ + w, where w
denotes the unknown noise.
The LS estimator for x\ given A and b is defined as

x̂LS ∈ arg min
x∈Rp

{
‖b−Ax‖2

2
}
.

I If A has full column rank, x̂LS = A†b is uniquely defined.
I If n < p, then A cannot have full column rank, and we can only conclude that

x̂LS ∈
{

A†b + h : h ∈ null (A)
}
.

Observation: The estimation error
∥∥x̂LS − x\

∥∥
2
can be arbitrarily large!
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A candidate solution

Observation: When A has full column rank and w = 0,

x̂LS = A†b = arg min
x∈Rp

{
‖x‖2

2 : b = Ax
}
.

Can we use x̂candidate := arg minx∈Rp
{
‖x‖2

2 : b = Ax
}

= A†b even when n < p?
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Geometry due to the candidate estimator in the noiseless case

x̂candidate = A†b = arg min
x∈Rp

{
‖x‖2

2 : b = Ax
}
.

x\ + h, h 2 null(A)

x̂candidate

x\
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A candidate solution contd.

Proposition ([23])
Suppose that A ∈ Rn×p is a matrix of i.i.d. standard Gaussian random variables, and
w = 0. We have

(1− ε)
(

1−
n
p

)∥∥x\
∥∥2

2
≤
∥∥x̂candidate − x\

∥∥2
2
≤ (1− ε)−1

(
1−

n
p

)∥∥x\
∥∥2

2

with probability at least 1− 2 exp
[
−(1/4)(p − n)ε2

]
− 2 exp

[
−(1/4)pε2

]
, for all

ε > 0 and x\ ∈ Rp.

Observation: The estimation error may not diminish unless n is very close to p.

Intuition: The relation n < p means that the dimension of the sample b exceeds the
number of unknown variables in x\ to be solved.

Impact: It is impossible to estimate x\ accurately using x̂candidate when n � p even
if w = 0.

I The statistical error
∥∥x̂candidate − x\

∥∥2
2
can also be arbitrarily large when w , 0.

Hence, the solution is also not robust.
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A natural signal model

Definition (s-sparse vector)
A vector x ∈ Rp is s-sparse if it has at
most s non-zero entries.

Rp

x\

Sparse representations
x\: sparse transform coefficients

I Basis representations Ψ ∈ Rp×p

I Wavelets, DCT, ...
I Frame representations Ψ ∈ Rm×p,

m > p
I Gabor, curvelets, shearlets, ...

I Other dictionary representations...

=y\ x\ 
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Sparse representations strike back!

b Ã y\

I b ∈ Rn , Ã ∈ Rn×p, and n < p

A fundamental impact:
The matrix A effectively becomes overcomplete.
We could solve for x\ if we knew the location of the non-zero entries of x\.
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Sparse representations strike back!

b Ã x\ 

I b ∈ Rn , Ã ∈ Rn×p, and n < p
I Ψ ∈ Rp×p, x\ ∈ Rp, and ‖x\‖0 ≤ s < n

A fundamental impact:
The matrix A effectively becomes overcomplete.
We could solve for x\ if we knew the location of the non-zero entries of x\.
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Sparse representations strike back!

b A x\

I b ∈ Rn , A ∈ Rn×p, and x\ ∈ Rp, and ‖x\‖0 ≤ s < n < p

A fundamental impact:
The matrix A effectively becomes overcomplete.
We could solve for x\ if we knew the location of the non-zero entries of x\.
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Sparse representations strike back!

b A x\

n × 1 n × s s × 1

A fundamental impact:
The matrix A effectively becomes overcomplete.
We could solve for x\ if we knew the location of the non-zero entries of x\.
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Compressible signals
Real signals may not be exactly sparse, but approximately sparse, or compressible.

Roughly speaking, a vector x := (x1, . . . , xp)T ∈ Rp is compressible if the number of
its significant components, |{k : |xk | ≥ t, 1 ≤ k ≤ p}|, is small.

I Cameraman@MIT.
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I Solid curve: Sorted wavelet coefficients of
the cameraman image.

I Dashed curve: Expected order statistics of
generalized Pareto distribution with shape
parameter 1.67.
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Compressible signals

Real signals may not be exactly sparse, but approximately sparse, or compressible.

Roughly speaking, a vector x := (x1, . . . , xp)T ∈ Rp is compressible if the number of
its significant components, |{k : |xk | ≥ t, 1 ≤ k ≤ p}|, is small.

Model: compressible signals tend to have small w`q-quasi norms.

Definition (Weak `q-quasi norm)

‖x‖w`q
:= inf

{
M ≥ 0 : |{k : |xk | ≥ t, 1 ≤ k ≤ p}| ≤

Mq

tq for all t > 0
}
.

An equivalent definition

‖x‖w`q
= max

k∈{1,...,p}

{
k1/q |x∗k |

}
,

where
∣∣x∗k ∣∣ denotes the k-th largest absolute value of the elements of x.
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Compressible signals contd.

Definition (Best s-term approximation error)
Let x ∈ Rp. For any q > 0, the best s-term approximation error is defined as follows

σs(x)q := inf
z∈Rp

{
‖x− z‖q : ‖z‖0 ≤ s

}
.

Proposition (Best s-term approximation error of signals in w`q-space )
Let x ∈ Rp. For any r > q > 0, the

σs(x)r ≤
cq,r

s1/q−1/r ‖x‖w`q
,

where cq,r :=
[
q(r − q)−1

]1/r .

I The proposition provides a justification for characterizing compressible signals
based on weak `p-quasi norms.

I If x ∈ w`q(R) lives in the w`q-space with radius R (i.e., ‖x‖w`q
≤ R), then we

have
∣∣x∗k ∣∣ ≤ Rk−1/q (i.e., its sorted coefficients exhibit a power law decay).
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Example: the weak `q-quasi norm

Example w`q(1) balls: (Left) q = 0.25. (Middle) q = 0.5. (Right) q = 0.9.

Remark
Geometrically, the w`q(R)-quasi norm ball includes the `q(R)-quasi norm ball for all R:

w`q(R) :=
{

x : ‖x‖w`q
≤ R,x ∈ R2

}
,

`q(R) :=
{

x : ‖x‖q ≤ R,x ∈ R2
}
.

This observation also follows from the fact that ‖x‖w`q ≤ ‖x‖q since it holds that
‖x‖q

q =
∑p

j=1

∣∣x∗j ∣∣q ≥∑k
j=1

∣∣x∗j ∣∣q ≥ k
∣∣x∗k ∣∣q = ‖x‖q

w`q
.
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Compressibility via relative best s-term approximation error
A vector x ∈ Rn compressible if it has small relative best s-term approximation error.

Definition (Relative best s-term approximation error [23])
Let x ∈ Rn . For any p > 0, the relative best s-term approximation error is defined as

σ̄s(x)q :=
σs(x)q

‖x‖q
.

n
x : kxkw`p

 R
o

{x : �s(x)q  ✏}(Left) {x : ‖x‖w`q
≤ R}. (Right) {x : σ̄s(x)q ≤ ε}

I The relative approximation model is arguably a better representation of
compressibility.
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Compressibility via relative best s-term approximation error
A vector x ∈ Rn compressible if it has small relative best s-term approximation error.

Definition (Relative best s-term approximation error [23])
Let x ∈ Rn . For any p > 0, the relative best s-term approximation error is defined as

σ̄s(x)q :=
σs(x)q

‖x‖q
.

Definition (Compressible distributions [23])
Let x such that its entries are i.i.d. from xi ∼ P(x). The probability distribution
function P(x) is called q-compressible with parameters (ε, κ) if the following holds

lim
p→∞

σ̄sp (x)q ≤ ε

almost surely for any sequence sp such that limp→∞
sp
p ≥ κ, where ε� 1 and κ� 1.

I See [23] further for examples and illustrations of this concrete connection
between deterministic sparsity models and probabilistic distributions.

I The nonsmooth convex formulations in this lecture are also useful in this context.
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Example: Student’s t distribution

Definition (Compressible distributions [23])
Let x such that its entries are i.i.d. from xi ∼ P(x). The probability distribution
function P(x) is called q-compressible with parameters (ε, κ) if the following holds

lim
p→∞

σ̄sp (x)q ≤ ε

almost surely for any sequence sp such that limp→∞
sp
p ≥ κ, where ε� 1 and κ� 1.

I Let P(x) ∝ (1 + x2)−
r+1

2 be the
Student’s t distribution.

I It is easy to verify that P(x) is a
compressible distribution.

I We also have x ∈ w`q(R) where
q = r and R ∝ p1/q .

I Maximum a posteriori (MAP)
estimation of compressible priors give
rise to so-called reweighted methods.

I MAP with Student’s t with the linear
observation model leads to reweighted
least squares algorithm. 100 102 10410−4
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Median of 100 realizations of P(x) with q = 1.
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A different tale of the linear model b = Ax + w

A realistic linear model
Let b := Ãy\ + w̃ ∈ Rn .
I Let y\ := Ψxreal ∈ Rm that admits a compressible representation xreal.
I Let xreal ∈ Rp that is compressible and let x\ be its best s-term approximation.
I Let w̃ ∈ Rn denote the possibly nonzero noise term.
I Assume that Ψ ∈ Rm×p and Ã ∈ Rn×m are known.

Then we have

b = ÃΨ
(

x\ + xreal − x\
)

+ w̃.

:=
(

ÃΨ
)︸   ︷︷   ︸

A

x\ +
[
w̃ + ÃΨ

(
xreal − x\

)]︸                             ︷︷                             ︸
w

,

equivalently, b = Ax\ + w .
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Peeling the onion

The realistic linear model uncovers yet another level of difficulty

Practical performance
The practical performance is determined by

‖x?ε − xreal‖2 ≤ ‖x?ε − x̂‖2︸         ︷︷         ︸
approximation error

+
∥∥x̂− x\

∥∥
2︸          ︷︷          ︸

statistical error

+
∥∥xreal − x\

∥∥
2︸              ︷︷              ︸

model error

.

I A great deal of research goes into learning representations that renders the model
error negligible while still keeping statistical error low.
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Estimating sparse parameters by `0-minimization

A possible approach for estimating x\ from b = Ax\ + w
We may consider the estimator with the least number of non-zero entries. That is,

x̂ := arg min
x∈Rp

{
‖x‖0 : ‖b−Ax‖2 ≤ κ

}
(P0)

with some κ ≥ 0. If κ = ‖w‖, then x\ is a feasible solution.
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Estimating sparse parameters by `0-minimization

A possible approach for estimating x\ from b = Ax\ + w
We may consider the estimator with the least number of non-zero entries. That is,

x̂ := arg min
x∈Rp

{
‖x‖0 : ‖b−Ax‖2 ≤ κ

}
(P0)

with some κ ≥ 0. If κ = ‖w‖, then x\ is a feasible solution.

n = 2s is sufficient for correctness of recovery (noiseless)
Let Σs = {x : ‖x‖0 ≤ s}. If w = 0 and Σ2s ∩ null(A) = ∅ (i.e., any matrix A with
rank(A) ≥ 2s), then P0 can perfectly recover any s-sparse x\ (i.e., x̂ = x\).
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Estimating sparse parameters by `0-minimization

A possible approach for estimating x\ from b = Ax\ + w
We may consider the estimator with the least number of non-zero entries. That is,

x̂ := arg min
x∈Rp

{
‖x‖0 : ‖b−Ax‖2 ≤ κ

}
(P0)

with some κ ≥ 0. If κ = ‖w‖, then x\ is a feasible solution.

n = 2s is sufficient for correctness of recovery (noiseless)
Let Σs = {x : ‖x‖0 ≤ s}. If w = 0 and Σ2s ∩ null(A) = ∅ (i.e., any matrix A with
rank(A) ≥ 2s), then P0 can perfectly recover any s-sparse x\ (i.e., x̂ = x\).

Minimum number of samples (noiseless)
n = s + 1 is necessary for correctness of P0 when A is “random” and w = 0.
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Estimating sparse parameters by `0-minimization

A possible approach for estimating x\ from b = Ax\ + w
We may consider the estimator with the least number of non-zero entries. That is,

x̂ := arg min
x∈Rp

{
‖x‖0 : ‖b−Ax‖2 ≤ κ

}
(P0)

with some κ ≥ 0. If κ = ‖w‖, then x\ is a feasible solution.

n = 2s is sufficient for correctness of recovery (noiseless)
Let Σs = {x : ‖x‖0 ≤ s}. If w = 0 and Σ2s ∩ null(A) = ∅ (i.e., any matrix A with
rank(A) ≥ 2s), then P0 can perfectly recover any s-sparse x\ (i.e., x̂ = x\).

Minimum number of samples (noiseless)
n = s + 1 is necessary for correctness of P0 when A is “random” and w = 0.

Catch: P0 is NP-hard in general [19].
Solving for x̂ enables one to solve the exact cover by 3-sets, which is NP-complete.
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Estimating sparse parameters by `0-minimization

A possible approach for estimating x\ from b = Ax\ + w
We may consider the estimator with the least number of non-zero entries. That is,

x̂ := arg min
x∈Rp

{
‖x‖0 : ‖b−Ax‖2 ≤ κ

}
(P0)

with some κ ≥ 0. If κ = ‖w‖, then x\ is a feasible solution.

Tricky question
Can we find a deterministic matrix A with n = 2s so that P0 is polynomial time?
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Estimating sparse parameters by `0-minimization

A possible approach for estimating x\ from b = Ax\ + w
We may consider the estimator with the least number of non-zero entries. That is,

x̂ := arg min
x∈Rp

{
‖x‖0 : ‖b−Ax‖2 ≤ κ

}
(P0)

with some κ ≥ 0. If κ = ‖w‖, then x\ is a feasible solution.

Tricky question
Can we find a deterministic matrix A with n = 2s so that P0 is polynomial time?

Answer: Yes
We can use a partial Vandermonde matrix A = Vp with n = 2s where

Vp =


1 1 1 . . . 1
α1 α2 α3 . . . αp
α2

1 α2
2 α2

3 . . . α2
p

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

α
n−1
1 α

n−1
2 α

n−1
3 . . . α

n−1
p

,
and αk

l = p−0.5e−
i2πkl

p , corresponding to the discrete Fourier transform when n = p.

Use Prony’s method for your polynomial time recovery!
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Estimating sparse parameters by `0-minimization

A possible approach for estimating x\ from b = Ax\ + w
We may consider the estimator with the least number of non-zero entries. That is,

x̂ := arg min
x∈Rp

{
‖x‖0 : ‖b−Ax‖2 ≤ κ

}
(P0)

with some κ ≥ 0. If κ = ‖w‖, then x\ is a feasible solution.

Tricky question
Can we find a deterministic matrix A with n = 2s so that P0 is polynomial time?

Answer: Yes
We can use a partial Vandermonde matrix A = Vp with n = 2s and then use Prony’s
method for polynomial time recovery.

Catch: Instability of polynomial time solutions [19]
Recovery is not stable when w , 0 and sensitive to any mismatched choices of s.
Indeed, any stable recovery scheme requires n = Ω(s log(ep/s)).
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The `1-norm heuristic

Heuristic: `1-ball with radius c∞ is the “closest” convex set to the sparse vectors
x̂ ∈
{

x : ‖x‖0 ≤ s, ‖x‖0 ≤ c∞
}

parameterized by their sparsity s and maximum
amplitude c∞.1

x̂ ∈
{

x : ‖x‖1 ≤ c∞
}

with some c∞ > 0.

The set{
x : ‖x‖0 ≤ 2, ‖x‖∞ ≤ 1,x ∈ R3

} The unit `1-norm ball{
x : ‖x‖1 ≤ 1,x ∈ R3

}
This heuristic leads to the basis pursuit denoising formulation.

1We provide a mathematical interpretation of this heuristic via Lovász extension of set functions in Recitation 4.
Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 04 – A motivation for constrained and non-smooth minimization

Basis pursuit denoising (BPDN)

Definition (Basis pursuit denoising [15])

x̂BPDN := arg min
x∈Rp

{
‖x‖1 : ‖b−Ax‖2 ≤ κ

}
with some κ ≥ 0. If κ = ‖w‖, then x\ is a feasible solution.

Theorem (Existence of a stable solution in polynomial time [14])
This BPDN convex formulation is a second order cone program, which can be solved
in polynomial time in terms of the inputs n and p (see Lecture 9). Surprisingly, if
‖w‖2 :=

∥∥b−Ax\
∥∥

2
≤ κ, there exists an A ∈ Rn×p such that∥∥x̂BPDN − x\

∥∥
2
≤

2κ
√
µ
,

given that

n ≥
2s ln

( p
s

)
+ 5

4 s + 3
2

(1− √µ)2 ,

with some µ(A) > 0, which encodes the difficulty of the problem (more on this later).

Observation: It suffices to require n = Ω (s log(p/s)).
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Models with simplicity
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Generalization via simple representations

Definition (Atomic sets & atoms)
An atomic set A is a set of vectors in Rp. An atom is an element in an atomic set.

Terminology (Simple representation)
A parameter x\ ∈ Rp admits a simple representation with respect to an atomic set
A ⊆ Rp, if it can be represented as a non-negative combination of few atoms, i.e.,
x\ =

∑k
i=1 ciai , ai ∈ A, ci ≥ 0.

Example (Sparse parameter)
Let x\ be s-sparse. Then x\ can be represented as the non-negative combination of s
elements in A, with A := {±e1, . . . ,±ep}, where ei := (δ1,i , δ2,i , . . . , δp,i) for all i.

Example (Sparse parameter with a dictionary)
Let Ψ ∈ Rm×p, and let y\ := Ψx\ be s-sparse. Then y\ can be represented as the
non-negative combination of s elements in A, with A := {±ψ1, . . . ,±ψp}, where ψk
denotes the kth column of Ψ.
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Simplest estimate

Recall the linear model b = Ax\ + w.

To find the simplest estimate of x\ with respect to an atomic set A leads to the
following formulation.

Possible approach

x̂ ∈ arg min
x∈Rp

{
k : x =

k∑
i=1

ciai , ci ≥ 0,ai ∈ A, ‖b−Ax‖2 ≤ κ

}
.

However, when A := {±e1, . . . ,±ep}, we have an equivalent formulation

x̂ ∈ arg min
x∈Rp

{
‖x‖0 : ‖b−Ax‖2 ≤ κ

}
,

which is NP-hard.
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Atomic norm
Recall how we get around the NP-hardness issue.

Definition (Basis pursuit denoising [15])

x̂BPDN := arg min
x∈Rp

{
‖x‖1 : ‖b−Ax‖2 ≤ κ

}
with some κ ≥ 0.

We observe that the `1-norm is the atomic norm associated with the atomic set
A := {±e1, . . . ,±ep}, which is indeed the convex hull of the set.

A :=
{[

1
0

]
,

[
0
1

]
,

[
−1

0

]
,

[
0
−1

]}
.

C := conv (A) .

C
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Gauge functions and atomic norms

Definition (Gauge function)
Let C be a convex set in Rp, the gauge function associated with C is given by

gC(x) := arg inf
t>0
{x = tc : c ∈ C, ∀x ∈ Rp} .

Definition (Atomic norm)
Let A be a symmetric atomic set in Rp such that if a ∈ A then −a ∈ A for all a ∈ A.
Then, the atomic norm associated with a symmetric atomic set A is given by

‖x‖A := gconv(A)(x), ∀x ∈ Rp,

where conv(A) denotes the convex hull of A.

Example

1. Let A be the set of unit-normed one-sparse vectors, then ‖x‖A = ‖x‖1.
2. Let A = {±1}p

i=1, then ‖x‖A = ‖x‖∞.
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?Atomic norms and gauge functions contd.

I Gauge functions are not norms in general unless the inducing atomic set satisfies
the centrally symmetric condition:

x ∈ A if and only if − x ∈ A

Example

1. Let A =
{[

1
0

]
,

[
0
1

]
,

[
−1
0

]
,

[
0
−1

]}
. Then ‖·‖A = gconv(A)(·) is

a norm.

2. Let A =
{[

0.5
0

]
,

[
0
1

]
,

[
−1
0

]
,

[
0
−1

]}
. Then ‖·‖A = gconv(A)(·)

is not a norm.

Proposition
A gauge function associated with a non-empty atomic set A is a norm if and only if A
is centrally symmetric.
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Pop quiz 1
Let A :=

{
(1, 0)T , (0, 1)T , (−1, 0)T , (0,−1)T

}
, and let x := (− 1

5 , 1)T . What is
‖x‖A?

ANS: ‖x‖A = 6
5 .

x =


� 1

5
1

�

conv(A)

x1

x2
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Pop quiz 1
Let A :=

{
(1, 0)T , (0, 1)T , (−1, 0)T , (0,−1)T

}
, and let x := (− 1

5 , 1)T . What is
‖x‖A?

ANS: ‖x‖A = 6
5 .

x =


� 1

5
1

�

conv(A)

x1

x2
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Pop quiz 2

What is the expression of ‖x‖A for any x := (x1, x2, x3)T ∈ R3?

ANS: ‖x‖A = |x1|+
∥∥(x2, x3)T

∥∥
2
.
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Pop quiz 2

What is the expression of ‖x‖A for any x := (x1, x2, x3)T ∈ R3?

ANS: ‖x‖A = |x1|+
∥∥(x2, x3)T

∥∥
2
.
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Basis pursuit with atomic norms

Linear model with simple parameter
Let A be an atomic set in Rp. Let x\ ∈ Rp be simple with respect to A, and let
A ∈ Rn×p. The samples are given by b = Ax\ + w, where w denotes the unknown
noise.

We consider the following estimator.

Basis pursuit denoising with atomic norms

x̂BPDN := arg min
x∈Rp

{
‖x‖A : ‖b−Ax‖2 ≤ κ

}
with some κ ≥ 0.

I In general, this problem cannot be solved in polynomial time even if it is convex
(see Recitation 1).

I When we can solve it, this heuristic formulation provides surprisingly good results.
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Performance guarantee of basis pursuit denoising

Theorem
Recall

x̂BPDN := arg min
x∈Rp

{
‖x‖A : ‖b−Ax‖2 ≤ κ

}
If ‖w‖2 :=

∥∥b−Ax\
∥∥

2
≤ κ, it is possible to have∥∥x̂BPDN − x\

∥∥
2
≤

2κ
√
µ
,

given that

n ≥
w2 + 3

2(
1− √µ

)2 ,

with some µ(A) > 0, where w is some function of the atomic set A and x\.

I The quantity w2 characterizes the degrees-of-freedom of x\.
I The parameter µ(A) characterizes the well-posedness of the estimation problem.

We prove the theorem in the following slides.
First we need the notion of tangent cones.
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Tangent cone

Definition (Tangent cone)
Let g : Rp → R∪ {−∞,+∞} be a proper lower semi-continuous convex function. The
tangent cone Tg (x) of the function g at a point x ∈ Rp is defined as

Tg (x) := cone {y− x : g(y) ≤ g(x),y ∈ Rp} .

�
x : g(x)  g(x\)

 

x\

Tg(x
\)

yy � x\
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Condition for exact recovery in the noiseless case

We consider estimating x\ ∈ Rp, which is simple with respect to an atomic set A,
given samples b = Ax\ and A ∈ Rn×p, n ≤ p, by

x̂BPDN ∈ arg min
x∈Rp

{
‖x‖A : b = Ax

}
.
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Condition for exact recovery in the noiseless case

Proposition
Let g : x 7→ ‖x‖A. Recall x̂BPDN ∈ arg minx∈Rp

{
‖x‖A : b = Ax

}
.

We have x̂BPDN = x\ if and only if Tg
(

x\
)
∩ null (A) = {0}.

�
x : kxkA 

��x\
��

A
 

Tk·kA
(x\)

null (A)

x̃

x\
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Condition for exact recovery in the noiseless case

Proposition
Let g : x 7→ ‖x‖A. Recall x̂BPDN ∈ arg minx∈Rp

{
‖x‖A : b = Ax

}
.

We have x̂BPDN = x\ if and only if Tg
(

x\
)
∩ null (A) = {0}.

x\

null (A)

Tk·kA
(x\)

�
x : kxkA 

��x\
��

A
 

b = Ax\

xx � x\
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Condition for exact recovery in the noisy case

We consider estimating x\ ∈ Rp, which is simple with respect to an atomic set A,
given samples b = Ax\ + w and A ∈ Rn×p, n ≤ p, where w denotes the unknown
noise, by

x̂BPDN ∈ arg min
x∈Rp

{
‖x‖A : ‖b−Ax‖2 ≤ κ

}
.
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Condition for good recovery in the noisy case

Definition (Restricted strong convexity)
The restricted strong convexity condition holds if ‖Az‖2

2 ≥ µ ‖z‖
2
2 for all z ∈ Tg

(
x\
)

with some µ > 0.

Proposition
Let g : x 7→ ‖x‖A. Recall x̂BPDN := arg minx∈Rp

{
‖x‖A : ‖b−Ax‖2 ≤ κ

}
.

We have
∥∥x̂BPDN − x\

∥∥
2
≤ 2κ√

µ
if ‖w‖2 ≤ κ and the restricted strong convexity

condition holds with some µ > 0.
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Condition for good recovery in the noisy case

Definition (Restricted strong convexity)
The restricted strong convexity condition holds if ‖Az‖2

2 ≥ µ ‖z‖
2
2 for all z ∈ Tg

(
x\
)

with some µ > 0.

Proposition
Let g : x 7→ ‖x‖A. Recall x̂BPDN := arg minx∈Rp

{
‖x‖A : ‖b−Ax‖2 ≤ κ

}
.

We have
∥∥x̂BPDN − x\

∥∥
2
≤ 2κ√

µ
if ‖w‖2 ≤ κ and the restricted strong convexity

condition holds with some µ > 0.

Trivial observation: x̂BPDN − x\ ∈ Tg
(

x\
)

null (A)

�
x : kxkA 

��x\
��

A
 

Tk·kA
(x\)

kb � Axk2  

x\

xBPDN

xBPDN � x\
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Condition for good recovery in the noisy case

Definition (Restricted strong convexity)
The restricted strong convexity condition holds if ‖Az‖2

2 ≥ µ ‖z‖
2
2 for all z ∈ Tg

(
x\
)

with some µ > 0.

Proposition
Let g : x 7→ ‖x‖A. Recall x̂BPDN := arg minx∈Rp

{
‖x‖A : ‖b−Ax‖2 ≤ κ

}
.

We have
∥∥x̂BPDN − x\

∥∥
2
≤ 2κ√

µ
if ‖w‖2 ≤ κ and the restricted strong convexity

condition holds with some µ > 0.

Proof.
By definition x̂BPDN − x\ ∈ Tg

(
x\
)
; thus∥∥A

(
x̂BPDN − x\

)∥∥
2
≥ √µ

∥∥x̂BPDN − x\
∥∥

2
.

By the triangle inequality,∥∥A
(

x̂BPDN − x\
)∥∥

2
≤ ‖b−Ax̂BPDN‖2 +

∥∥b−Ax\
∥∥

2
≤ 2κ.

�
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Condition for good recovery in the noisy case

Definition (Restricted strong convexity)
The restricted strong convexity condition holds if ‖Az‖2

2 ≥ µ ‖z‖
2
2 for all z ∈ Tg

(
x\
)

with some µ > 0.

null (A)

�
x : kxkA 

��x\
��

A
 

Tk·kA
(x\)

kb � Axk2  

I In the figure, µ is proportional to sin2(ϕ), where the proportionality depends on
the norm of the rows of A.
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Interpretation of the restricted strong convexity condition

Definition (Restricted strong convexity)
The restricted strong convexity condition holds if ‖Az‖2

2 ≥ µ ‖z‖
2
2 for all z ∈ Tg

(
x\
)

with some µ > 0.

Proposition
The restricted strong convexity condition holds if and only if the function
f : h 7→ 1

2

∥∥b−A
(

x\ + h
)∥∥2

2
satisfies

f (x\ + h) ≥ f (x\) +
〈
∇f (x\),h

〉
+
µ

2
‖h‖2

2 , for all h ∈ Tg
(

x\
)
,

or, f (h) behaves as a strongly convex function for h ∈ Tg
(

x\
)
.
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Interpretation of the restricted strong convexity condition

Proposition
The restricted strong convexity condition holds if and only if the function
f : h 7→ 1

2

∥∥b−A
(

x\ + h
)∥∥2

2
satisfies

f (x\ + h) ≥ f (x\) +
〈
∇f (x\),h

〉
+
µ

2
‖h‖2

2 , for all h ∈ Tg
(

x\
)
,

or, f (h) behaves as a strongly convex function for h ∈ Tg
(

x\
)
.
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Interpretation of the restricted strong convexity condition

Definition (Restricted strong convexity)
The restricted strong convexity condition holds if ‖Az‖2

2 ≥ µ ‖z‖
2
2 for all z ∈ Tg

(
x\
)

with some µ > 0.

Proposition
The restricted strong convexity condition holds if and only if the function
f : h 7→ 1

2

∥∥b−A
(

x\ + h
)∥∥2

2
satisfies

f (x\ + h) ≥ f (x\) +
〈
∇f (x\),h

〉
+
µ

2
‖h‖2

2 , for all h ∈ Tg
(

x\
)
,

or, f (h) behaves as a strongly convex function for h ∈ Tg
(

x\
)
.

Observation: Note that x̂BPDN = x\ + h with some h ∈ Tg
(

x\
)
by definition. Thus

the restricted strong convexity condition implies that the function 1
2 ‖b−Ax‖2

2
behaves as if A had full column rank for all possible values of x̂BPDN.

I There are some variants of this restricted strong convexity condition based on
similar ideas [4, 27].
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Verifying the conditions

Now we have performance guarantees for x̂BPDN.

Proposition (Noiseless)
Let g : x 7→ ‖x‖A. We have x̂BPDN = x\ if and only if Tg

(
x\
)
∩ null (A) = {0}.

Proposition (Noisy)
Let g : x 7→ ‖x‖A. We have

∥∥x̂BPDN − x\
∥∥

2
≤ 2κ√

µ
if ‖w‖2 ≤ κ and ‖Az‖2

2 ≥ µ ‖z‖
2
2

for all z ∈ Tg
(

x\
)
with some µ > 0.

How do we verify these conditions, especially when we do not know x\ and thus
Tg
(

x\
)
?

No good answers currently.
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The probabilistic approach

Show that no matter what x\ is, under some other verifiable conditions, we have

Tg
(

x\
)
∩ null (A) = {0} , or

‖Az‖2
2 ≥ µ ‖z‖

2
2 , ∀z ∈ Tg

(
x\
)

with some µ > 0,

with probability bounded away from 0.

The key technical tool is the escape-through-the-mesh theorem.
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Escape-through-the-mesh theorem

Theorem (Escape-through-the-mesh theorem [14, 22, 34])
Let A ∈ Rn×p be a matrix of i.i.d. Gaussian random variables with zero means and
variances 1/n. Let Ω be a given set on the unit `2-norm sphere. Then

P
({
‖Ax‖2 ≥

√
µ, ∀x ∈ Ω

})
≥ 1− exp

{
−

1
2

[an − w(Ω)− √nµ]2
}

given that an − w(Ω)− √nµ ≥ 0, where an :=
√

2 Γ
(

n+1
2

)/
Γ
(

n
2

)
, Γ being the

gamma function, and

w(Ω) := E
[

max
x
{〈g,x〉} : x ∈ Ω

]
,

g being a vector of i.i.d. standard Gaussian random variables.

Observation:
I The event

{
‖Ax‖2

2 ≥ µ, ∀x ∈ Ω
}

implies the event that null (A) does not
intersect with the mesh Ω.

I One can prove that n√
n+1 ≤ an ≤

√
n, which implies an ≈

√
n.
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Proof of the escape-through-the-mesh theorem

First we note that
{
‖Ax‖2 ≥

√
µ, ∀x ∈ Ω

}
=
{

minx∈Ω
{
‖Ax‖2

}
≥ √µ

}
and

f : A ∈ Rn×p 7→ minx∈Ω
{
‖Ax‖2

}
is a Lipschitz function.

Proposition
Let f : A ∈ Rn×p 7→ minx∈Ω

{
‖Ax‖2

}
. For all H ∈ Rn×p,

|f (A + H)− f (A)| ≤ ‖H‖F .

Thus f can be viewed as a Lipschitz function of np i.i.d. Gaussian random variables.

Theorem (Tsirelson-Ibragimov-Sudakov [6])
Let g ∈ Rp be a vector of i.i.d. standard Gaussian random variables. Let h : Rp → R
be K -Lipschitz. Then for all t > 0,

P ({h(g) ≤ E [h(g)]− t}) ≤ exp
(
−

t2

2K

)
.
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Proof of the escape-through-the-mesh theorem

The issue now is to evaluate E [f (A)].

Theorem (Gordon [22])
Let G ∈ Rn×p be a matrix of i.i.d. standard Gaussian random variables with n ≤ p.
Then

E [f (G)] ≥ an − w(Ω),

where an and w(·) are defined as in the escape-through-the-mesh theorem.

Combining this theorem and the Tsirelson-Ibragimov-Sudakov inequality, we obtain the
escape-through-the-mesh theorem. Note that G is statistically equivalent to

√
nA.
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Probabilistic results for the noiseless case

Assume that A ∈ Rn×p be a matrix of i.i.d. Gaussian random variables with zero
means and variances 1/n.

Let Ω be the intersection of T‖·‖A
(

x\
)
and the unit `2-norm sphere.

Theorem (Noiseless)
We have x̂BPDN = x\ with probability at least 1− exp

{
− 1

2 [an − w(Ω)]2
}
, provided

that n ≥ w(Ω)2 + 1.

Proof.
Replace Ω by the intersection of T‖·‖A

(
x\
)
and the unit `2-norm sphere in the

escape-through-the-mesh theorem. Note that the escape-through-the-mesh theorem is
only meaningful when an ≥ w(Ω); this condition leads to the constraint
n ≥ w(Ω)2 + 1. �
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Probabilistic results for the noisy case

Assume that A ∈ Rn×p be a matrix of i.i.d. Gaussian random variables with zero
means and variances 1/n.

Let Ω be the intersection of T‖·‖A
(

x\
)
and the unit `2-norm sphere.

Theorem (Noisy)
For any µ ∈ (0, 1), we have

∥∥x̂BPDN − x\
∥∥

2
≤ 2δ√

µ
with probability at least

1− exp
{
− 1

2

[
an − w(Ω)− √µn

]2
}

provided that ‖w‖2 ≤ δ and n ≥ w(Ω)2+ 3
2

(1−√µ)2 .

Proof.
Replace Ω by the intersection of T‖·‖A

(
x\
)
and the unit `2-norm sphere in the

escape-through-the-mesh theorem. Note that the escape-through-the-mesh theorem is
only meaningful when an ≥ w(Ω) + √µn; this condition leads to the constraint

n ≥ w(Ω)2+ 3
2

(1−√µ)2 , assuming µ ∈ (0, 1). �
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Interpretation of the results

Recall the result in the previous slide.

Theorem (Noisy)
For any µ ∈ (0, 1), we have

∥∥x̂BPDN − x\
∥∥

2
≤ 2κ√

µ
with probability at least

1− exp
{
− 1

2

[
an − w(Ω)− √µn

]2
}

provided that ‖w‖2 ≤ κ and n ≥ w(Ω)2+ 3
2

(1−√µ)2 .

We have an equivalent formulation assuming κ = ‖w‖2.

Theorem
For any µ ∈ (0, 1), we have∥∥x̂BPDN − x\

∥∥
2
≤

2
√

n
an − w(Ω)− t

‖w‖2 ≤
2
√

n
√

n − w(Ω)− t
‖w‖2

with probability at least 1− exp
(
− 1

2 t2
)
provided n ≥ w(Ω)2+ 3

2
(1−√µ)2 .

Observation: The quantity w(Ω)2 characterizes the degree of freedom of x\.
Remark: We will discuss an improvement of this guarantee.
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Gaussian width

Definition (Gaussian width)
The Gaussian width w(Ω) of a set Ω ⊂ Rn is given by

w(Ω) := max
x
{E [〈g,x〉] : x ∈ Ω} ,

where g ∼ N (0, I).

Example
Let V be a d-dimensional subspace of Rp, and let Ω be the intersection of V and the
unit `2-norm sphere. Then w(Ω) =

√
d.

This justifies our claim that [w(Ω)]2 characterizes the degree of freedom of a set.

Proposition

1. The Gaussian width is invariant under translation and unitary transforms
(rotations).

2. Let C1 ⊆ C2 ⊆ Rn . Then w(C1) ≤ w(C2).
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Examples

Let Ω always denote the intersection of T‖·‖A
(

x\
)
and the unit `2-norm sphere.

Example ([14])
1. Let A = {e1, . . . , ep}, and let x\ ∈ Rp with at most s non-zero entries. Then
‖·‖A is the `1-norm, and w(Ω)2 ≤ 2s log

( p
s

)
+ 5

4 s.

2. Let A = {−1,+1}p, and let x\ ∈ Rp be a convex combination of k vectors in A.
Then ‖·‖A is the `∞-norm, and w(Ω)2 ≤ p+k

2 .

3. Let A =
{

X : rank (X) = 1, ‖X‖F = 1,X ∈ Rp×p
}
, and let X\ ∈ Rp×p with

rank r . Then ‖·‖A is the nuclear norm, and w(Ω)2 ≤ 3r(2p − r).

Some applications follow directly.
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Application 1: Compressive sensing

Problem formulation [11, 19]
Let x\ ∈ Rp with at most s non-zero entries, and let A ∈ Rn×p. How do we estimate
x\ given A and b = Ax\ + w, where w denotes unknown noise?

Example
Let A = {e1, . . . , ep}, and let x\ ∈ Rp with at most s non-zero entries. Then ‖·‖A is
the `1-norm, and w(Ω)2 ≤ 2s log

( p
s

)
+ 5

4 s.

Choose A to be a matrix of i.i.d. Gaussian random variables with zero means and
variances 1/n. Then by

x̂BPDN ∈ arg min
x∈Rp

{
‖x‖1 : ‖b−Ax‖2 ≤ κ

}
with κ = ‖w‖2, we have∥∥x̂BPDN − x\

∥∥
2
.

2
√

n
√

n −
√

2s log
( p

s

)
+ 5

4 s
‖w‖2 .
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Application 2: Multi-knapsack feasibility problem

Problem formulation [26]
Let x\ ∈ Rp which is a convex combination of k vectors in A := {−1,+1}p, and let
A ∈ Rn×p. How large should n be such that we can recover x\ given A and b = Ax\
via

x̂BPDN ∈ arg min
x∈Rp

{
‖x‖∞ : b = Ax

}
?

Example
Let A = {−1,+1}p, and let x\ ∈ Rp be a convex combination of k vectors in A.
Then ‖·‖A is the `∞-norm, and w(Ω)2 ≤ p+k

2 .

Choose A to be a matrix of i.i.d. Gaussian random variables with zero means and
variances 1/n. Then we have

P
({

x̂BPDN = x\
})
& 1− exp

{
−

1
2

[
√

n −

√
p + k

2

]2}
.
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Application 3: Matrix completion

Problem formulation [8, 18]
Let X\ ∈ Rp×p with rank(X\) = r , and let A1, . . . ,An be matrices in Rp×p. How do
we estimate X\ given A1, . . . ,An and bi = Tr

(
AX\

)
+ wi , i = 1, . . . ,n, where

w := (w1, . . . ,wn)T denotes unknown noise?

Example
Let A =

{
X : rank (X) = 1, ‖X‖F = 1,X ∈ Rp×p

}
, and let X\ ∈ Rp×p with rank r .

Then ‖·‖A is the nuclear norm, and w(Ω)2 ≤ 3r(2p − r).

Choose each Ai to be a matrix of i.i.d. Gaussian random variables with zero means
and variances 1/n. Then by

X̂BPDN ∈ arg min
X∈Rp×p

{
‖X‖∗ :

n∑
i=1

(bi − Tr (AiX))2 ≤ κ2

}
with some κ = ‖w‖2

2, we have∥∥X̂BPDN −X\
∥∥

2
.

2
√

n
√

n −
√

3r(2p − r)
‖w‖2 .
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Sharper bounds with oracle information
Suppose that we are able to set

x̂BPDN,oracle ∈ arg min
x∈Rp

{
‖x‖A : ‖b−Ax‖2 ≤ ‖w‖2

}
.

Theorem ([29])
With probability at least 1− 6 exp

(
−t2/26

)
, we have

∥∥x̂BPDN,oracle − x\
∥∥

2
≤
[w(Ω) + t

an−1

][ 2
√

n
an − w(Ω)− t

]
‖w‖2

for any t > 0, where Ω denotes the intersection of T‖·‖A
(

x\
)
and the unit `2-norm

sphere.

Observation: Recall that our analysis gives that with probability at least
1− exp

(
−t2/2

)
, ∥∥x̂BPDN,oracle − x\

∥∥
2
.

[
2
√

n
an − w(Ω)− t

]
‖w‖2 .

An improvement by the factor w(Ω)+t
an−1

≤ 1 appears assuming access of the oracle
information ‖w‖2.
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Restricted isometry principle as an alternative approach

We have discussed the restricted strong convexity condition. In some problem settings
the performance guarantee of x̂BPDN can be proved by the

restricted isometry property (RIP) condition.
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Restricted isometry property

I In the preceding discourse we attempted to recover a fixed x\ so the recovery
guarantees are referred to as for each.

I RIP gives a stronger guarantee, called for all. They hold for any x\.
I Can be illustrated by a game with two players: Player 1 (P1) vs. Player 2 (P2)

For all game
P1 will choose A and P2 will choose any s-sparse x\, then P1 will recover.

For each game
P2 will choose a s-sparse x\ and P1 will choose A, then P1 will recover.

Recovery guarantee of BPDN with RIP
Given b = Ax\ + w, if A has RIP, then the `2-error between the BPDN solution, i.e.
x̂BPDN, and x\ is given by:

‖x\ − x̂BPDN‖2 ≤ C‖w‖2,

where C > 0 is a constant dependent only on RIP.
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Restricted isometry property contd.

Definition (Restricted isometry constant [9])
Let A ∈ Rn×p. The s-th restricted isometry constant δs(A) of the matrix A is the
smallest δ ≥ 0 such that

(1− δ) ‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ) ‖x‖2
2

for all s-sparse x ∈ Rp.

I RIP ⇒ well-conditioning of submatrices of A restricted on s columns.

A
xi

xj

Rn Rp

Axj

Axi

s-planes

RnRp
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RIP and JL lemma
I RIP is related to Johnson-Lindenstraus (JL) lemma in dimensionality reduction.
I JL lemma is about pairwise distance preserving embedding of point clouds in a
high dimensional Euclidean space into a much lower dimensional space.

Isometric embedding of m points in Rp into Rn for n = O (log m)

m points

f

xi

xj
f (xj)

f (xi)

Rp Rn

Theorem (JL lemma)
Let ε ∈ (0, 1/2) and let {xi}m

i=1 ∈ Rp be arbitrary points. For n = O
(
ε−2 log m

)
,

there exists a map f : Rp → Rn such that

(1− ε)‖xi − xj‖2
2 ≤ ‖f (xi)− f (xj)‖2

2 ≤ (1 + ε)‖xi − xj‖2
2 ∀i, j ∈ {1, . . . ,m}.
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RIP and JL lemma contd.

Proof sketch for f being a random linear map.
I Let A ∈ Rn×p be a random linear map and the set of pairwise differences
X = {xi − xj} =: {yl}q

i=1 for q =
(m

2

)
. Then we need to prove that

(1− ε) ‖y‖2
2 ≤ ‖Ay‖2

2 ≤ (1 + ε) ‖y‖2
2 ∀y ∈ X .

I Since A is a random matrix, the proof that A satisfies the JL lemma with high
probability (w.h.p) reduces to proving the concentration inequality:

P
[
(1− ε) ‖z‖2

2 ≤ ‖Az‖2
2 ≤ (1 + ε) ‖z‖2

2
]
≥ 1− 2 exp

(
−c0ε

2n
)

for an arbitrary fixed z ∈ Rp, where c0 is an absolute constant.
I The probability bound follows from a union bound over all

(m
2

)
z ∈ X .

I Choosing n = O
(
ε−2 log m

)
is enough to make the bound ≥ 1/2. �
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RIP and JL lemma contd.

Consider the effect of a random linear JL map A on each s-plane:
I construct covering of m points, X , in a unit sphere.
I JL: isometry for each point with high probability.
I union bound ⇒ isometry for all points x in X .
I extends to isometry for all points x in s-plane

Rn
Rp

A

Ax

x

s-plane

RnRp
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RIP and JL lemma contd.

Consider the effect of a random linear JL map A on each s-plane:
I construct covering of m points, X , in a unit sphere.
I JL: isometry for each point with high probability.
I union bound ⇒ isometry for all points x in X .
I extends to isometry for all points x in s-plane
I union bound ⇒ isometry for all s-planes.

Rn
Rp

Ax

A
x

s-planes

Rp
Rn
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RIP and JL lemma contd.
RIP as a “stable” embedding

A
xi

xj

Rn Rp

Axj

Axi

s-planes

RnRp

Theorem (RIP and sampling bounds)
For all s-sparse vectors x ∈ Rp, a random matrix A ∈ Rn×p w.h.p satisfies RIP with a
small δs if n = O

(
δ−2

s s log(p/s)
)
.

Corollary: Subgaussian matrices2

A subgaussian matrix (like Gaussian, Bernoulli, ...) in Rn×p satisfies the RIP with high
probability, if n = O(s log(p/s)).

2to be defined in Recitation 9
Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 04 – A motivation for constrained and non-smooth minimization

?Proof of RIP: The Algebra

I We show a more detailed proof of the RIP for a class of random matrices [2].
I The proof requires the lemma below which uses the distance preserving
concentration inequality:

P
(∣∣‖Ax‖2

2 − ‖x‖
2
2

∣∣ ≥ t ‖x‖2
2
)
≤ 2e−c(t)n , (1)

for an arbitrary x ∈ Rp, where c(t) is a function of a parameter t ∈ (0, 1).

Lemma ([2])
Let A be a random n × p matrix drawn according to any distribution that satisfies the
concentration inequality (1). Then, for any set S with |S| = s ≤ n and any
0 < δ < 1, we have

(1− δ) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ) ‖x‖2 , ∀x ∈ XS (2)

with probability at least
1− 2(12/δ)se−c(δ/2)n .
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?Proof of RIP: The Algebra contd.
Proof of lemma
I We start by proving the upper bound in (2).
I Without loss of generality, we let ‖x‖2 = 1 for all x ∈ XS .
I Choose a finite set YS such that YS ⊆ XS , ‖y‖2 = 1 for all y ∈ YS , and

min
y∈YS

‖x− y‖2 ≤ δ/4.

I From covering numbers such a set YS exist with |YS | ≤ (12/δ)s.

I Apply
P
(∣∣‖Ax‖2

2 − ‖x‖
2
2

∣∣ ≥ t ‖x‖2
2
)
≤ 2e−c(t)n ,

to YS with t = δ/2 by using a union bound.
I Then with probability ≥ 1− 2(12/δ)se−c(δ/2)n we have

(1− δ/2) ‖y‖2
2 ≤ ‖Ay‖2

2 ≤ (1 + δ/2) ‖y‖2
2 , ∀y ∈ YS .

I It is easy to show that the above inequality reduces to

(1− δ/2) ‖y‖2 ≤ ‖Ay‖2 ≤ (1 + δ/2) ‖y‖2 , ∀y ∈ YS .

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 04 – A motivation for constrained and non-smooth minimization

?Proof of RIP: The Algebra contd.

Proof of lemma contd.
I Let α be the smallest number such that

‖Ax‖2 ≤ (1 + α) ‖x‖2 ∀x ∈ XS

I The goal is to show that α ≤ δ.
I Since ‖x‖2 = 1 ∀x ∈ XS and ‖y‖2 = 1 ∀y ∈ YS ⇒ ‖x− y‖2 ≤ δ/4, we have

‖Ax‖2 ≤ ‖Ay‖2 + ‖A(x− y)‖2 ≤ 1 + δ/2 + (1 + α)δ/4.

I Thus by the definition α satisfies

α ≤ 1 + δ/2 + (1 + α)δ/4, ⇒ α ≤
3
4
δ (1− δ/4) ≤ δ.

I This concludes the proof for the upper bound in (2)
I The lower bound in (2) follows from the above since

‖Ax‖2 ≥ ‖Ay‖2 − ‖A(x− y)‖2 ≥ 1− δ/2− (1 + δ)δ/4 ≥ 1− δ.

�
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?Proof of RIP: The Algebra contd.

Here is the final wrap up.

I For each s-dimensional space XS , A fails to satisfy

(1− δ) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ) ‖x‖2 , ∀x ∈ XS

with probability ≤ 2(12/δ)se−c(δ/2)n .

I Taking a union bound over all such subspaces, i.e.,
(p

s

)
≤ (ep/s)s upper bounds

the failure probability by

2(ep/s)s(12/δ)se−c(δ/2)n = 2e−c(δ/2)n+s[log(ep/s)+log(12/δ)]

I Thus, there exists c1 > 0 such that whenever n ≥ c1δ−2s log(p/s) the exponent
on the right hand side of the above inequality ≤ −c0δ2n

�
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RIP and other matrix ensembles
Partial Fourier
Description: Composed of subsampled rows of a Fourier matrix.
Application: Wireless communications, radar, etc
RIP: Requires n = O

(
s log3 s log p

)
to satisfy RIP [12].

Advantage: These matrices possess a fast matrix application (i.e. FFT).
Disadvantage: These matrices are dense as such pose storage constraints.

Partial Circulant
Description: Composed of subsampled rows of a Circulant matrix.
Application: Phase-retrieval

RIP: Requires n = O
(

max
{

s
3
2 log

3
2 p, s log2 s log2 p

})
to satisfy RIP [30].

Advantage: These matrices are structured, hence easy to store and apply.
Disadvantage: These matrices are dense as such pose storage constraints.

Phase retrieval Courtesy of [10]
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RIP and other matrix ensembles contd.

Partial Toeplitz
Description: Composed of subsampled rows of a Toeplitz matrix.
Application: Sparse channel estimation
RIP: Requires n = O

(
s log p + log3 p

)
to satisfy RIP [32].

Advantage: These matrices are structured, hence easy to store and apply.
Disadvantage: These matrices are dense as such pose storage constraints.

Deterministic matrices
Description: Constructed deterministically.
RIP: Requires n = O

(
s2−ν

)
, for small ν > 0 to satisfy RIP [7].

Advantage: These matrices can be implemented in hardware.
Disadvantage: The required number of measurements, n, is sub-optimal.
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RIP and other matrix ensembles contd.

Binary {0, 1}n×p matrices
Description: Composed of subsampled rows of a Fourier matrix.
Application: Data streaming, graph sketching, single pixel camera, etc
RIP: Requires n = Ω

(
s2
)
to satisfy RIP, ⇒ square-root bottleneck [13].

Advantage: These matrices are sparse, hence easy to store and apply.
Disadvantage: The square-root bottleneck..

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 04 – A motivation for constrained and non-smooth minimization

Recovery implications of the RIP

Recall the linear model b = Ax\ + w and consider

x̂BPDN ∈ arg min
x∈Rp

{
‖x‖1 : ‖b−Ax‖2 ≤ κ

}
.

Theorem (Noiseless [19])
Suppose that x\ is s-sparse and w = 0, δ2s(A) < 1

3 , and κ = 0, then x̂BPDN = x\.

Theorem (Noisy [19])
Suppose that x\ is s-sparse, δ2s(A) < 4√

41
, and ‖w‖2 ≤ κ, then∥∥x̂BPDN − x\
∥∥

2
≤ cκ,

where c is some constant dependent only on δ2s(A).
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Generalization of the RIP
If A is sparse, computations involving A can be implemented more efficiently.
Bad news! A sparse matrix in Rn×p cannot satisfy the RIP unless n = Ω(s2) [13].
Good news! There exist a class of sparse A that satisfy a variant of RIP (defined
below) with n = O (s log(p/s)) [3].

Definition (RIP(q, s, δ) [3, 20])
Let A ∈ Rn×p. The matrix A satisfies RIP(q,s,δ) of order s if for all s-sparse x ∈ Rp,

(1− δ) ‖x‖q ≤ ‖Ax‖q ≤ ‖x‖q .

Recall the linear model b = Ax\ with s-sparse x ∈ Rp, and consider

x̂BPDN ∈ arg min
x∈Rp

{
‖x‖1 : ‖b−Ax‖2 ≤ κ

}
.

Theorem ([3, 20])
There exists an A ∈ Rn×p, for ε > 0, with n = O(s log(p/s)/ε2) such that
x̂BPDN = x\ and each column of A has O(log(n)/ε) non-zero entries.

Main idea of the proof.
Prove the existence of such a matrix A that satisfies RIP(1,s,δ). �
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RIP and low rank matrix recovery

RIP is extended to give recovery guarantees for low rank matrix recovery [31].

Definition (RIP for matrices)
The linear map A : Rm×p → Rn satisfies RIP of order r if

(1− δr (A)) ‖X‖2
F ≤ ‖A (X)‖2

F ≤ (1 + δr (A)) ‖X‖2
F , ∀X : rank(X) ≤ r .

I RIP equivalent to bi-Lipschitz embedding
of low-rank matrices.

I RIP guarantees a “stable” embedding of
low-rank matrices.

X

{X0 : Y = AX}

Theorem (Measurement scaling)
Let 0 < δ < 1 and A(X) = Avex(X) where A ∈ Rn×mp and vec(X) vectorizes X. If
A is subgaussian and 1 < r < n, then with probability 1− exp(−c0n), δr (A) ≤ δ
whenever n ≥ c1r min(m, p) log(mp) for c0, c1 > 0.
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Coherence
Besides RIP, coherence is also used to give sparse recovery guarantees [19].

Definition (Coherence of a matrix)
Let A ∈ Rn×p be a matrix with `2-normalized columns {ai}p

i=1. The coherence
η = η(A) of A is defined as

η := max
1≤i,j≤p

|〈ai ,aj〉| .

Definition (`1-coherence)
Let A ∈ Rn×p be a matrix with `2-normalized columns. The `1-coherence η1 of A is
defined as

η1(s) := max
1≤i≤p

max
S

{∑
j∈S

|〈ai ,aj〉| , S ⊆ [p], |S| = s, i < S

}
.

I Generally, for 1 ≤ s, t ≤ p with s + t ≤ p − 1,

max {η1(s), η1(t)} ≤ η1(s + t) ≤ η1(s) + η1(t).
I Particularly, for 1 ≤ s ≤ p, η ≤ η1(s) ≤ sη.
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Coherence contd.

Theorem (Coherence and RIP)
Let A ∈ Rn×p be a matrix with `2-normalized columns, and let 1 ≤ s ≤ p. For all
s-sparse vectors x ∈ Rp,

(1− η1(s − 1)) ‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + η1(s − 1)) ‖x‖2
2.

I Equivalently, for each S ⊆ [p] with |S| ≤ s, the eigenvalues of AT
SAS satisfy

1− η1(s − 1) ≤ λ
(

AT
SAS

)
≤ 1 + η1(s − 1).

I This means if η1(s − 1) < 1, then AT
SAS is invertible.

Corollary
Let A ∈ Rn×p be a matrix with `2-normalized columns, and let 1 ≤ s ≤ p. If

η1(s) + η1(s − 1) < 1,

then for each S ⊆ [p] with |S| ≤ 2s, AT
SAS is invertible and AS is injective.

This similarly holds if
η < (2s − 1)−1.
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Coherence contd.

Theorem (Coherence bound)
The coherence and the `1-coherence of A ∈ Rn×p with `2-normalized columns
respectively satisfies,

η ≥
√

p − n
n(p − 1)

, and η1(s) ≥ s
√

p − n
n(p − 1)

for s <
√

p − 1.

Proposition (Coherence and RIP)
Let A ∈ Rn×p be a matrix with `2-normalized columns, then

δ1 = 0, δ2 = η, δs ≤ η1(s − 1) ≤ η(s − 1), s ≥ 2.

Proof sketch.
To show that δs ≤ η1(s − 1) we do the following:

1. Assuming that the columns of A are `2-normalized, we estimate λ
(

AT
SAS − I

)
.

2. We then take the supremum over all S ⊂ [p] with |S| = s, leading to the
`1-coherence function η1(s − 1).

�
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Coherence contd.

I Note therefore that the estimation of the RIP constants of A relies on the
estimation of λ

(
AT
SAS − I

)
.

I But estimating these eigenvalues for a deterministic A relies on the Gershgorin’s
circle theorem:

Theorem (Gershgorin’s circle theorem)
Let A ∈ Rp×p be a square matrix and let λ be an eigenvalue. Then there exists an
index j ∈ [p] such that

|λ− ajj | ≤
∑

i∈[p]\{j}

|aji | .

I Recalling the δ−2 in the sampling bound, this implies that the coherence bound
and the proposition above will result in the square root bollteneck in the sampling
complexity of deterministic A.
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Coherence contd.

Recall the linear model b = Ax\ + w and consider

x̂BPDN ∈ arg min
x∈Rp

{
‖x‖1 : ‖b−Ax‖2 ≤ κ

}
.

Theorem (Noiseless)
Suppose that x\ is s-sparse, w = 0, and κ = 0, then x̂BPDN = x\ if

η1(s) + η1(s − 1) < 1, or η < (2s − 1)−1.
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Different formulations

Recall the basis pursuit denoising estimator

x̂BPDN ∈ arg min
x∈Rp

{
‖x‖1 : ‖b−Ax‖2 ≤ κ

}
.

There are two formulations closely related to x̂BPDN.

Definition (Least absolute shrinkage and selection operator (lasso) [37])

x̂lasso ∈ arg min
x∈Rp

{
‖b−Ax‖2

2 : ‖x‖1 ≤ τ
}
.

Definition (Penalized least-squares)

x̂PLS ∈ arg min
x∈Rp

{
‖b−Ax‖2

2 + ρ ‖x‖1
}
.

I x̂PLS is usually also called the lasso in literature.

We characterize the relations among the three formulations via the Pareto curve.
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Pareto curve

Define x̂lasso(τ) := arg minx∈Rp
{
‖b−Ax‖2

2 : ‖x‖1 ≤ τ
}
.

Definition (Pareto curve)

φ(τ) := ‖b−Ax̂lasso(τ)‖2
2 , τ ∈ [0,+∞).

Theorem ([39])
Define τopt := minx∈Rp

{
‖x‖1 ,b = Ax

}
.

1. The function φ(τ) is convex and nonincreasing.
2. The function φ(τ) is strictly decreasing on [0, τopt].
3. The function φ(τ) is continuously differentiable on (0, τopt).
4. For all τ ∈ [0, τopt], ‖x̂lasso(τ)‖1 = τ .
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A typical Pareto curve

kx̂lasso(⌧)k1kx̂lasso(⌧opt)k1

⌧ increasing

�(⌧)

kbk2
2
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Relation between x̂PLS and x̂lasso

kx̂lasso(⌧)k1

�(⌧)

�(⌧?)

⌧? := kx̂PLS(⇢?)k1

x̂lasso(⌧
?)

slope = �⇢?

Proposition
Let ρ? > 0 and τ? := ‖x̂PLS(ρ?)‖1. Then
x̂lasso(τ?) = x̂PLS(ρ?).

Proof.
By definition, for all x,

‖b−Ax̂PLS(ρ?)‖2
2 + ρ? ‖x̂PLS(ρ?)‖1

≤ ‖b−Ax‖2
2 + ρ? ‖x‖1 .

Thus, for all x such that ‖x‖1 ≤ τ?,

‖b−Ax̂PLS(ρ?)‖2
2

≤ ‖b−Ax‖2
2 .

�
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Relation between x̂PLS and x̂BPDN

kx̂lasso(⌧)k1

�(⌧)

⌧? := kx̂PLS(⇢?)k1

x̂BPDN(?)
�(⌧?) = ?

slope = �⇢?

Proposition
Let ρ? > 0 and κ? := ‖b−Ax̂PLS(ρ?)‖2.
Then x̂BPDN(κ?) = x̂PLS(ρ?).

Proof.
By definition, for all x,

‖b−Ax̂PLS(ρ?)‖2
2 + ρ? ‖x̂PLS(ρ?)‖1

≤ ‖b−Ax‖2
2 + ρ? ‖x‖1 .

Thus, for all x such that ‖b−Ax‖2 ≤ κ?,

‖x̂PLS(ρ?)‖1 ≤ ‖x‖1 .

�
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Selection of the regularization parameter

Consider the Gaussian linear model b = Ax\ + w with w ∼ N (0, σ2I). We assume
that there exists a matrix Ψ such that Ψx\ is simple with respect to an atomic set A,
and we consider

x̂(ρ) = arg min
x

{
‖b−Ax‖2

2 + ρ ‖x‖A
}
.

Problem
How do we choose the regularization coefficient ρ?

General principle
Fix a loss function L(x̂(λ),x\). Choose the ρ such that the risk
R(ρ) := E

[
L(x̂(ρ),x\)

]
, or the expected loss, is minimized.

Issue
The risk R(ρ) is intractable due to its dependence on x\. Thus it is impossible to find
λ that minimizes the risk.
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Some approaches

Popular approaches:
1. Covariance penalty
2. Cross validation
3. Upper bound heuristic

Common basic idea
Find a tractable estimate R̂(ρ) of the true risk R(ρ). Choose ρ? ∈ arg minρ≥0 R̂(ρ).
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Covariance penalty3

Recall the Gaussian linear model b = Ax\ + w ∼ N (Ax\, σ2I) and we consider the
case where ‖·‖A := ‖·‖1,

x̂PLS(λ) ∈ arg min
x∈Rp

{
‖b−Ax‖2

2 + ρ ‖Ψx‖1
}
.

Define the expected prediction error R(ρ) := Eb,b̃

[∥∥b̃−Ax̂PLS(ρ)
∥∥2

2

]
with

b̃ ∼ N (Ax\, σ2I) independent of b.

Proposition ([25, 35, 16])

R(ρ) = Eb
[
‖b−Ax̂PLS(ρ)‖2

2 + 2σ2df
]
.

where df := σ−2Tr (cov (Ax̂PLS(ρ),b)) is called the degrees-of-freedom.

Proof.
Note that R(ρ) = Eb,b̃

[∥∥b̃− b + b−Ax̂PLS(ρ)
∥∥2
]
. �

3The covariance penalty approach is also called Mallows’ Cp approach (cf., a primitive version in [25]).
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Covariance penalty

Basic idea of the covariance penalty approach
Let R̂(ρ) be an estimator of R(ρ) such that E

[
R̂(ρ)

]
= R(ρ). Choose

ρ? := arg minλ R̂(ρ).

Definition (Stein’s unbiased risk estimator [35])
Any estimator R̂(ρ) of R(ρ) such that Eb̃

[
R̂(ρ)

]
= R(ρ) is called a Stein’s unbiased

risk estimator (SURE).

Recall
R(ρ) = Eb

[
‖b−Ax̂PLS(ρ)‖2

2 + 2σ2df(ρ)
]
,

Let d̂f be an estimator of df such that E
[
d̂f
]

= df. Then

R̂(ρ) := ‖b−Ax̂PLS(ρ)‖2
2 + 2σ2d̂f

is a SURE of R(ρ).
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Covariance penalty

Theorem ([38, 40])
Define S(ρ) as the support set of x̂PLS(ρ), and let ΨS(ρ)c consist of columns of Ψ that
are not indexed by elements in S(ρ).

df = E
[
dim
({

Az : z ∈ null(ΨS(ρ)c )
})]

.

Thus we may choose d̂f := dim
({

Az : z ∈ null(ΨS(ρ)c )
})

, and

R̂(ρ) := ‖b−Ax̂PLS(ρ)‖2
2 + dim

({
Az : z ∈ null(ΨS(ρ)c )

})
is a SURE of the risk R(ρ).
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Cross validation

A typical instance of the cross validation approach is the following one.

Leave-one-out cross validation [1, 5]
Let x̂(−k)(ρ) be an estimator based on b(−k) := (b1, . . . , bk−1, bk+1, . . . , bn)T and
parameterized by ρ > 0, and let A(−k) ∈ R(n−1)×p be the matrix obtained by
removing the kth row of A. Define

R̂(ρ) :=
1
n

n∑
k=1

[
bk −A(−k)x̂(−k)(ρ)

]2
.

Choose ρ? := arg minρ>0 R̂(ρ).

Remarks
A list of variants of the leave-one-out scheme can be found in [1].
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Generalized cross validation

Definition (Ridge regression estimator)

x̂ridge(ρ) ∈ arg min
x∈Rp

{
‖b−Ax‖2

2 + ρ ‖x‖2
2
}
.

I There always exists a ρ > 0 such that E
[∥∥x̂ridge(ρ)− x\

∥∥2
2

]
≤ E
[∥∥x̂LS − x\

∥∥2
2

]
.

Generalized cross validation [21]
For ridge regression, the generalized cross validation approximates the leave-one-out
approach.

ρ? := arg min
λ≥0

{
1
n ‖b−M(ρ)b‖[
1
n Tr (I−M(ρ))

]2

}
,

where
M(ρ) := A(AT A + nρI)−1AT .

I There does not exist any explicit result about applying the cross validation
method to the lasso currently.
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Solution path

Consider x̂PLS(ρ) := arg minx∈Rp
{
‖b−Ax‖2

2 + ρ ‖x‖1
}
.

Definition (Solution path)
The solution path of x̂PLS(ρ) is the set {x̂PLS(ρ) : ρ > 0}.

Recall that in the covariance penalty approach we aim at minimizing

R̂CP := ‖b−Ax̂PLS(ρ)‖2
2 + 2σ2d̂f,

and in the cross validation approach we aim at minimizing

R̂CV(ρ) :=
1
n

n∑
k=1

[
bk −A(−k)x̂(−k)

PLS (ρ)
]2
.

In both approaches we have to solve for the solution path.
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Homotopy method

Theorem ([17, 24])
Let S(ρ) be the support of x̂PLS(ρ) for ρ > 0. Assume that for any ρ > 0, the
submatrix

(
AT A

)
S(ρ),S(ρ)

is positive definite. Then the solution path is well
defined, unique, continuous, and piecewise linear.

Insight: It suffices to find the kinks, or the points where the direction of the solution
path changes, to characterize the whole solution path.

A homotopy method finds the pairs (ρk , x̂PLS(ρk)) where ρk are the kinks (cf. [17, 28]
for details).

Theorem ([24])
In the worst case the solution path can have exactly (3p + 1)/2 kinks.

Insight: The computational complexity increases exponentially with p in the worst
case, since to determine a kink we have to solve at least one lasso problem.

Good news: In practice we seldom encounter the worst case; the number of kinks is
usually O(p) by experience [33].4

4We will observe a similar gap between practical and worst-case performances in Lecture 9 for the simplex
method.
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Upper bound heuristic

Consider the linear model b = Ax\ + w and we assume that x\ ∈ Rp satisfies∥∥x\
∥∥

0
= s with some s ≤ p and A ∈ Rn×p is a matrix of i.i.d. random variables

∼ N (0, 1/n).
x̂PLS(λ) ∈ arg min

x∈Rp

{
‖b−Ax‖2

2 + ρ ‖x‖1
}
.

Theorem ([36])
Assume that n ≥ 2. Then for any t ∈ (0,

√
p − 1− √cx\ ], with probability at least

1− 5 exp(−t2/32), ∥∥x̂PLS − x\
∥∥

2
≤ 2 ‖w‖

√cx\ + t
√

n − 1− √cx\ − t
,

where

cx\ := s(1 + nρ2) + (p − s)

[
(1 + nρ2)erfc

(
ρ

√n
2

)
−

√
2n
π
ρ exp

(
−

nρ2

2

)]
,

erfc(·) being the standard complementary error function.
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Upper bound heuristic

Observation: cx\ is a function of n, p, s, and ρ only, and thus we have∥∥x̂PLS − x\
∥∥

2
≤ ‖w‖2 f (n, p, s, ρ, t). Note that f only depends on s :=

∥∥x\
∥∥

0
instead of x\.

Lower bound heuristic [36]
Consider ‖w‖2 f (n, p, s, ρ, t) as an estimate of

∥∥x̂PLS − x\
∥∥

2
.

Suppose that s =
∥∥x\
∥∥

0
is known. Choose a ρ? that minimizes f (n, p, s, ρ, t) for a

given set of n, p, s, t.
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