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Lecture 05: Composite Convex Minimization

Outline

I Today
1. Composite convex minimization
2. Proximal operator and computational complexity
3. Proximal gradient methods
4. Composite self-concordant minimization
5. Smoothing for nonsmooth composite convex minimization

I Next week
1. Nonsmooth constrained optimization
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Motivation

Motivation
Data analytics problems in various disciplines can often be simplified to nonsmooth
composite convex minimization problems. To this end, this lecture provides efficient
numerical solution methods for such problems.

Intriguingly, composite minimization problems are far from generic nonsmooth
problems and we can exploit individual function structures to obtain numerical
solutions nearly as efficiently as if they are smooth problems.
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Composite convex minimization

Problem (Mathematical formulation)

F? := min
x∈Rp

{F(x) := f (x) + g(x)} (1)

where f and g are both proper, closed and convex. Note that (1) is unconstrained.
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A composite function illustration
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Composite convex minimization

Problem (Mathematical formulation)

F? := min
x∈Rp

{F(x) := f (x) + g(x)} (1)

where f and g are both proper, closed and convex. Note that (1) is unconstrained.

Two remarks
I Nonsmoothness: At least one of two functions f and g is nonsmooth

I General nonsmooth convex optimization methods (e.g., subgradient methods or bundle
methods) are not efficient and numerically robust.
I Indeed, subgradient/bundle methods require O(ε−2) iterations to reach a point x?ε such that

F(x?ε )− F? ≤ ε. Hence, to reach x?0.01 such that F(x?0.01)− F? ≤ 0.01, we need
O(104) iterations.

I Generality: (1) clearly covers a much wider variety of problems than smooth
unconstrained problems. For instance, we can immediately handle regularized
M -estimators with the following setup:
I f is a loss function, a data fidelity term or a negative log-likelihood function.
I g is a regularizer or a gauge function encouraging structure in the solution.
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Optimal solution and structure assumption

Definition (Optimal solutions and solution set)

I (1) has solution if F? is finite.
I x? ∈ Rp is a solution to (1) if F(x?) = F? .

I S? := {x? ∈ Rp : F(x?) = F?} is the solution set of (1).

Assumption (Two distinct settings for (1))
Throughout, we assume f and g to feature the one of the following structures
(a) Both f and g are nonsmooth, i.e., f , g ∈ F(Rp).
(b) Only f is smooth, i.e., f ∈ F1,1

L (Rp).

Recall that F is the class of convex functions, F1,1
L is the class of smooth convex

functions with Lipschitz gradient (cf., formal definitions in Lecture 2).
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Example 1: `1-regularized least-squares

Problem (`1-regularized least-squares)
Compressive sensing setup:
I A is a sensing matrix (measurement matrix).
I b is an observations/measurements vector.
I x\ is an unknown sparse signal.
I w is unknown perturbations / noise.

b A x\ w

Optimization formulation

min
x∈Rp

{ 1
2
‖A(x)− b‖2

2︸                ︷︷                ︸
f (x)

+λ‖x‖1︸  ︷︷  ︸
g(x)

}
(2)

where λ > 0 is a parameter which controls the strength of sparsity regularization.
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Example 2: Sparse logistic regression

Problem (Sparse logistic regression)
Given a sample vector a ∈ Rp and a binary class label vector b ∈ {−1,+1}n . The
conditional probability of a label b given a is defined as:

P(b|a,x, µ) = 1/(1 + e−b(xT a+µ)),

where x ∈ Rp is a weight vector, µ is called the intercept.
Goal: Find a sparse-weight vector x via the maximum likelihood principle.

Optimization formulation

min
x∈Rp

{ 1
n

n∑
i=1

L(bi(aT
i x + µ))︸                             ︷︷                             ︸

f (x)

+λ‖x‖1︸  ︷︷  ︸
g(x)

}
, (3)

where ai is the i-th row of data matrix A in Rn×p, λ > 0 is a regularization
parameter, and ` is the logistic loss function L(τ) := log(1 + e−τ ).
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Example 3: Image processing

Problem (Imaging denoising/deblurring)
Our goal is to obtain a clean image x given “dirty” observations b ∈ Rn×1 via
b = A(x) + w, where A is a linear operator, which, e.g., captures camera blur as well
as image subsampling, and w models perturbations, such as Gaussian or Poisson noise.

Optimization formulation

Gaussian : min
x∈Rn×p

{
(1/2)‖A(x)− b‖2

2︸                      ︷︷                      ︸
f (x)

+λ‖x‖TV︸      ︷︷      ︸
g(x)

}
(4)

Poisson : min
x∈Rn×p

{ 1
n

n∑
i=1

[〈ai ,x〉 − bi ln (〈ai ,x〉)]︸                                         ︷︷                                         ︸
f (x)

+λ‖x‖TV︸      ︷︷      ︸
g(x)

}
(5)

where λ > 0 is a regularization parameter and ‖ · ‖TV is the total variation (TV) norm:

‖x‖TV :=
{∑

i,j |xi,j+1 − xi,j |+ |xi+1,j − xi,j | anisotropic case,∑
i,j

√
|xi,j+1 − xi,j |2 + |xi+1,j − xi,j |2 isotropic case

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 05: Composite Convex Minimization

Example 3: Image processing

Problem (Imaging denoising/deblurring)
Our goal is to obtain a clean image x given “dirty” observations b ∈ Rn×1 via
b = A(x) + w, where A is a linear operator, which, e.g., captures camera blur as well
as image subsampling, and w models perturbations, such as Gaussian or Poisson noise.

Optimization formulation

Gaussian : min
x∈Rn×p

{
(1/2)‖A(x)− b‖2

2︸                      ︷︷                      ︸
f (x)

+λ‖x‖TV︸      ︷︷      ︸
g(x)

}
(4)

Poisson : min
x∈Rn×p

{ 1
n

n∑
i=1

[〈ai ,x〉 − bi ln (〈ai ,x〉)]︸                                         ︷︷                                         ︸
f (x)

+λ‖x‖TV︸      ︷︷      ︸
g(x)

}
(5)

where λ > 0 is a regularization parameter and ‖ · ‖TV is the total variation (TV) norm:

‖x‖TV :=
{∑

i,j |xi,j+1 − xi,j |+ |xi+1,j − xi,j | anisotropic case,∑
i,j

√
|xi,j+1 − xi,j |2 + |xi+1,j − xi,j |2 isotropic case

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 05: Composite Convex Minimization

Example 3: Confocal microscopy with camera blur and Poisson
observations

Original image x\ Observed image b Estimate x̂ via (5)original image input: Noise image output: Denoise image
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Example 4: Sparse inverse covariance estimation
Problem (Graphical model selection)
Given a data set D := {x1, · · · ,xN}, where xi is a Gaussian random variable. Let Σ
be the covariance matrix corresponding to the graphical model of the Gaussian
Markov random field. Our goal is to learn a sparse precision matrix Θ (i.e., the inverse
covariance matrix Σ−1) that captures the Markov random field structure..

Example: Log-determinant for LMIs
• Application: Graphical model selection

Given a data set D := {x1, . . . ,xN}, where xi is a Gaussian random variable.
Let ⌃ be the covariance matrix corresponding to the graphical model of
the Gausian Markov random field. The aim is to learn a sparse matrix ⇥ that
approximates the inverse ⌃�1.

Optimization problem

min
⇥�0

8
><
>:
� log det(⇥) + trace(⌃⇥)| {z }

f(x)

+ ⇢kvec(⇥)k1| {z }
g(x)

9
>=
>;

x2

x3

x4x5

x1

x1 x2 x3 x4 x5

x1

x2

x3

x4

x5

⇥ =

Thursday, June 12, 14

Optimization formulation

min
Θ�0

{
tr(ΣΘ)− log det(Θ)︸                         ︷︷                         ︸

f (x)

+λ‖vec(Θ)‖1︸           ︷︷           ︸
g(x)

}
(6)

where Θ � 0 means that Θ is symmetric and positive definite and λ > 0 is a
regularization parameter and vec is the vectorization operator.
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Question: How do we design algorithms for finding a solution x??

Philosophy

I We cannot immediately design algorithms just based on the original formulation

F? := min
x∈Rp

{F(x) := f (x) + g(x)} . (1)

I We need intermediate tools to characterize the solutions x? of this problem
I One key tool is called the optimality condition
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Optimality condition

Theorem (Moreau-Rockafellar’s theorem [9])
Let ∂f and ∂g be the subdiffierential of f and g, respectively. If f , g ∈ F(Rp) and
dom(f ) ∩ dom(g) , ∅, then:

∂F ≡ ∂(f + g) = ∂f + ∂g.

Note: dom(F) = dom(f ) ∩ dom(g) and ∂f (x) is defined as (cf., Lecture 2):

∂f := {w ∈ Rn : f (y)− f (x) ≥ wT (y− x), ∀y ∈ Rn},

Optimality condition
Generally, the optimality condition for (1) can be written as

0 ∈ ∂F(x?) ≡ ∂f (x?) + ∂g(x?). (7)

If f ∈ F1,1
L (Rp), then (7) features the gradient of f as opposed to the subdifferential

0 ∈ ∂F(x?) ≡ ∇f (x?) + ∂g(x?). (8)
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Necessary and sufficient condition

Lemma (Necessary and sufficient condition)
A point x? ∈ dom(F) is called a globally optimal solution to (1) (i.e.,
F? := minx∈Rp{F(x) := f (x) + g(x)}

iff

x? satisfies (7): 0 ∈ ∂f (x?) + ∂g(x?) (or (8): 0 ∈ ∇f (x?) + ∂g(x?) when
f ∈ F1,1

L (Rp) ).

Sketch of the proof.
• ⇒: By definition of ∂F :

F(x)− F(x?) ≥ ξT (x− x?), for any ξ ∈ ∂F(x?), x ∈ Rp.

If (7) (or (8)) is satisfied, then F(x)− F(x?) ≥ 0 ⇒ x? is a global solution to (1).

• ⇐: If x? is a global of (1) then

F(x) ≥ F(x?),∀ x ∈ dom(F) ⇔ F(x)− F(x?) ≥ 0T (x− x?), ∀x ∈ Rp.

This leads to 0 ∈ ∂F(x?) or (7) (or (8)). �
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A short detour: Proximal-point operators

Definition (Proximal operator [10])
Let g ∈ F(Rp) and x ∈ Rp. The proximal operator (or prox-operator) of f is defined
as:

proxg(x) ≡ arg min
y∈Rp

{
g(y) +

1
2
‖y− x‖2

2

}
. (9)

Numerical efficiency: Why do we need proximal operator?
For problem (1):
I Many well-known convex functions g, we can compute proxg(x) analytically or
very efficiently.

I If f ∈ F1,1
L (Rp), and proxg(x) is cheap to compute, then solving (1) is as

efficient as solving min
x∈Rp

f (x) in terms of complexity.

I If proxf (x) and proxg(x) are both cheap to compute, then convex splitting (1) is
also efficient (cf., Lecture 8).
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A short detour: Basic properties of prox-operator

Property (Basic properties of prox-operator)
1. proxg(x) is well-defined and single-valued (i.e., the prox-operator (9) has a

unique solution since g(·) + (1/2)‖ · −x‖2
2 is strongly convex).

2. Optimality condition:

x ∈ proxg(x) + ∂g(proxg(x)), x ∈ Rp.

3. x? is a fixed point of proxg(·):

0 ∈ ∂g(x?) ⇔ x? = proxg(x?).

4. Nonexpansiveness:

‖proxg(x)− proxg(x̃)‖2 ≤ ‖x− x̃‖2, ∀x, x̃ ∈ Rp.
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Fixed-point characterization

Optimality condition as fixed-point formulation
The optimality condition (7): 0 ∈ ∂f (x?) + ∂g(x?) is equivalent to

x? ∈ proxλg (x? − λ∂f (x?)) := Tλ(x?), for any λ > 0. (10)

The optimality condition (8): 0 ∈ ∇f (x?) + ∂g(x?) is equivalent to

x? = proxλg (x? − λ∇f (x?)) := Uλ(x?), for any λ > 0. (11)

Tλ is a set-valued operator and Uλ is a single-valued operator.

Proof.
We prove (11) ((10) is done similarly). (8) implies

0 ∈ ∇f (x?) + ∂g(x?)⇔ x? − λ∇f (x?) ∈ x? + λ∂g(x?) ≡ (I + λ∂g)(x?).

Using the basic property 2 of proxλg, we have

x? ∈ proxλg(x? − λ∇f (x?)).

Since proxλg and ∇f are single-valued, we obtain (11). �
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Lecture 05: Composite Convex Minimization

Fixed-point characterization
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Lecture 05: Composite Convex Minimization

Choices of solution methods

Splitting methods/ADMMSmoothing techniques

Proximal gradient/Newton 

F ? = min
x2Rp

{F (x) := f(x) + g(x)}

[Fast] proximal gradient method

f 2 F1,1
L (Rp), g 2 Fprox(Rp) f 2 F2(dom(f)), g 2 Fprox(Rp)

f is smoothable, g 2 Fprox(Rp) f 2 Fprox(Rp), g 2 Fprox(Rp)

Tuesday, June 24, 14

I F1,1
L and F2 are the class of convex functions with Lipschitz gradient and self-concordant, respectively.

I Fprox is the class of convex functions with proximity operator (defined in the next slides).
I “smoothable” is defined in the next slides.
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Tuesday, July 29, 14

I F1,1
L and F2 are the class of convex functions with Lipschitz gradient and self-concordant, respectively.

I Fprox is the class of convex functions with proximity operator (defined in the next slides).
I “smoothable” is defined in the next slides.
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Lecture 6 Lectures 7 and 8

Tuesday, July 29, 14

I F1,1
L and F2 are the class of convex functions with Lipschitz gradient and self-concordant, respectively.

I Fprox is the class of convex functions with proximity operator (defined in the next slides).
I “smoothable” is defined in the next slides.
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Lecture 05: Composite Convex Minimization

Solution methods
Composite convex minimization

F? := min
x∈Rp

{
F(x) := f (x) + g(x)

}
. (1)

Choice of numerical solution methods
• Solve (1) = Find xk ∈ Rp such that

F(xk)− F? ≤ ε

for a given tolerance ε > 0.

• Oracles: We can use one of the following configurations (oracles):
1. ∂f (·) and ∂g(·) at any point x ∈ Rp.
2. ∇f (·) and proxλg(·) at any point x ∈ Rp.
3. proxλf and proxλg(·) at any point x ∈ Rp.
4. ∇f (·), inverse of ∇2f (·) and proxλg(·) at any point x ∈ Rp.

Using different oracle leads to different types of algorithms
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Lecture 05: Composite Convex Minimization

Tractable prox-operators

Processing non-smooth terms in (1)

I We handle the nonsmooth term g in (1) using the proximal mapping principle.
I Computing proximal operator proxg of a general convex function g

proxg(x) ≡ arg min
y∈Rp

{
g(y) + (1/2)‖y− x‖2

2
}
.

can be computationally demanding.
I If we can efficiently compute proxF , we can use the proximal-point algorithm
(PPA) [4, 10] to solve (1). Unfortunately, PPA is hardly used in practice to solve
(12) since computing proxλF(·) can be as almost hard as solving (1).

Definition (Tractable proximity)
Given g ∈ F(Rp). We say that g is proximally tractable if proxg defined by (9) can be
computed efficiently.
I ”efficiently" = {closed form solution, low-cost computation, polynomial time}.
I We denote Fprox(Rp) the class of proximally tractable convex functions.
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Lecture 05: Composite Convex Minimization

?The proximal-point method
Problem (Unconstrained convex minimization)
Given F ∈ F(Rp), our goal is to solve

F? := min
x∈Rp

F(x). (12)

Proximal-point algorithm (PPA):
1. Choose x0 ∈ Rp and a positive sequence {λk}k≥0 ⊂ R++.
2. For k = 0, 1, · · · , update:

xk+1 := proxλkF(xk)

Theorem (Convergence [4])
Let {xk}k≥0 be a sequence generated by PPA. If 0 < λk < +∞ then

F(xk)− F? ≤
‖x0 − x?‖2

2

2
∑k

j=0 λj
, ∀x? ∈ S?, k ≥ 0.

If λk ≥ λ > 0, then the convergence rate of PPA is O(1/k).
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Lecture 05: Composite Convex Minimization

Tractable prox-operators

Example

I For separable functions, the prox-operator can be efficient. For instance,
g(x) := ‖x‖1 =

∑n
i=1 |xi |, we have

proxλg(x) = sign(x)⊗max{|x| − λ, 0}.

I For smooth functions, we can computer the prox-operator via basic algebra. For
instance, g(x) := (1/2)‖Ax− b‖2

2, one has

proxλg(x) =
(
I + λAT A

)−1(x + λAb
)
.

I For the indicator functions of simple sets, e.g., g(x) := δX (x), the prox-operator
is the projection operator

proxλg(x) := πX (x)

the projection of x onto X . For instance, when X = {x : ‖x‖1 ≤ λ}, the
projection can be obtained efficiently.
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Lecture 05: Composite Convex Minimization

Computational efficiency - Example

Proximal operator of quadratic function
The proximal operator of a quadratic function g(x) := 1

2‖Ax− b‖2
2 is defined as

proxλg(x) := arg min
y∈Rp

{1
2
‖Ay− b‖2

2 +
1

2λ
‖y− x‖2

2

}
. (13)

How to compute proxλg(x)?
The optimality condition implies that the solution of (13) should satisfy the following
linear system: AT (Ay− b) + λ−1(y− x) = 0 . As a result, we obtain

proxλg(x) =
(
I + λAT A

)−1
(x + λAb) .

I When AT A is efficiently diagonalizable (e.g., UT AT AU := Λ, where U is a
unitary matrix and Λ is a diagonal matrix) then proxλg(x) can be cheap
proxλg(x) = U (I + λΛ)−1 UT (x + λAb).
I Matrices A such as TV operator with periodic boundary conditions, index subsampling
operators (e.g., as in matrix completion), and circulant matrices (e.g., typical image
blur operators) are efficiently diagonalizable with the Fast Fourier transform U.

I If AAT is diagonalizable (e.g., a tight frame A), then we can use the identity
(I + λAT A)−1 = I−AT (λ−1I + AAT )−1A.
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Lecture 05: Composite Convex Minimization

A non-exhaustive list of proximal tractability functions

Name Function Proximal operator Complexity
`1-norm f (x) := ‖x‖1 proxλf (x) = sign(x)⊗ [|x| − λ]+ O(p)
`2-norm f (x) := ‖x‖2 proxλf (x) = [1− λ/‖x‖2]+x O(p)
Support function f (x) := maxy∈C xT y proxλf (x) = x− λπC(x)
Box indicator f (x) := δ[a,b](x) proxλf (x) = π[a,b](x) O(p)
Positive semidefinite
cone indicator

f (X) := δ
S
p
+

(X) proxλf (X) = U[Σ]+UT , where X =
UΣUT

O(p3)

Hyperplane indicator f (x) := δX (x), X :=
{x : aT x = b}

proxλf (x) = πX (x) = x +(
b−aT x
‖a‖2

)
a

O(p)

Simplex indicator f (x) = δX (x),X :=
{x : x ≥ 0, 1T x = 1}

proxλf (x) = (x− ν1) for some ν ∈ R,
which can be efficiently calculated

Õ(p)

Convex quadratic f (x) := (1/2)xT Qx +
qT x

proxλf (x) = (λI + Q)−1x O(p log p)→
O(p3)

Square `2-norm f (x) := (1/2)‖x‖2
2 proxλf (x) = (1/(1 + λ))x O(p)

log-function f (x) := − log(x) proxλf (x) = ((x2 + 4λ)1/2 + x)/2 O(1)
log det-function f (x) := − log det(X) proxλf (X) is the log-function prox ap-

plied to the individual eigenvalues of X
O(p3)

Here: [x]+ := max{0,x} and δX is the indicator function of the convex set X , sign is the sign function, Sp
+

is the cone of symmetric positive semidefinite matrices.
For more functions, see [3, 8].
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Lecture 05: Composite Convex Minimization

Outline

I Today
1. Composite convex minimization
2. Proximal operator and computational complexity
3. Proximal gradient methods
4. Composite self-concordant minimization
5. Smoothing for nonsmooth composite convex minimization

I Next week
1. Nonsmooth constrained optimization
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Lecture 05: Composite Convex Minimization

Overview of algorithms/complexity
Assumption Algorithm Convergence rate (ε) Complexity per iteration

Subgradient O(1/
√

k) 1 sub-gradient of f , g

f , g ∈ F(Rp) Bundle method O(1/
√

k) 1 sub-gradient of f , g

Mirror-descent O(1/
√

k) 1 sub-gradient of f , g
Proximal-gradient O(1/k) (µ = 0), lin-

ear (µ > 0)
1 gradient, 1 prox opera-
tor

f ∈ F1,1
L,µ(Rp), g ∈

Fprox(Rn)
Accelerated proximal-
gradient

O(1/k2) (µ = 0), lin-
ear (µ > 0)

1 gradient, 1 or 2 prox op-
erator(s)

Proximal quasi-Newton locally superlinear, glob-
ally sublinear

One gradient, rank-2 up-
date

Proximal Newton locally quadratic, locally
sublinear O(1/ks),
1 ≤ s ≤ 3

One gradient, one Hessian
inverse

Peaceman-Douglas O(1/k)-ergodic ≥ 1 prox operator(s) f , g

f , g ∈ Fprox(Rn) Douglas-Rachford O(1/k)-ergodic ≥ 1 prox operator(s) f , g

ALM O(1/k2) ≥ 1 prox operator(s) f , g

ADMM O(1/k) ≥ 1 prox operator(s) f , g

I ALM = augmented Lagrangian method, ADMM = alternating direction method of multiplier.
I F = class of proper, closed convex functions.

I F1,1
L,µ = class of strongly convex functions with Lipschitz gradient.

I Fprox = class of convex functions with tractable prox-operator.
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Subgradient O(1/
Ô

k) 1 sub-gradient of f , g

f , g œ F(Rp) Bundle method O(1/
Ô

k) 1 sub-gradient of f , g

Mirror-descent O(1/
Ô

k) 1 sub-gradient of f , g
Proximal-gradient O(1/k) (µ = 0), lin-

ear (µ > 0)
1 gradient, 1 prox opera-
tor

f œ F1,1
L,µ(Rp), g œ

Fprox(Rn)
Accelerated proximal-
gradient

O(1/k2) (µ = 0), lin-
ear (µ > 0)

1 gradient, 1 or 2 prox op-
erator(s)

Proximal quasi-Newton locally superlinear, glob-
ally sublinear

One gradient, rank-2 up-
date

Proximal Newton locally quadratic, locally
sublinear O(1/ks),
1 Æ s Æ 3

One gradient, one Hessian
inverse

Peaceman-Douglas O(1/k)-ergodic Ø 1 prox operator(s) f , g
f , g œ Fprox(Rn) Douglas-Rachford O(1/k)-ergodic Ø 1 prox operator(s) f , g
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L,µ = class of strongly convex functions with Lipschitz gradient.

I Fprox = class of convex functions with tractable prox-operator.
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Lecture 05: Composite Convex Minimization

Proximal-gradient method

Assumption and oracle of proximal-gradient

I Assumption A.2.: f ∈ F1,1
L (Rp) and g ∈ Fprox(Rp).

I Oracle: ∇f and proxλg.

Motivation ...
I [Fast] gradient methods offer a low computational cost per iteration.
I If f ∈ F1,1

L , then we can achieve O(1/k) convergence rate.
I Under Assumption A.2., [fast] proximal-gradient methods have almost the same
computational cost per iteration as [fast] gradient methods at the cost of one
additional proximal operation per iteration.

I They maintain the same convergence rate as in [fast] gradient methods.
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Lecture 05: Composite Convex Minimization

A quadratic majorization perspective

Definition (Quadratic model for f )
Given x ∈ Rp, we define:

QL(y,x) := f (x) +∇f (x)T (y− x) +
L
2
‖y− x‖2

2, ∀y ∈ Rp. (14)

Property (Upper and lower bounds)
For f ∈ F1,1

L (Rp), we have{
f (x) +∇f (x)T (y− x) ≤ f (y)
f (y) ≤ f (x) +∇f (x)T (y− x) + Lf

2 ‖y− x‖2
2,
∀x,y ∈ Rp (15)
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Lecture 05: Composite Convex Minimization

Geometric illustration

xxk+1xk

SL(xk)

x?

xk

PL(x,xk) := f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2 + g(x)F (x)

F (x) = f(x) + g(x)

f(xk) + rf(xk)T (x � xk) + g(x)

Thursday, June 12, 14
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Lecture 05: Composite Convex Minimization

Proximal-gradient mapping

Definition (Quadratic-convex model of F)
Given a point xk ∈ Rp and L > 0. The quadratic-convex model of F at xk is defined
as:

PL(x,xk) := QL(x,xk) + g(x) ≡ f (xk) +∇f (xk)T (x− xk) +
L
2
‖x− xk‖2

2 + g(x).

Definition (Proximal-gradient mapping [6])

SL(xk) := argmin
x∈dom(F)

PL(x,xk) ≡ prox(1/L)g
(

xk − (1/L)∇f (xk)
)
. (16)

The proximal-gradient mapping of F is defined as:

PGL(xk) := L(xk − SL(xk)). (17)

Note: When g ≡ 0, we have PGL(xk) ≡ ∇f (xk).

Property (Optimality condition (Exercise))
If PGL(x?) = 0 then x? is an optimal solution of (1).
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PGL(xk) := L(xk − SL(xk)). (17)

Note: When g ≡ 0, we have PGL(xk) ≡ ∇f (xk).

Property (Optimality condition (Exercise))
If PGL(x?) = 0 then x? is an optimal solution of (1).
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Lecture 05: Composite Convex Minimization

Proximal-gradient algorithm algorithm

Basic proximal-gradient scheme (ISTA)
1. Choose x0 ∈ dom(F) arbitrarily as a starting point.
2. For k = 0, 1, · · · , generate a sequence {xk}k≥0 as:

xk+1 := proxλg
(

xk − λ∇f (xk)
)
,

where SL is defined as (16) and λ := 1
Lf

.

Theorem (Convergence of ISTA [1])
Let {xk} be generated by ISTA. Then:

F(xk)− F? ≤
Lf ‖x0 − x?‖2

2
2(k + 1)

(18)

The worst-case complexity to reach F(xk)− F? ≤ ε of (ISTA) is O
(

Lf R2
0

ε

)
, where

R0 := max
x?∈S?

‖x0 − x?‖2.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 05: Composite Convex Minimization

Proximal-gradient algorithm algorithm

Basic proximal-gradient scheme (ISTA)
1. Choose x0 ∈ dom(F) arbitrarily as a starting point.
2. For k = 0, 1, · · · , generate a sequence {xk}k≥0 as:

xk+1 := proxλg
(

xk − λ∇f (xk)
)
,

where SL is defined as (16) and λ := 1
Lf

.

Theorem (Convergence of ISTA [1])
Let {xk} be generated by ISTA. Then:

F(xk)− F? ≤
Lf ‖x0 − x?‖2

2
2(k + 1)

(18)

The worst-case complexity to reach F(xk)− F? ≤ ε of (ISTA) is O
(

Lf R2
0

ε

)
, where

R0 := max
x?∈S?

‖x0 − x?‖2.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 05: Composite Convex Minimization

Example: `1-regularized least squares

Problem (`1-regularized least squares)
Given A ∈ Rn×p and b ∈ Rn , solve:

F? := min
x∈Rp

{
F(x) :=

1
2
‖Ax− b‖2

2 + λ‖x‖1

}
, (19)

where λ > 0 is a regularization parameter.

Complexity per iterations

I Evaluating ∇f (xk) = AT (Axk − b) requires one Ax and one AT y.
I One soft-thresholding operator proxλg(x) = sign(x)⊗max{|x| − λ, 0}.
I Optional: Evaluating L = ‖AT A‖ (spectral norm) - via power iterations (e.g.,

20 iterations, each iteration requires one Ax and one AT y).

Synthetic data generation

I A := randn(n, p) - standard Gaussian N (0, I).
I x? is a k-sparse vector generated randomly.
I b := Ax? +N (0, 10−3).
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Lecture 05: Composite Convex Minimization

Example: Numerical test with ISTA
Case 1:

n = 750, p = 2000, s = 200, λ = 0.1
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Case 2:
n = 1750, p = 5000, s = 500, λ = 0.1
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ISTA

Case 1 Case 2
Number of iterations 806 1079
CPU time (s) 4.030 25.509
Solution error (×10−11) 9.971 9.810
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Lecture 05: Composite Convex Minimization

Example: Numerical test with ISTA - Performance w.r.t. time
Case 1:

n = 750, p = 2000, s = 200, λ = 0.1
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Lecture 05: Composite Convex Minimization

Example: Theoretical bounds vs practical performance

I Theoretical bound: ISTA := Lf R2
0

2(k+1) .
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Theoretical bound
ISTA
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descent directions
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x2

restricted descent directions

I `1-regularized least squares formulation has restricted strong convexity. The
proximal-gradient method can automatically exploit this structure.
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Lecture 05: Composite Convex Minimization

Fast proximal-gradient algorithm

The need for a faster algorithm
The convergence rate of ISTA is NOT optimal:

F(xk)− F? ≤
Lf R2

0
2(k + 1)

, (20)

where R0 := min
x?∈S?

‖x0 − x?‖2. This is because the iterates of methods based on
gradients and objective evaluations must obey

F(xk)− F? ≥
3Lf R2

0
32(k + 2)2 , 1 ≤ k ≤ (p − 1)/2. (21)

An algorithm with optimal convergence would achieve this lower bound up to a
constant factor.

Can we design an algorithm with optimal convergence?
Answer: YES
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Lecture 05: Composite Convex Minimization

Fast proximal-gradient algorithm

Fast proximal-gradient scheme (FISTA)
1. Choose x0 ∈ dom(F) arbitrarily as a starting point.
2. Set y0 := x0 and t0 := 1.
3. For k = 0, 1, . . ., generate two sequences {xk}k≥0 and {yk}k≥0 as:

xk+1 := proxλg
(

yk − λ∇f (yk)
)
,

tk+1 := 0.5(1 +
√

4t2
k + 1),

γk+1 := (tk − 1)/tk+1,
yk+1 := xk+1 + γk+1(xk+1 − xk).

(22)

where λ := L−1
f .

Complexity per iteration

I One gradient ∇f (yk) and one prox-operator of g;
I 8 arithmetic operations for tk+1 and γk+1;
I 2 more vector additions, and one scalar-vector multiplication.

The cost per iteration is almost the same as in gradient scheme.
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Lecture 05: Composite Convex Minimization

Global convergence of FISTA

Theorem (Global complexity [1])
The sequence {xk}k≥0 generated by FISTA satisfies

F(xk)− F? ≤
2Lf R2

0
(k + 2)2 , ∀k ≥ 0. (23)

The worst-case complexity to reach F(xk)− F? ≤ ε is O
(

R0

√
Lf
ε

)
, where

R0 := min
x?∈S?

‖x0 − x?‖ and ε > 0.

Remark
The convergence rate of FISTA is optimal up to a constant factor based on the
lowerbound we described earlier:

F(xk)− F? ≥
3Lf R2

0
32(k + 2)2 , 1 ≤ k ≤ (p − 1)/2, (24)

where R0 := min
x?∈S?

‖x0 − x?‖.
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Lecture 05: Composite Convex Minimization

Example: Numerical test with FISTA

Case 1:
n = 750, p = 2000, s = 200, λ = 0.1
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Case 2:
n = 1750, p = 5000, s = 500, λ = 0.1
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Number of iterations 806 548 1079 808
CPU time (s) 4.030 2.738 25.509 18.889
Solution error (×10−11) 9.971 9.783 9.810 9.975
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Lecture 05: Composite Convex Minimization

Example: Numerical test with FISTA - Performance w.r.t. time
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Lecture 05: Composite Convex Minimization

Example: Theoretical bounds vs practical performance

I Theoretical bound: FISTA := 2Lf R2
0

(k+2)2 .
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I `1-regularized least squares formulation has restricted strong convexity. The
proximal-gradient method can automatically exploit this structure.
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Lecture 05: Composite Convex Minimization

Enhancements
Two practical enhancements

1. Line-search for evaluating Lf as LS-ISTA.
2. Adaptive restart strategies

When do we need a line-search procedure?
We can use a line-search procedure in one of the following cases:
I Lf is unknown, a line-search procedure can approximate Lf .
I Lf is known but expensive to evaluate.
I The global constant Lf usually does not capture the local behavior of f , we want
to improve this behavior.

Why do we need a restart strategy?

I FISTA is non-monotonic (i.e., F(xk+1) � F(xk) is not necessary satisfied).
I FISTA has a periodic behavior, where the momentum depends on the local
condition number cf := Lf /µf (µf is the local strong convexity parameter).
Since the momentum term is increasing, the algorithm can overshoot the optimal
solution and has to backtrack.

I A restart strategy resets the momentum whenever we observe oscillations.
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Lecture 05: Composite Convex Minimization

Example: Periodic behavior of FISTA and its enhancements

Case 1: n = 750, p = 2000, s = 200, λ = 0.1
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Lecture 05: Composite Convex Minimization

Line-search proximal-gradient algorithm

Line-search proximal-gradient scheme (LS− ISTA)
1. Choose x0 ∈ dom(F) arbitrarily as a starting point.
2. For k = 0, 1, · · · , generate a sequence {xk}k≥0 as:

2.a. Find the smallest j ≥ 0 such that Lj
k := 2jL0 satisfying

F(SLj
k
(xk)) ≤ PLj

k
(SLj

k
(xk),xk),

where L0 > 0 is a given.
2.b. Update

xk+1 := SLj
k
(xk) ≡ prox1/Lj

kg

(
xk − (1/Lj

k)∇f (xk)
)

We can use L0 := ‖∇f (x1)−∇f (x0)‖2
‖x1−x0‖2

.

Complexity per iteration of LS-ISTA

I One gradient of f and one prox-operator of g
I Requires roughly 2 function evaluations of F in average for each iteration.
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Lecture 05: Composite Convex Minimization

Example: `1-regularized least squares

Problem (`1-regularized least squares)
Given A ∈ Rn×p and b ∈ Rn , solve:

F? := min
x∈Rp

{
F(x) :=

1
2
‖Ax− b‖2

2 + λ‖x‖1

}
, (25)

where λ > 0 is a regularization parameter.

Complexity per iterations

I Evaluating ∇f (xk) = AT (Axk − b) requires one Ax and one AT y.
I One soft-thresholding operator proxλg(x) = sign(x)⊗max{|x| − λ, 0}.
I Optional: Evaluating L = ‖AT A‖ (spectral norm) - via power iterations (e.g.,

20 iterations, each iteration requires one Ax and one AT y).

Synthetic data generation

I A := randn(n, p) - standard Gaussian N (0, I).
I x? is a k-sparse vector generated randomly.
I b := Ax? +N (0, 10−3).
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Lecture 05: Composite Convex Minimization

Example: `1-regularized least squares

Case 1:
n = 750, p = 2000, s = 200, λ = 0.1
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Case 2:
n = 1750, p = 5000, s = 500, λ = 0.1
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Case 1 Case 2

ISTA LS-ISTA FISTA FISTA-R LS-FISTA LS-FISTA-R ISTA LS-ISTA FISTA FISTA-R LS-FISTA LS-FISTA-R

Number of iterations 806 223 548 136 217 81 1079 297 808 187 281 98

CPU time (s) 4.030 2.466 2.738 0.926 3.303 1.354 25.509 15.743 18.889 5.788 20.473 7.861

Solution error (×10−11) 9.971 9.487 9.783 6.875 9.664 9.251 9.810 9.775 9.975 9.432 8.153 7.427
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Lecture 05: Composite Convex Minimization

Example: `1-regularized least squares: Performance w.r.t. time

Case 1:
n = 750, p = 2000, s = 200, λ = 0.1
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ISTA LS-ISTA FISTA FISTA-R LS-FISTA LS-FISTA-R ISTA LS-ISTA FISTA FISTA-R LS-FISTA LS-FISTA-R

Number of iterations 806 223 548 136 217 81 1079 297 808 187 281 98

CPU time (s) 4.030 2.466 2.738 0.926 3.303 1.354 25.509 15.743 18.889 5.788 20.473 7.861

Solution error (×10−11) 9.971 9.487 9.783 6.875 9.664 9.251 9.810 9.775 9.975 9.432 8.153 7.427
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Lecture 05: Composite Convex Minimization

Example: BP - Theoretical bounds vs actual performance
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Lecture 05: Composite Convex Minimization

Example 2: Sparse logistic regression

Problem (Sparse logistic regression)
Given A ∈ Rn×p and b ∈ {−1,+1}n , solve:

F? := min
x,β

{
F(x) :=

1
n

n∑
j=1

log
(

1 + exp
(
−bj(aT

j x + β)
))

+ λ‖x‖1

}
.

Real data
I Real data: w8a with n = 49749 data points, p = 300 features
I Available at

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

Parameters
I λ = 10−4.
I Number of iterations 5000, tolerance 10−7.
I Ground truth: Solve problem up to 10−9 accuracy by TFOCS to get a high
accuracy approximation of x? and F?.
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Lecture 05: Composite Convex Minimization

Example 2: Sparse logistic regression - numerical results
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ISTA
Line Search ISTA
FISTA
FISTA with Restart
Line Search FISTA
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ISTA LS-ISTA FISTA FISTA-R LS-FISTA LS-FISTA-R

Number of iterations 5000 5000 4046 2423 447 317

CPU time (s) 26.975 61.506 21.859 18.444 10.683 6.228

Solution error (×10−7) 29370 2.774 1.000 0.998 0.961 0.985
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Lecture 05: Composite Convex Minimization

Strong convexity case: algorithms

Proximal-gradient scheme (ISTAµ)
1. Given x0 ∈ Rp as a starting point.
2. For k = 0, 1, · · · , generate a sequence {xk}k≥0 as:

xk+1:=proxαkg

(
xk−αk∇f (xk)

)
,

where αk := 2/(Lf + µ) is the optimal step-size.

Fast proximal-gradient scheme (FISTAµ)
1. Given x0 ∈ Rp as a starting point. Set y0 := x0.
2. For k = 0, 1, · · · , generate two sequences {xk}k≥0 and
{yk}k≥0 as:xk+1 := proxαkg

(
yk − αk∇f (yk)

)
,

yk+1 := xk+1 +
( √cf−1
√cf+1

)
(xk+1 − xk),

where αk := L−1
f is the optimal step-size.
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Lecture 05: Composite Convex Minimization

Strong convexity case: Convergence

Assumption
f is strongly convex with parameter µ > 0, i.e., f ∈ F1,1

L,µ(Rp).

Condition number: cf := Lf
µ
≥ 0.

Theorem (ISTAµ [6])

F(xk)−F? ≤ Lf
2

(
cf−1
cf +1

)2k
‖x0−x?‖2

2.

Convergence rate: Linear with contraction factor: ω :=
(

cf−1
cf +1

)2
=
(

Lf−µ
Lf +µ

)2
.

Theorem (FISTAµ [6])

F(xk)− F? ≤ Lf +µ
2

(
1−

√
µ
Lf

)k

‖x0 − x?‖2
2.

Convergence rate: Linear with contraction factor: ωf =
√

Lf−
√
µ√

Lf
< ω.
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Lecture 05: Composite Convex Minimization

Summary of the complexity
Comparison with gradient scheme
Complexity Proximal-gradient scheme Fast proximal-gradient

scheme
Complexity [µ = 0] O

(
R2

0(Lf /ε)
)

O
(

R0
√

Lf /ε
)

Per iteration 1-gradient, 1-prox, 1-sv, 1-
v+

1-gradient, 1-prox, 2-sv, 3-
v+

Complexity [µ > 0] O
(

cf log(ε−1)
)

O
(√cf log(ε−1)

)
Per iteration 1-gradient, 1-prox, 1-sv, 1-

v+
1-gradient, 1-prox, 1-sv, 2-
v+

Here: sv = scalar-vector multiplication, v+=vector addition.

Stopping criterion
Fact: If PGL(x?) = 0, then x? is optimal to (1), where

PGL(x) = L
(

x− prox(1/L)g (x− (1/L)∇f (x))
)
.

Stopping criterion: (relative solution change)

Lk‖xk+1 − xk‖2 ≤ εmax{L0‖x1 − x0‖2, 1},

where ε is a given tolerance.
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Lecture 05: Composite Convex Minimization

Outline

I Today
1. Composite convex minimization
2. Proximal operator and computational complexity
3. Proximal gradient methods
4. Composite self-concordant minimization
5. Smoothing for nonsmooth composite convex minimization

I Next week
1. Nonsmooth constrained optimization
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Lecture 05: Composite Convex Minimization

The idea of the proximal-Newton method

Assumptions A.2
Assume that f ∈ F2,1

L,µ(Rp) and g ∈ Fprox(Rp).

The idea of proximal-Newton method

I Under Assumptions A.2, we can linearize the smooth term of the optimality
condition of (1): 0 ∈ ∇f (x?) + ∂g(x?) as

0 ∈ ∇f (x?) + ∂g(x?) ≈ ∇f (xk) +∇2f (xk)T (x? − xk) + ∂g(x?).

I Similar to the classical Newton method in Lecture 3, we can generate an iterative
sequence {xk}k≥0 by solving the inclusion:

0 ∈ ∇f (xk) +∇2f (xk)T (x− xk) + ∂g(x) (26)

to obtain xk+1.
I The last condition is equivalent to

xk+1 := arg min
x∈Rp

{1
2

(x−xk)T∇2f (xk)(x−xk)+∇f (xk)T (x−xk) + g(x)
}
. (27)
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Lecture 05: Composite Convex Minimization

Proximal-Newton-type scheme

I The sequence {xk} generated by (27) is not necessarily convergent. Hence, a
sufficient descent condition is required.

I We can replace ∇2f (xk) by a given approximate matrix Hk .

Proximal-Newton-type scheme:
I Let Hk ≈ ∇2f (xk) be a symmetric positive definite (SDP) matrix. From (26),
we have

xk −H−1
k ∇f (xk) ∈ (I + H−1

k ∂g)(x),

which leads to
xk+1 := proxH−1

k g

(
xk −H−1

k ∇f (xk)
)
. (28)

I By letting dk := xk+1 − xk , (28) is equivalent to

dk := arg min
d∈Rp

{1
2

dT Hkd +∇f (xk)T d + g(xk + d)
}
. (29)

Then dk is called a proximal-Newton-type direction.
I Proximal-Newton-type algorithm generates a sequence {xk}k≥0 starting from

x0 ∈ Rp and update:
xk+1 := xk + αkdk , (30)

where dk is given by (29) and αk ∈ (0, 1] is a damed step-size.
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Lecture 05: Composite Convex Minimization

How to find step size αk?

Lemma (Descent lemma [5])
Let xk(α) := xk + αdk for sufficiently small α ∈ (0, 1] and Hk � 0. Then, we have:

F(xk(α)) ≤ F(xk)− (1/2)α(dk)T Hkdk +O(α2).

Since Hk � 0, this lemma tells us that:
I If dk , 0, then the exist α > 0 such that F(xk(α)) < F(xk).
I The value of α can be computed via backtracking line search.
I If dk = 0, then we can easily check that xk is a solution of (1).

Backtracking line-search

I Let
rk := ∇f (xk)T dk + g(xk + dk)− g(xk).

I Find the smallest integer number j ≥ 0 such that αk := βj and

F(xk + αkdk) ≤ F(xk) + cαkrk , (31)

where c ∈ (0, 0.5] and β ∈ (0, 1) are two given constants (e.g., c = 0.1 and
β = 0.5).
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Lecture 05: Composite Convex Minimization

The proximal-Newton-type algorithm
We can summary the proximal-Newton-type method as follows:

Proximal-Newton algorithm (PNA)
1. Given x0 ∈ Rp as a starting point. Choose c := 0.1 and
β := 0.5
2. For k = 0, 1, · · · , perform the following steps:
2.1. Evaluate an SDP matrix Hk ≈ ∇2f (xk) and ∇f (xk).

2.2. Compute dk := proxH−1
k g

(
xk −H−1

k ∇f (xk)
)
− xk .

2.3. Find the smallest integer number j ≥ 0 such that

F(xk + βjdk) ≤ F(xk) + cβjrk

and set αk := βj .
2.4. Update xk+1 := xk + αkdk .

I If Hk ≡ ∇2f (xk), then PNA becomes a pure proximal-Newton algorithm.
I If Hk ≈ ∇2f (xk), then PNA becomes a proximal-quasi-Newton algorithm.
I Main computation is Step 2.2, which requires a generalized prox-operator:

proxH−1
k g

(
xk + H−1

k ∇f (xk)
)
.
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Lecture 05: Composite Convex Minimization

Convergence analysis

Assumption A.3.
I Problem (1): minx{F(x) := f (x) + g(x)} admits a solution x?.

I The subproblem proxH−1
k g

(
xk + H−1

k ∇f (xk)
)

is solved exactly for all k ≥ 0.
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Convergence analysis

Assumption A.3.
I Problem (1): minx{F(x) := f (x) + g(x)} admits a solution x?.

I The subproblem proxH−1
k g

(
xk + H−1

k ∇f (xk)
)

is solved exactly for all k ≥ 0.

Theorem (Global convergence [5])
Assumptions:
I The sequence {xk}k≥0 is generated by PNA.
I Assumption A.3. is satisfied.
I Exists µ > 0 such that Hk � µI for all k ≥ 0.

Conclusion:
I {xk}k≥0 globally converges to a solution x? of (1).

I So far, we have not yet obtained a global convergence rate of proximal-Newton
methods.
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Convergence analysis

Assumption A.3.
I Problem (1): minx{F(x) := f (x) + g(x)} admits a solution x?.

I The subproblem proxH−1
k g

(
xk + H−1

k ∇f (xk)
)

is solved exactly for all k ≥ 0.

Theorem (Local convergence [5])
Assumptions:
I The sequence {xk}k≥0 is generated by PNA.
I Assumption A.3. is satisfied.
I Exist 0 < µ ≤ L2 < +∞ such that µI � Hk � L2I for all sufficiently large k.

Conclusion:
I If Hk ≡ ∇2f (xk), then αk = 1 for k sufficiently large (full-step).
I If Hk ≡ ∇2f (xk), then {xk} locally converges to x? at a quadratic rate.
I If Hk satisfies the Dennis-Moré condition:

lim
k→+∞

‖(Hk −∇2f (x?))(xk+1 − xk)‖
‖xk+1 − xk‖

= 0, (32)

then {xk} locally converges to x? at a super linear rate.
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Lecture 05: Composite Convex Minimization

How to compute the approximation Hk?

I Solving proxH−1
k g

(
xk + H−1

k ∇f (xk)
)

exactly for non-diagonal matrix Hk is
impractical.

I This problem is solved iteratively by using, e.g., FISTA except for the special
cases of Hk .

How to update Hk?
Matrix Hk can be updated by using low-rank updates.
I BFGS update: maintain the Dennis-Moré condition and Hk � 0.

Hk+1 := Hk +
ykyT

k
sT

k yk
−

HksksT
k Hk

sT
k Hksk

, H0 := γI, (γ > 0).

where yk := ∇f (xk+1)−∇f (xk) and sk := xk+1 − xk .
I Diagonal+Rank-1 [2]: computing PN direction dk is in polynomial time, but it
does not maintain the Dennis-Moré condition:

Hk := Dk + ukuT
k , uk := (sk −H0yk)/

√
(sk −H0yk)T yk ,

where Dk is a positive diagonal matrix.
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cases of Hk .

How to update Hk?
Matrix Hk can be updated by using low-rank updates.
I BFGS update: maintain the Dennis-Moré condition and Hk � 0.

Hk+1 := Hk +
ykyT

k
sT

k yk
−

HksksT
k Hk

sT
k Hksk

, H0 := γI, (γ > 0).

where yk := ∇f (xk+1)−∇f (xk) and sk := xk+1 − xk .
I Diagonal+Rank-1 [2]: computing PN direction dk is in polynomial time, but it
does not maintain the Dennis-Moré condition:

Hk := Dk + ukuT
k , uk := (sk −H0yk)/

√
(sk −H0yk)T yk ,

where Dk is a positive diagonal matrix.
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Advantages and disadvantages

Advantages
I PNA has fast local convergence rate (super-linear or quadratic)
I Numerical robustness under the inexactness/noise (inexact proximal-Newton
method [5]).

I Quasi-Newton method is useful if the evaluation of ∇2f is expensive.
I Suitable for problems with many data points but few parameters. For example,
problems of the form:

F∗ := min
x∈Rp

{
n∑

j=1

`j(aT
j x + bj) + g(x)

}
,

where `j is twice continuously differentiable and convex, g ∈ Fprox, p� n.

Disadvantages
I Expensive iteration compared to proximal-gradient methods.
I Global convergence rate may be worse than accelerated proximal-gradient
methods.

I Require a good initial point to get a fast local convergence, which is hard to find.
I Require strict conditions for global/local convergence analysis.
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Lecture 05: Composite Convex Minimization

Example 1: Sparse logistic regression

Problem (Sparse logistic regression)
Given a sample vector a ∈ Rp and a binary class label vector b ∈ {−1,+1}n . The
conditional probability of a label b given a is defined as:

P(b|a,x, µ) = 1/(1 + e−b(xT a+µ)),

where x ∈ Rp is a weight vector, µ is called the intercept.
Goal: Find a sparse-weight vector x via the maximum likelihood principle.

Optimization formulation

min
x∈Rp

{ 1
n

n∑
i=1

L(bi(aT
i x + µ))︸                             ︷︷                             ︸

f (x)

+λ‖x‖1︸  ︷︷  ︸
g(x)

}
, (33)

where ai is the i-th row of data matrix A in Rn×p, λ > 0 is a regularization
parameter, and ` is the logistic loss function L(τ) := log(1 + e−τ ).
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Example: Sparse logistic regression

Real data
I Real data: w2a with n = 3470 data points, p = 300 features
I Available at

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

Parameters
I Tolerance 10−6.
I L-BFGS memory m = 50.
I Ground truth: Get a high accuracy approximation of x? and f ? by TFOCS with
tolerance 10−12.
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Lecture 05: Composite Convex Minimization

Example: Sparse logistic regression-Numerical results

10
0

10
1

10
2

10
3

10
4

10
−6

10
−4

10
−2

10
0

10
2

Number of iterations

(F
(x

k
)
−

F
⋆
)/
F

⋆
in

lo
g
sc
al
e

 

 

Pure Newton
Quasi-Newton with BFGS
Quasi-Newton with L-BFGS
Accelerated gradient method
Line Search AGD with adaptive restart

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−6

10
−4

10
−2

10
0

10
2

Time (s)

(F
(x

k
)
−

F
⋆
)/
F

⋆
in

lo
g
sc
al
e

 

 

Pure Newton
Quasi-Newton with BFGS
Quasi-Newton with L-BFGS
Accelerated gradient method
Line Search AGD with adaptive restart

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 05: Composite Convex Minimization

Example 2: `1-regularized least squares

Problem (`1-regularized least squares)
Given A ∈ Rn×p and b ∈ Rn , solve:

F? := min
x∈Rp

{
F(x) :=

1
2
‖Ax− b‖2

2 + λ‖x‖1

}
, (34)

where λ > 0 is a regularization parameter.

Complexity per iterations

I Evaluating ∇f (xk) = AT (Axk − b) requires one Ax and one AT y.
I One soft-thresholding operator proxλg(x) = sign(x)⊗max{|x| − λ, 0}.
I Optional: Evaluating L = ‖AT A‖ (spectral norm) - via power iterations (e.g.,

20 iterations, each iteration requires one Ax and one AT y).

Synthetic data generation

I A := randn(n, p) - standard Gaussian N (0, I).
I x? is a s-sparse vector generated randomly.
I b := Ax? +N (0, 10−3).
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Lecture 05: Composite Convex Minimization

Example 2: `1-regularized least squares - Numerical results

Parameters: n = 750, p = 2000, s = 200, λ = 1
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Lecture 05: Composite Convex Minimization

Outline

I Today
1. Composite convex minimization
2. Proximal operator and computational complexity
3. Proximal gradient methods
4. Composite self-concordant minimization
5. Smoothing for nonsmooth composite convex minimization

I Next week
1. Nonsmooth constrained optimization
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Composite self-concordant minimization
Composite self-concordant minimization (CSM) problem [11]

F? := min
x∈dom(F)

{
F(x) := f (x) + g(x)

}
, (35)

I f ∈ F2(dom(f )) - self-concordant on dom(f ) := {x ∈ Rp : f (x) < +∞}
I g ∈ Fprox(Rp)
I dom(F) := dom(f ) ∩ dom(g)

Why is composite self-concordant minimization?
I A self-concordant function is not necessarily Lipschitz gradient.

L � Lipschitz gradient

µ � strongly convex Self-concordant

Wednesday, June 18, 14

I Cover many well-known examples.
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Self-concordant functions in higher dimensions

Definition (Self-concordant functions [7, 6])
I A function f : Rn → R is said to be self-concordant with parameter M ≥ 0 if

|ϕ′′′(t)| ≤ Mϕ′′(t)3/2,

where ϕ(t) := f (x + tv) for all t ∈ R, x ∈ dom(f ) and v ∈ Rn and
x + tv ∈ dom(f ).

I When M = 2, the function f is said to be a standard self-concordant.
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Self-concordant functions in higher dimensions

Definition (Self-concordant functions [7, 6])
I A function f : Rn → R is said to be self-concordant with parameter M ≥ 0 if

|ϕ′′′(t)| ≤ Mϕ′′(t)3/2,

where ϕ(t) := f (x + tv) for all t ∈ R, x ∈ dom(f ) and v ∈ Rn and
x + tv ∈ dom(f ).

I When M = 2, the function f is said to be a standard self-concordant.

Example
The function f (x) = − log x is self-concordant. To see this, observe:

f ′′(x) = 1/x2, f ′′′(x) = −2/x3.

Thus:

|f ′′′(x)|
2f ′′(x)3/2 =

2/x3

2(1/x2)3/2 = 1

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 05: Composite Convex Minimization

Self-concordant functions in higher dimensions

Definition (Self-concordant functions [7, 6])
I A function f : Rn → R is said to be self-concordant with parameter M ≥ 0 if

|ϕ′′′(t)| ≤ Mϕ′′(t)3/2,

where ϕ(t) := f (x + tv) for all t ∈ R, x ∈ dom(f ) and v ∈ Rn and
x + tv ∈ dom(f ).

I When M = 2, the function f is said to be a standard self-concordant.

f (x) = − log(x) and its derivative f ′(x)
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Self-concordant functions in higher dimensions

Definition (Self-concordant functions [7, 6])
I A function f : Rn → R is said to be self-concordant with parameter M ≥ 0 if

|ϕ′′′(t)| ≤ Mϕ′′(t)3/2,

where ϕ(t) := f (x + tv) for all t ∈ R, x ∈ dom(f ) and v ∈ Rn and
x + tv ∈ dom(f ).

I When M = 2, the function f is said to be a standard self-concordant.

Example
Similarly, the following example functions are self-concordant
1. f (x) = x log x − log x,
2. f (x) =

∑m
i=1 log(bi − aT

i x) with domain
dom(f ) =

{
x : aT

i x < bi , i = 1, . . . ,m
}
,

3. f (X) = − log det(X) with domain dom(f ) = S++
n ,

4. f (x) = − log
(

xT Px + qT x + r
)
with domain

dom(f ) =
{

x : xT Px + qT x + r > 0
}

and −P ∈ S++
n .
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Two well-known examples

Graphical model selection

min
Θ�0

{
tr(ΣΘ)− log det(Θ)︸                         ︷︷                         ︸

f (x)

+λ‖vec(Θ)‖1︸           ︷︷           ︸
g(x)

}
(36)

where Θ � 0 means that Θ is symmetric and positive definite and λ > 0 is a
regularization parameter and vec is the vectorization operator.

Poisson imaging reconstruction (with TV-norm regularizer)

min
x∈Rn×p

{ n∑
i=1

(Kx)i −
n∑

i=1

yi log((Kx)i)︸                                          ︷︷                                          ︸
f (x)

+λ‖x‖TV︸      ︷︷      ︸
g(x)

}
(37)

I K is a linear operator, y = (y1, . . . , yn)T ∈ Zn
+ is the observed vector of photon

counts.
I λ > 0 is a regularization parameter,
I ‖x‖TV is the TV-norm of x (see the above example).
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Some geometric intuition behind self-concordant functions
Local norm

Self-concordance vs. Lipschitz gradient + SC

• Main properties of 

x,y 2 dom(f)Lower surrogate

Upper surrogate

Hessian surrogates (1 � ky � xkx)2r2f(x) � r2f(y) � (1 � ky � xkx)�2r2f(x)

f(y)  f(x) + rf(x)T (y � x) + !⇤ (ky � xkx)

f(y) � f(x) + rf(x)T (y � x) + ! (ky � xkx)

ky � xkx < 1

ky � xkx < 1

F2

Local

Local norm:   

Utility functions:   

kukx :=
⇥
uTr2f(x)u

⇤1/2

!⇤(⌧) = �⌧ � ln(1 � ⌧), ⌧ 2 [0, 1) !(⌧) = ⌧ � ln(1 + ⌧), ⌧ � 0

f is self-concordant if '(t) := f(x + td) satisfies |'000(t)|  2'00(t)3/2 for all x and d.

Friday, May 30, 14

Basic properties [6]
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• Main properties of 
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uTr2f(x)u
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f is self-concordant if '(t) := f(x + td) satisfies |'000(t)|  2'00(t)3/2 for all x and d.

Friday, May 30, 14

Bound on gradient:

‖y− x‖2
x

1 + ‖y− x‖x
≤ 〈∇f (y)−∇f (x),y− x〉 ≤ ‖y− x‖2

x
1− ‖y− x‖x

, ∀x,y ∈ dom(f ).

The right-hand side inequality holds for ‖y− x‖x < 1.
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Variable metric proximal-gradient algorithm for SCM

Variable metric proximal operator
Given H � 0 and g ∈ F(Rp). The variable metric proximal operator of g is defined as

proxHg(x) := arg min
y∈Rp

{
g(y) + (1/2)(y− x)T H−1(y− x)

}
(38)

Property (Basis properties of variable metric proximal operator)
1. proxHg(x) is well-defined and single-valued (i.e., (38) has unique solution).
2. Optimality condition:

x ∈ proxHg(x) + H∂g(proxHg(x)), x ∈ Rp.

3. x? is a fixed point of proxHg(·):

0 ∈ ∂g(x?) ⇔ x? = proxHg(x?).

4. Non-expansiveness:

‖proxHg(x)− proxHg(x̃)‖∗H ≤ ‖x− x̃‖H, ∀x, x̃ ∈ Rp.
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How can we better adapt to the local geometry?

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

L

2
kx � xkk2
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�

f(xk)

QL(x,xk)

Global quadratic upper bound
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Lecture 05: Composite Convex Minimization

Variable metric proximal-gradient algorithm

Variable metric proximal-gradient algorithm [11]
1. Choose x0 ∈ Rp as a starting point and H0 � 0.
2. For k = 0, 1, · · · , perform:{

dk := proxHkg
(

xk −Hk∇f (xk)
)
− xk ,

xk+1 := xk + αkdk ,
(39)

where αk ∈ (0, 1] is a given step size. Update Hk+1 � 0 if
necessary.

Common choices of Hk

I Hk := λk I , we have proxHg ≡ proxλg and obtain a proximal-gradient method.

I Hk := D a diagonal matrix, proxHg can be transformed into proxλg (by
scaling the variables) and we obtain a proximal-gradient method.

I Hk := ∇2f (xk)−1 , we obtain a proximal-Newton method.

I Hk ≈ ∇2f (xk)−1 , we obtain a proximal quasi-Newton method.
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Lecture 05: Composite Convex Minimization

Proximal-Newton method for CSM

Proximal-Newton algorithm (PNA)
1. Choose x0 ∈ dom(F) as a starting point.
2. For k = 0, 1, · · · , perform:

Bk := ∇2f (xk),
dk := proxB−1

k g

(
xk −B−1

k ∇f (xk)
)
− xk , (PN direction)

λk := ‖d‖xk , (PN decrement)
αk = (1 + λk)−1, (step-size)
xk+1 := xk + αkdk .

(40)

Complexity per iteration

I Evaluation of ∇2f (xk) and ∇f (xk) (closed form expressions).
I Computing proxHkg requires to solve a strongly convex program (38).
I Computing proximal-Newton decrement λk requires (dk)T∇f 2(xk)dk .
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Lecture 05: Composite Convex Minimization

Global convergence

Lemma (Descent lemma [11])
Let {xk}k≥0 be the sequence generated by PNA. Then

F(xk+1) ≤ F(xk)− ω(λk) (41)

where ω(τ) := τ − ln(1 + τ) > 0 for τ > 0.

Consequences

I [F(xk+1)− F?] ≤ [F(xk)− F?]− ω(λk) for all k ≥ 0.
I [F(xk)− F(x?] ≤ [F(x0)− F?]−

∑k−1
j=0 ω(λj).

I If λk ≥ λ > 0 for k = 0, . . . ,K , then

[F(xK )− F?] ≤ [F(x0)− F?]−Kω(λ).

The number of iterations to reach F(xK )− F? ≤ ε is

K :=
⌊ [F(x0)− F?]− ε

ω(λ)

⌋
+ 1.

I Global convergence rate is just sublinear, i.e. O(1/k).
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Lecture 05: Composite Convex Minimization

Proof of (41)

Sketch of proof.

I Let sk := xk + dk . We have xk+1 − xk = αkdk and xk+1 = (1− αk)xk + αksk .
I By convexity of g:

g(xk+1) ≤ (1− αk)g(xk) + αkg(sk), αk ∈ (0, 1]. (42)

I By subgradient definition:

g(sk) ≤ g(xk) + v(sk)T (sk − xk), ∀ v(sk) ∈ ∂g(sk). (43)

I Substituting (43) into (42) we get

g(xk+1) ≤ g(xk) + αkv(sk)T dk . (44)

I By self-concordance of f (upper bound inequality):

f (xk+1) ≤ f (xk) +∇f (xk)(xk+1 − xk) + ω∗(‖xk+1 − xk‖xk ), (45)

under condition ‖xk+1 − xk‖xk < 1.
�
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Lecture 05: Composite Convex Minimization

Proof of (41) (cont)

Sketch of proof (cont).

I Summing up (44) and (45) and using F := f + g, we get

F(xk+1) ≤ F(xk) + αk [∇f (xk) + v(sk)]T dk + ω∗(αk‖dk‖xk ). (46)

I From the optimality property 2 of (38) we have

∇f (xk) + v(sk) = −∇2f (xk)dk . (47)

I Plug (48) into (46) and use λk := ‖dk‖xk , we get

F(xk+1) ≤ F(xk)− αkλ
2
k + ω∗(αkλk). (48)

I Let ψ(α) := αλ2
k − ω∗(αλk) = αλ2

k + αλk + ln(1− αλk). This function attains
the maximum at αk = (1 + λk)−1 and ψ(αk) = λk − ln(1 + λk). Hence, we have

F(xk+1) ≤ F(xk)− ω(λk),

which is (41).
�
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Lecture 05: Composite Convex Minimization

Local convergence

Theorem (Local quadratic convergence [11])
Let {xk} be the sequence generated by PNA. If ‖x0 − x?‖x? ≤ σ0 := 0.08763, then

‖xk+1 − x?‖x? ≤ c∗‖xk − x?‖2
x? , k ≥ 0,

where c∗ := 3.57.
Consequently, {xk}k≥0 converges to x? at a quadratic rate.

Quadratic convergence region
Let σ := 0.08763. Then the quadratic convergence region Qσ is defined as:

Qσ := {x ∈ dom(F) : ‖x− x?‖x? ≤ σ} .

For any x0 ∈ Qσ , {xk} converges to x? at a quadratic rate.
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Lecture 05: Composite Convex Minimization

Overall analytical worst-case complexity

Analytic complexity
• Worst-case complexity to obtain an   -approximate solution"

#iterations =

�
�(x0) � �(x⇤)

0.021

⌫
+ O

✓
ln ln

✓
4.56

"

◆◆

quadratic convergence 
region

Q�

x⇤

x0 x1

xj

Can explicitly calculate

Line-search can 
accelerate the 
convergence

global convergence local convergence

Q� :=
�
xk | �k  0.219

 

• Line-search enhancement

Thursday, June 12, 14

F (x0) � F ?

Q� := {x 2 dom(F ) : kx � x?kx?  �}

Monday, June 23, 14

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 05: Composite Convex Minimization

Enhancements

Two new line-search strategies
The optimal step-size α∗k := (1 + λk)−1 provides a lower bound. Perform line-search
on [α∗k , 1].
I Forward line-search: Start from αk and increase the step-size until meet 1.
I Enhanced backtracking: Start from 1 and decrease the step size until meet α∗k

Illustration of three line-search strategies

A modification of the proximal-Newton method: In Algorithm 1, if we remove
Step 4 and replace analytic step-size selection calculation in Step 3 with a backtracking
line-search, then we reach the proximal Newton method of (Lee et al., 2012). Hence, this
approach in practice might lead to reduced overall computation since our step-size ↵k is
selected optimally with respect to the worst case problem structures as opposed to the
particular instance of the problem. Since the backtracking approach always starts with the
full-step, we also do not need to know whether we are within the quadratic convergence
region. Moreover, the cost of evaluating the objective at the full-step in certain applications
may not be significantly worse than the cost of calculating ↵k or may be dominated by the
cost of calculating the Newton direction.

In stark contrast to backtracking, our new theory behooves us to propose a new forward
line-search procedure as illustrated by Figure 2. The idea is quite simple: we start with the

0 1

pppppppp
pppppppru
↵⇤

k

   s R R

Enhanced backtracking

@@R

Standard backtracking

�� 
Forward line-search

�
�
���

Overjump��✓

Figure 2: Illustration of step-size selection procedures

“optimal” step-size ↵k and increase it towards full-step with a stopping condition based on
the objective evaluations. Interestingly, when we analytically calculate the step, we also have
access to the side information on whether or not we are within the quadratic convergence
region, and hence, we can automatically switch to Step 4 in Algorithm 1. Alternatively,
calculation of the analytic step-size can enhance backtracking since the knowledge of ↵k

reduces the backtracking range from (0, 1] to (↵k, 1] with the side-information as to when
to automatically take the full-step without function evaluation.

3.2 A proximal quasi-Newton scheme

Even if the function f is self-concordant, the numerical evaluation of r2f(x) can be expen-
sive in many applications (e.g., f(x) :=

Pp
j=1 fj(Ajx), with p � n). Hence, it is interesting

to study proximal quasi-Newton method for solving (1). Our interest in the quasi-Newton
methods in this paper is for completeness; we do not provide any algorithmic details or
implementations on our quasi-Newton variant.

To this end, we need a symmetric positive definite matrix Hk that approximates r2f(xk)
at the iteration k. As a result, our main assumption here is that matrix Hk+1 at the next
iteration k + 1 satisfies the secant equation:

Hk+1(x
k+1 � xk) = rf(xk+1) �rf(xk). (23)

For instance, it is well-known that the sequence of matrices {Hk}k�0 updated by the fol-
lowing BFGS formula satisfies the secant equation (23) (Nocedal and Wright, 2006):

Hk+1 := Hk +
1

(yk)T zk
yk(yk)T � 1

(zk)THkzk
Hkz

k(Hkz
k)T , (24)

14
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Lecture 05: Composite Convex Minimization

Example: Graphical model selection

Graphical model selection

min
Θ�0

{
tr(ΣΘ)− log det(Θ)︸                         ︷︷                         ︸

f (Θ)

+λ‖vec(Θ)‖1︸           ︷︷           ︸
g(Θ)

}
.
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Lecture 05: Composite Convex Minimization

Example: Graphical model selection

Graphical model selection

min
Θ�0

{
tr(ΣΘ)− log det(Θ)︸                         ︷︷                         ︸

f (Θ)

+λ‖vec(Θ)‖1︸           ︷︷           ︸
g(Θ)

}
.

Computational cost

I ∇f (Θ) = vec(Σ−Θ−1
k ) and ∇2f (Θk) = Θ−1

k ⊗Θ−1
k (⊗-Kronecker product).

I Compute the search direction dk .

Uk = argmin
‖vec(U)‖1≤1

{
(1/2)trace((ΘkU)2) + trace(QkU)

}
,

where Qk := λ−1(ΘkΣΘk − 2Θk). Then dk := −((ΘkΣ− I)Θk + λΘkUkΘk).
I The proximal-Newton decrement λk :

λk := (p − 2trace(Wk) + trace(W2
k))1/2, Wk := Θk(Σ + λUk).
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Lecture 05: Composite Convex Minimization

Example: Graphical model selection

Graphical model selection

min
Θ�0

{
tr(ΣΘ)− log det(Θ)︸                         ︷︷                         ︸

f (Θ)

+λ‖vec(Θ)‖1︸           ︷︷           ︸
g(Θ)

}
.

Computational cost

I ∇f (Θ) = vec(Σ−Θ−1
k ) and ∇2f (Θk) = Θ−1

k ⊗Θ−1
k (⊗-Kronecker product).

I Compute the search direction dk via dualization:

Uk = argmin
‖vec(U)‖1≤1

{
(1/2)trace((ΘkU)2) + trace(QkU)

}
,

where Qk := λ−1(ΘkΣΘk − 2Θk). Then dk := −((ΘkΣ− I)Θk + λΘkUkΘk).
I The proximal-Newton decrement λk :

λk := (p − 2trace(Wk) + trace(W2
k))1/2, Wk := Θk(Σ + λUk).

Only need matrix-matrix multiplications
No Cholesky factorizations or matrix inversions
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Lecture 05: Composite Convex Minimization

Test on the real-data: Lymph

Our method vs QUIC [Hseih2011]

- QUIC subproblem solver: !! special block-coordinate descent

- Our subproblem solver: ! ! general proximal algorithms

Convergence behaviour [rho = 0.5]:  Lymph [p = 587] (left),    Leukemia [p = 1255] (right)
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QUIC
F. eval = 13

F. eval = 21

F. eval = 21

F. eval = 31

nnz(X⇤) ⇡ 0.013p2 nnz(X⇤) ⇡ 0.02p2

Graphical model selection: numerical examples

Step-size selection strategies: Arabidopsis [p = 834], Leukemia [p = 1255], Hereditary [p = 1869]

*Details: “A proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions,” ICML’13 and lions.epfl.ch/publications. 

Thursday, June 12, 14
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Graphical model selection: numerical examples

Step-size selection strategies: Arabidopsis [p = 834], Leukemia [p = 1255], Hereditary [p = 1869]

On the average x5 acceleration (up to x15) over Matlab QUIC

*Details: “A proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions,” ICML’13 and lions.epfl.ch/publications. 
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Lecture 05: Composite Convex Minimization

Proximal-gradient method for CSM
Choice of variable matrix and line-search condition

Hk := Lk I, Lk > 0

Line search condition: Find the largest Lk such that:

Lk ≤ ηk :=
λ2

k
‖dk‖2

2
. (49)

Proximal-gradient algorithm (PGA)
1. Given ε > 0. Choose x0 ∈ dom(F) as a starting point.
2. For k = 0, 1, · · · , perform:

2.1. Choose Lk > 0 satisfies (49).
2.2. dk := proxλkg(xk − γk∇f (xk))− xk , with γk := 1/Lk .
2.3. λk := ‖dk‖xk , βk :=

√
Lk‖dk‖2.

2.4. If βk ≤ ε, terminate.
2.5. Step size: αk := β2

k /(λk(λk + β2
k )).

2.6. Update xk+1 := xk + αkdk .
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1. Given ε > 0. Choose x0 ∈ dom(F) as a starting point.
2. For k = 0, 1, · · · , perform:

2.1. Choose Lk > 0 satisfies (49).
2.2. dk := proxλkg(xk − γk∇f (xk))− xk , with γk := 1/Lk .
2.3. λk := ‖dk‖xk , βk :=

√
Lk‖dk‖2.

2.4. If βk ≤ ε, terminate.
2.5. Step size: αk := β2

k /(λk(λk + β2
k )).

2.6. Update xk+1 := xk + αkdk .
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Global convergence and local convergence

Theorem (Global convergence [11])
I If Lk ≥ L > 0 for all k ≥ 0 and LF(F(x0)) := {x ∈ dom(F) : F(x) ≤ F(x0)} is
bounded from below, then {xk} generated by PGA converges to x?.

I Let

x̄k := S−1
k

k∑
j=0

αkxj , where Sk :=
k∑

j=0

αj > 0.

Then F(x̄k)− F? ≤
L̄k
2Sk
‖x0 − x?‖2

2 , where L̄k := max
0≤j≤k

Lj .

Theorem (Local convergence [11])
Assumptions:
I Let x? be the unique solution of (1) such that ∇2f (x?) � 0.
I For k sufficiently large, if Dk := Lk I and max{|1− Lk

σ∗min
|, |1− Lk

σ∗max
|} < 1

2 .

Conclusion: {xk}k≥0 generated by PGA converges to x? at a linear rate.
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Example 1: Graphical model selection

Graphical model selection

min
Θ�0

{
tr(ΣΘ)− log det(Θ)︸                         ︷︷                         ︸

f (Θ)

+λ‖vec(Θ)‖1︸           ︷︷           ︸
g(Θ)

}
.

Linear convergence of PGA

Heteroschedastic LASSO [rho decreases from left to right]

New theory: Local linear convergence of the PG 
Graph learning: Lymph [p = 587]
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Improvement - greedy proximal gradient variant

Mathematical observation
Let us define
I sk

g := xk + dk

I x̂k = (1− αk)xk + αksk for αk ∈ (0, 1].
If F(sk

g) ≤ F(xk), then by convexity of F :

F(x̂k) = F((1− αk)xk + αk) ≤ (1− αk)F(xk) + αkF(sk
g)

F(sk
g)≤F(xk)
≤ F(xk)

By comparing F(xk), F(sk
g) and F(x̂k) we can pick xk+1 as

xk+1 =
{

sk
g if sk

g ∈ dom(F) and F(sk
g) ≤ F(xk),

x̂k otherwise.
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Improvement - greedy proximal gradient variant

Visualization of the idea

Then we can show that F (x̄k) � F ⇤  L̄
2Sk

��x0 � x⇤��2

2
, where L̄ := max

j=0,k
Lk. If ↵j � ↵ > 0

for 0  j  k, then Sk � ↵(k + 1), which leads to F (x̄k) � F ⇤  L̄
2(k+1)↵

��x0 � x⇤��2

2
. The

proof of this statement can be found in (Tran-Dinh et al., 2014), which we omit here.

A modification of the proximal-gradient method: If the point sk
g generated by (15)

belongs to dom(F ), then F (sk
g) < +1. Similarly to the definition of xk+1 in (27), we can

define a new trial point

x̂k := (1 � ↵k)x
k + ↵ks

k
g . (35)

If F (sk
g)  F (xk), then, by the convexity of F , it is easy to show that

F (x̂k) = F
⇣
(1 � ↵k)x

k + ↵ks
k
g

⌘
 (1 � ↵k)F (xk) + ↵kF (sk

g)
F (sk

g)F (xk)

 F (xk).

In this case, based on the function values F (sk
g), F (x̂k) and F (xk) we can eventually choose

-

6r
r
r

r

r
r

0
x⇤xk sk

g sk
g xx̂k

F (xk)

F (sk
g)

F (sk
g)

F (x̂k)

F (x)Q(·;xk,Hk)

x̂k :=(1�↵k)xk+↵ksk
g

x̂k := sk
g Case 1

Case 2

Figure 3: Illustration of the modified proximal-gradient method

the next iteration xk+1 as follows:

xk+1 :=

⇢
sk
g if sk 2 dom(F ) and F (sk

g) < F (x̂k) (Case 1),

x̂k otherwise (Case 2).
(36)

The idea of this greedy modification is illustrated in Figure 3. We note that here we need
to check sk

g 2 dom(F ) such that F (sk
g) < F (xk) and additional function evaluations F (sk

g)

and F (x̂k). However, careful implementations can recycle quantities that enable us to
evaluate the objective at sk

g and at xk+1 with very little overhead over the calculation of ↵k

(see Section 4). By using (36), we can specify a modified proximal gradient algorithm for
solving (1), whose details we omit here since it is quite similar to Algorithm 2.

4. Concrete instances of our optimization framework

We illustrate three instances of our framework for some of the applications described in
Section 1. For concreteness, we describe only the first and second order methods. Quasi-
Newton methods based on (L-)BFGS updates or other adaptive variable metrics can be
similarly derived in a straightforward fashion.

19
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Example 2: Poisson imaging reconstruction

Optimization problem with TV-norm

min
x∈Rn×p

{ n∑
i=1

(Kx)i −
n∑

i=1

yi log((Kx)i)︸                                          ︷︷                                          ︸
f (x)

+λ‖x‖TV︸      ︷︷      ︸
g(x)

}

Convergence of PGA, greedy PGA and SPIRAL-TAP

Our method vs SPIRAL-TAP [Harmany2012]

Poisson imaging reconstruction via TV

Original image Poisson noise image Reconstructed image (ProxGrad) Reconstructed image (ProxGradNewton) Reconstructed image (SPIRAL−TAP)

On the average x10 acceleration (up to x250) over SPIRAL-TAP with better accuracy
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Example 2: Poisson imaging reconstruction - cont.

Visualization of the outcome - cameramanOur method vs SPIRAL-TAP [Harmany2012]

Poisson imaging reconstruction via TV
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