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Outline

I This lecture
1. Stochastic projected gradient method
2. Stochastic projected gradient method with averaging
3. Stochastic proximal gradient method
4. Stochastic proximal gradient method with averaging
5. Accelerated stochastic proximal gradient methods
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Recommended reading materials

1. V. Cevher; S. Becker, and M. Schmidt. Convex optimization for big data. IEEE
Signal Process. Mag., vol. 31, pp. 32–43, 2014.

2. A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM J. Optim., vol. 19,
pp. 1574–1609, 2008.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 39



What is this class about?

Gradient method
Choose a starting point x0 and iterate

xk+1 = xk − γk∇f (xk)

where γk is a step-size to be chosen so that xk converges to x?.

Stochastic gradient method
Let G(xk , θk) be an unbiased estimate of the gradient ∇f (xk), i.e.,

Eθ[G(xk , θk)] = ∇f (xk),

where θk is a random vector whose probability distribution is supported on set Θ.

Choose a starting point x0 and iterate

xk+1 = xk − γkG(xk , θk)

where γk is a step-size to be chosen so that xk converges to x?.
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Motivation: Big n

Problem (Least squares)
Given A ∈ Rn×p and b ∈ Rn where n � p, solve:

f ? := min
x∈Rp

{
f (x) :=

1
2
‖Ax− b‖2

2

}
. (1)

Complexity per iteration for gradient method

I Evaluating ∇f (xk) = AT (Axk − b) requires one Ax and one AT y.
I Optional: Evaluating L = ‖AT A‖ (spectral norm) - via power iterations (e.g.,

50 iterations, each iteration requires one Ax and one AT y).
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Example: Least squares
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Synthetic data generation

I A := randn(n, p) - standard Gaussian N (0, I).
I n = 104, p = 102.
I b := Ax\ + w where w is Gaussian white noise. SNR is 30dB.
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Motivation: Statistical learning

A basic statistical learning model [1]
A statistical learning model consists of the following three elements.

1. A sample of i.i.d. random variables (ai , bi) ∈ A× B, i = 1, . . . ,n, following an
unknown probability distribution P.

2. A class (set) F of functions f : A → B.
3. A loss function L : B × B → R.

Definition
Let (a, b) follow the probability distribution P and be independent of
(a1, b1), . . . , (an , bn). Then, the risk corresponding to any f ∈ F is its expected loss:

R(f ) := E(a,b) [L(f (a), b)] .

Statistical learning seeks to find a f ? ∈ F that minimizes the risk, i.e., it solves

f ? ∈ arg min
f
{R(f ) : f ∈ F} .

Many problems in machine learning cast into this formulation!
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Example: Learning from a training set

• Data can be decentralized, or even streaming.
• By the law of large numbers, we can expect that for each f ∈ F ,

R(f ) := E [L(a, b)] ≈
1
n

n∑
i=1

L(f (ai), bi)

when n is large enough, with high probability.

Empirical risk minimization (ERM) [1]
We approximate f ? by minimizing the empirical average of the loss instead of the risk.
That is, we consider the optimization problem

f̂n ∈ arg min
f

{
1
n

n∑
i=1

L(f (ai), bi) : f ∈ F

}
.
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Example: Markowitz portfolio optimization [2]
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Problem (Markowitz portfolio optimization)

F? := min
x∈X

{
E
[
|ρ− 〈x, θt〉|2

]}
I ρ ∈ R is the desired return.
I X is intersection of the standard simplex and the constraint 〈x,E[θt ]〉 ≥ ρ.

*Datasets are available from http://www.cs.technion.ac.il/~rani/portfolios
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Revisiting common loss functions: Least squares

Recall that the LS estimator is given by

x̂LS ∈ arg min
x

{1
2
‖b−Ax‖2

2 : x ∈ Rp
}

= arg min
x

{
1

2n

n∑
i=1

(bi − 〈ai ,x〉)2 : x ∈ Rp

}
,

where we define b := (b1, . . . , bn) and ai to be the i-th row of A.

A statistical learning view of least squares
This corresponds to a statistical learning model, for which
I the sample is given by (ai , bi) ∈ Rp × R, i = 1, . . . ,n,
I the function class F is given by F := {fx(·) := 〈·,x〉 : x ∈ Rp}, and
I the loss function is given by L(fx(a), b) := (b − fx(a))2.

The corresponding ERM solution is

f̂n(·) := 〈·, x̂LS〉 .

• Given a, LS estimator seeks to minimize the error of predicting the corresponding b
by a linear function, in terms of the squared error.
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Revisiting common loss functions: Hinge loss

Recall the unconstrained SVM formulation

x̂ ∈ arg min
x

{
1
n

n∑
j=1

max
{

1− bj〈aj ,x〉, 0
}

+ λ‖x‖2
2 : x ∈ Rp

}
where b := (b1, . . . , bn) ∈ {−1, 1}n .

A statistical learning view of SVM
This corresponds to a statistical learning model, for which
I the sample is given by (ai , bi) ∈ Rp × R, i = 1, . . . ,n,
I the function class F is given by F := {fx(·) := 〈·,x〉 : x ∈ Rp}, and
I the loss function is given by L(fx(a), b) := max {0, 1− bfx(a)}.

The corresponding ERM solution is

f̂n(·) := 〈·, x̂〉 .

• Given a, SVM aims to minimize the error of predicting the corresponding b by a
linear function, in terms of the hinge loss.
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Revisiting common loss functions: Logistic loss (Log-loss)

Recall the logistic regression formulation

x̂ ∈ arg min
x,δ

{
1
n

n∑
j=1

log
(

1 + e−bj(〈x,aj〉+δ)
)

: x ∈ Rp, δ ∈ R

}
where b := (b1, . . . , bn) ∈ {−1, 1}n .

A statistical learning view of logistic regression
This corresponds to a statistical learning model, for which
I the sample is given by (ai , bi) ∈ Rp × R, i = 1, . . . ,n,
I the function class F is given by F := {fx(·) := 〈·,x〉 : x ∈ Rp}, and
I the loss function is given by L(fx(a), b) := log

(
1 + e−bfx(a)

)
.

The corresponding ERM solution is

f̂n(·) := 〈·, x̂〉 .

• Given a, logistic regression aims to minimize the error of predicting the
corresponding b by a linear function, in terms of the log-loss.
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Constrained convex minimization

Problem (Mathematical formulation)
Consider the following constrained convex minimization problem:

f ? = min
x∈X

{
f (x) := E[h(x, θ)]

}
I X ⊂ Rp is a non-empty bounded closed convex set.
I θ is a random vector whose probability distribution is supported on set Θ.
I f is continuous and convex on X .
I The solution set S? := {x? ∈ dom(f ) : f (x?) = f ?} is nonempty.
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Stochastic projected gradient method (SG)

Stochastic projected gradient method (SG)

1. Choose x0 ∈ Rp and (γk)k∈N ∈ ]0,+∞[N.
2. For k = 0, 1, . . . perform:

xk+1 = PX
(

xk − γkG(xk , θk)
)
.

Remark
SG shares the same structure as the projected gradient descent method, but the
gradient is replaced by an unbiased estimate in the 2nd step. The cost of computing
this estimate is typically much cheaper than that of ∇f (xk).

Least squares

x̂LS ∈ arg min
{1

2
‖b−Ax‖2

2 : x ∈ X
}

= arg min

{
1

2n

n∑
i=1

(bi − 〈ai ,x〉)2 : x ∈ X

}
∇f (xk) = AT (Axk − b), G(xk , (ai , bi)) = ai(〈ai ,xk〉 − bi).
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Different notions of convergence: Convergence in expectation

Theorem (Mean convergence of SG [3])
Suppose that:
1. f is µ-strongly convex,
2. E[‖G(xk , θk)‖2] ≤ M2,
3. γk = γ0/(k + 1) with γ0 >

µ
2 .

Then,

E[‖xk − x?‖2] ≤
1
k

max
{

γ2
0M2

2γ0µ− 1
, ‖x0 − x?‖2

}
.

If, in addition,
1. x? ∈ int(X ),
2. ∇f is L-Lipschitz continuous.

Then,

E[f (xk)− f (x?)] ≤
L
2k

max
{

γ2
0M2

2γ0µ− 1
, ‖x0 − x?‖2

}
.

• O(1/k) rate in the objective residual is optimal for stochastic gradient methods
under strong convexity assumption.
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Different notions of convergence: Almost sure convergence

Theorem (Almost sure convergence of SG [3])
Denote Fk = σ(x0, θ0, . . . , θk−1). Suppose that:
1. ∇f is L-Lipschitz continuous,

2.
∑∞

k=0 γk =∞ and
∑∞

k=0 γ
2
k <∞.

3.
∑∞

k=0 γ
2
k E[‖G(xk , θk)−∇f (xk)‖2|Fk ] < +∞ almost surely.

Then,
xk → x?almost surely.

Remarks
I (2) is satisfied: γk = γ0/(k + 1).
I (3) is satisfied: sup

k∈N
E[‖G(xk , θk)−∇f (xk)‖2|Fk ] < +∞.
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Example: Constrained least squares problem

min
x
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f (x) :=

1
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Synthetic problem setup

I A := randn(n, p) - standard Gaussian N (0, I), with n = 104, p = 102.
I x\ is 10 sparse with zero mean Gaussian i.i.d. entries, normalized to ‖x\‖1 = 1.
I b := Ax\ + w, where w is Gaussian white noise. SNR is 30dB.
I γ0 = µ/2.
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Example: SG method with different step sizes
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I x\ is 10 sparse with zero mean Gaussian i.i.d. entries, normalized to ‖x\‖1 = 1.
I b := Ax\ + w, where w is Gaussian white noise. SNR is 30dB.
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Stochastic projected gradient with averaging

Stochastic gradient method with averaging (ASG)

1. Choose x0 ∈ Rp and (γk)k∈N ∈ ]0,+∞[N.
2a. For k = 0, 1, . . . perform:

xk+1 = PX (xk − γkG(xk , θk)).

2b. x̄k = (
∑k

j=0 γj)−1
∑k

j=0 γjxj .

Theorem (Mean convergence of ASG [3])
Denote DX = maxx∈X ‖x0 − x‖2 and assume that E[‖G(xk , θk)‖2] ≤ M2 for some
M ∈ ]0,+∞[. Then,

E[f (x̄k)− f (x?)] ≤
D2
X + M2

∑k
j=0 γ

2
j

2
∑k

j=0 γj
,

In addition, choosing γk = DX /(M
√

k), we get,

E[f (x̄k)− f (x?)] ≤
MDX√

k
.

• O(1/
√

k) rate is optimal for stochastic methods unless we assume strong convexity.
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Example: ASG method with different step sizes
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Synthetic problem setup

I A := randn(n, p) - standard Gaussian N (0, I), with n = 104, p = 102.
I x\ is 10 sparse with zero mean Gaussian i.i.d. entries, normalized to ‖x\‖1 = 1.
I b := Ax\ + w, where w is Gaussian white noise. SNR is 30dB.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 39



Example: ASG method with different step sizes

min
x

{
f (x) :=

1
2
‖Ax− b‖2

2 : x ∈ Rp, ‖x‖1 ≤ 1
}

epoch
10-2 10-1 100 101

∥x
k
−
x
⋆
∥2

10-4

10-3

10-2

10-1

100

γ0 = 2
γ0 = 4
γ0 = 8
γ0 = 16
γ0 = 32

epoch
10-2 10-1 100 101

f
(x

k
)
−
f
(x

⋆
)

10-2

10-1

100

101

102

Synthetic problem setup

I A := randn(n, p) - standard Gaussian N (0, I), with n = 104, p = 102.
I x\ is 10 sparse with zero mean Gaussian i.i.d. entries, normalized to ‖x\‖1 = 1.
I b := Ax\ + w, where w is Gaussian white noise. SNR is 30dB.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 39



Stochastic approximation for unconstrained convex optimization

For the special case X = Rp [4]
Assumptions (with probability 1):
H1. ‖G(x, θk)−G(y, θk)‖2 ≤ Lk‖x− y‖2.
H2. E[‖G(x?, θk)‖2|Fk ] ≤ M2 for some M ∈]0,∞[.
H3. supD>0 sup{‖x‖≤D} ‖G(x, θk)‖ < +∞.

Convergence’s rates without averaging:
I γk = γ0k−2/3, + H1.+ H2. =⇒ E[‖xk − x?‖2

2] = O(k−1/3).
I γk = γ0k−α, α ∈ [1/3, 1/2], + H1.+ H3. =⇒ E[‖xk − x?‖2

2] = O(k−3α/2+1/2).

Convergence’s rates with averaging:
I γk = γ0k−α, α ∈ [1/2, 1], + H1.+ H2. =⇒ E[‖xk − x?‖2

2] = O(k−α).
I γk = γ0k−α, α ∈ [0, 1], + H3. =⇒ E[‖xk − x?‖2

2] = O(kα−1).

• These bounds are non-asymptotic, see [4] for the exact expressions of these bounds.
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Important remark!

All the results we have shown so far can be generalized for the non-smooth objectives,
simply by replacing the gradient with a subgradient.
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Recall: Subdifferentials and (sub)gradients in convex functions
I Subdifferential: generalizes ∇ to nondifferentiable functions

Definition
Let f : Q → R ∪ {+∞} be a convex function. The subdifferential of f at a point
x ∈ Q is defined by the set:

∂f (x) = {v ∈ Rp : f (y) ≥ f (x) + 〈v, y− x〉 for all y ∈ Q} .

Each element v of ∂f (x) is called subgradient of f at x.

Definition
Let f : Q → R ∪ {+∞} be a differentiable convex function. Then, the subdifferential
of f at a point x ∈ Q contains only the gradient, i.e., ∂f (x) = {∇f (x)}.

f(x)

x
...

f(x) + hv1,y � xi

f(x) + hv2,y � xi

f(y)

y

Tuesday, May 27, 14

f(x)

xf(x) + hrf(y),y � xi

f(y)

y

Tuesday, May 27, 14

Figure: (Left) Non-differentiability at point y. (Right) Gradient as a subdifferential with a
singleton entry.
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Composite convex minimization

Problem (Unconstrained composite convex minimization)

F? := min
x∈Rp

{F(x) := f (x) + g(x)}

I f and g are both proper, closed, and convex.
I The solution set S? := {x? ∈ dom(F) : F(x?) = F?} is nonempty.

Two remarks

I Nonsmoothness: At least one of the two functions f and g is nonsmooth

I General nonsmooth convex optimization methods are inefficient.

I Generality: it covers a wider range of problems than smooth unconstrained
problems.

I f is a loss function, a data fidelity, or negative log-likelihood function.
I g is a regularizer, encouraging structure and/or constraints in the solution.
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I g is a regularizer, encouraging structure and/or constraints in the solution.
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A short detour: Proximal-point operators

Definition (Proximal operator [5])
Let g : Rp → R be a closed proper convex function. Then, the proximal operator (or
prox-operator) of g is defined as:

proxg(x) ≡ arg min
y∈Rp

{
g(y) +

1
2
‖y− x‖2

2

}
.

Numerical efficiency
For problem (2):
I Many well-known convex functions g, we can compute proxg(x) analytically or
very efficiently.

I If ∇f is Lipschitz continuous and proxg(x) is cheap to compute, then solving (2)
is as efficient as solving min

x∈Rp
f (x) in terms of complexity.
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A non-exhaustive list of proximal tractability functions

Name Function Proximal operator Complexity
`1-norm f (x) := ‖x‖1 proxλf (x) = sign(x)⊗ [|x| − λ]+ O(p)
`2-norm f (x) := ‖x‖2 proxλf (x) = [1− λ/‖x‖2]+x O(p)
Support function f (x) := maxy∈C xT y proxλf (x) = x− λπC(x)
Box indicator f (x) := δ[a,b](x) proxλf (x) = π[a,b](x) O(p)
Positive semidefinite
cone indicator

f (X) := δ
S
p
+

(X) proxλf (X) = U[Σ]+UT , where X =
UΣUT

O(p3)

Hyperplane indicator f (x) := δX (x), X :=
{x : aT x = b}

proxλf (x) = πX (x) = x +(
b−aT x
‖a‖2

)
a

O(p)

Simplex indicator f (x) = δX (x),X :=
{x : x ≥ 0, 1T x = 1}

proxλf (x) = (x− ν1) for some ν ∈ R,
which can be efficiently calculated

Õ(p)

Convex quadratic f (x) := (1/2)xT Qx +
qT x

proxλf (x) = (λI + Q)−1x O(p log p)→
O(p3)

Square `2-norm f (x) := (1/2)‖x‖2
2 proxλf (x) = (1/(1 + λ))x O(p)

log-function f (x) := − log(x) proxλf (x) = ((x2 + 4λ)1/2 + x)/2 O(1)
log det-function f (x) := − log det(X) proxλf (X) is the log-function prox ap-

plied to the individual eigenvalues of X
O(p3)

Here: [x]+ := max{0,x} and δX is the indicator function of the convex set X , sign is the sign function, Sp
+

is the cone of symmetric positive semidefinite matrices.
For more functions, see [6, 7].
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Unconstrained composite convex minimization

Problem (Mathematical formulation)
Consider the following unconstrained composite convex minimization problem:

F? := min
x∈Rp

{F(x) := E[h(x, θ)] + g(x)} (2)

I f := E[h(x, θ)] and g are both proper, closed, and convex.
I ∇f is L-Lipschitz continuous.
I θ is a random vector whose distribution is supported on Θ
I The solution set S? := {x? ∈ dom(F) : F(x?) = F?} is nonempty.

We assume that
I It is possible to generate a i.i.d sample (θk)k∈N of realizations of θ.
I Given (x, θ) ∈ Rp × Ω, one can find a vector G(x, θ) such that
E[G(x, θ)] = ∇f (x).

I proxg is tractable.
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Stochastic proximal gradient method

Stochastic proximal gradient method (SPGM)

1. Choose x0 ∈ Rp and (γk)k∈N ∈ ]0,+∞[N.
2. For k = 0, 1, . . . perform:

xk+1 = proxγkg(xk − γkG(xk , θk)).

Remark
SPGM shares the same structure as the classical proximal gradient method, but the
gradient is replaced by an unbiased estimate in the 2nd step.

Two special cases:
I g = 1X , i.e., the indicator function of X : SPGM reduces to SG.
I G(x, θ) = ∇f (x): SPGM reduces to the classical proximal gradient method.
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Stochastic proximal gradient method

Stochastic proximal gradient method (SPGM)

1. Choose x0 ∈ Rp and (γk)k∈N ∈ ]0,+∞[N.
2. For k = 0, 1, . . . perform:

xk+1 = proxγkg(xk − γkG(xk , θk)).

Theorem (Mean convergence of the iterates of SPGM [8])
Suppose that:
1. f and g are (strongly) convex with µf ≥0 and µg≥0 such that µ :=µf +µg>0.
2. supk∈N E[‖G(xk , θk)−∇f (xk)‖2|Fk ] ≤ M2.
3. γk = γ0/kα with 0 < α ≤ 1.

Then, for k large enough,

E[‖xk − x?‖2
2] =

{
O(kα) if 0 < α < 1,
O(1/kβ) +O(1/k) if α = 1,

where β = 2γ0(µg + µf ε)/(1 + µg)2 for some fixed 0 < ε < 1.

Remark: If γ0 is large enough then β > 1.
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Stochastic proximal gradient method

Stochastic proximal gradient method (SPGM)

1. Choose x0 ∈ Rp and (γk)k∈N ∈ ]0,+∞[N.
2. For k = 0, 1, . . . perform:

xk+1 = proxγkg(xk − γkG(xk , θk)).

Theorem (Almost sure convergence of the iterates of SPGM [8])
Suppose that:
1. 0 < γk ≤ 1/L and

∑∞
k=0 γk =∞.

2. lim supk ‖xk‖ < +∞ almost surely.
3.
∑

k≥0 γ
2
k E[‖G(xk , θk)−∇f (xk)‖2|Fk ] < +∞.

Then,
xk → x? almost surely.
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Example: ASPGM I with different number of iterations

min
x

{
f (x) :=

1
2
‖Ax− b‖2

2 + ρ‖x‖1 : x ∈ Rp
}

epoch
10-2 10-1 100 101

∥x
k
−
x
⋆
∥2 2

10-3

10-2

10-1

100

γ = 1/L
γ = 1/(2L)
γ = 1/(4L)

epoch
10-2 10-1 100 101

F
(x

k
)
−
F
(x

⋆
)

100

101

102

103

104

LASSO: Synthetic problem setup

I A := randn(n, p) - standard Gaussian N (0, I), with n = 104, p = 102.
I x\ is 10 sparse with zero mean Gaussian i.i.d. entries, normalized to ‖x\‖2 = 1.
I b := Ax\ + w, where w is Gaussian white noise. SNR is 30dB.
I ρ = 10−2.
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Stochastic proximal gradient method with averaging

SPGM with averaging

1. Choose x0 ∈ Rp and (γk)k∈N, (χk)k∈N ∈ ]0,+∞[N.
2a. For k = 0, 1, . . . perform:

xk+1 = proxγkh(xk − γkG(xk , θk)).

2b. x̄k = (
∑k

j=0 χj)−1
∑k

j=0 χjxj .

Theorem (Mean convergence of SPGM with averaging [11])
Denote Ak =

∑k
j=0 χj . Suppose that:

1. (χk/γk)k∈N is non decreasing.
2. (∃c > 0) supk∈N ‖xk‖ ≤ c almost surely.

Then,

E[F(x̄k)− F(x?)] ≤
(c + ‖x?‖)2χk

2γkAk
+

1
Ak

k∑
j=0

χjγjE[‖G(xj , θj)−∇f (xj)‖2].
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Accelerated stochastic proximal gradient method I

Accelerated stochastic proximal gradient method I (ASPGM I)

1. Choose x0 = z0 = 0. Define αk := 2/(k + 2) and γk := αk(2 + N3/2/L)
2. For k = 0, 1, . . .N perform:
2a. yk = (1− αk)xk + αkzk

2b. zk+1 = prox 1
γk L g(zk − 1

γkL G(yk , θk))

2c. xk+1 = (1− αk)xk + αkzk+1.

Theorem (Mean convergence of ASPGM I [9])
Suppose that E[‖G(xk , θk)−∇f (xk)‖] ≤ M2 for some M ∈]0,∞[. Then,

E[F(xN+1)− F(x?)] ≤
2‖x? − z0‖2 + M2

√
N + 2

+ L
4‖x? − z0‖2 + 2M2

N + 2
.

Number of iterations N needs to be fixed in advance!
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Example: ASPGM I with different number of iterations

min
x

{
f (x) :=

1
2
‖Ax− b‖2

2 + ρ‖x‖1 : x ∈ Rp
}

epoch
10-2 10-1 100 101

∥x
k
−
x
⋆
∥2 2

10-4

10-3

10-2

10-1

100

N = 103

N = 104

N = 105

epoch
10-2 10-1 100 101

F
(x

k
)
−
F
(x

⋆
)

100

101

102

103

104

LASSO: Synthetic problem setup

I A := randn(n, p) - standard Gaussian N (0, I), with n = 104, p = 102.
I x\ is 10 sparse with zero mean Gaussian i.i.d. entries, normalized to ‖x\‖2 = 1.
I b := Ax\ + w, where w is Gaussian white noise. SNR is 30dB.
I ρ = 10−2.
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Accelerated stochastic proximal gradient method II

Accelerated stochastic proximal gradient method II (ASPGM II)

1. Choose y0 = z0 = 0, (γk)k∈N, (αk)k∈N ∈ ]0,+∞[N, α0 = 1, γ0 = L + µ.
2. For k = 0, 1, . . . perform:
2a. xk+1 = (1− αk)yk + αkzk .
2b. yk+1 = prox 1

γk
g(xk+1 − 1

γk
G(xk+1, θk)).

2c. zk+1 = zk − 1
γkαk+µ

(
γk(xk+1 − yk+1) + µ(zk − xk+1)

)
.

Theorem (Mean convergence of ASPGM II [10])
Suppose that:
1. E[‖zk − x?‖2] ≤ D2 for some D ∈ ]0,∞[.
2. E[‖G(xk , θk)−∇f (xk)‖2] ≤ M2 for some M ∈]0,∞[.
3. γk = c(k + 1)3/2 + L for a fixed c > 0, and αk = 2/(k + 2).

Then,

E[F(yk+1)− F(x?)] ≤
3D2L

k2 +
(

3D2c +
5M2

3c

) 1
√

k
.
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Accelerated stochastic proximal gradient method II

Accelerated stochastic proximal gradient method II (ASPGM II)

1. Choose y0 = z0 = 0, (γk)k∈N, (αk)k∈N ∈ ]0,+∞[N, α0 = 1, γ0 = L + µ.
2. For k = 0, 1, . . . perform:
2a. xk+1 = (1− αk)yk + αkzk .
2b. yk+1 = prox 1

γk
g(xk+1 − 1

γk
G(xk+1, θk)).

2c. zk+1 = zk − 1
γkαk+µ

(
γk(xk+1 − yk+1) + µ(zk − xk+1)

)
.

Theorem (Mean convergence of ASPGM II with strong convexity [10])
Define λk =

∏k
j=1(1− αj) and λ0 = 1. Suppose that:

1. f is µ-strongly convex.
2. E[‖zk − x?‖2] ≤ D2 for some D ∈ ]0,∞[.
3. E[‖G(xk , θk)−∇f (xk)‖2] ≤ M2 for some M ∈]0,∞[.

4. γk = L + µ
λk−1

and αk =
√
λk−1 +

λ2
k−1
4 − λk−1

2 .

Then,
E[F(yk+1)− F(x?)] ≤

2(L + µ)D2

k2 +
6M2

µk
.
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Stochastic FISTA

Stochastic FISTA
1. Choose y0 ∈ domg, (γk)k∈N, (αk)k∈N ∈ ]0,+∞[N, and

λ0 = 1, (∀k ≥ 1) γk+1λk(λk − 1) ≤ γkλ
2
k−1.

2. y0 ∈ domg and y1 = proxγ1g(y0 − γ1G(y0, θ0)).
3. For k = 1, 2 . . . perform:
3a. xk = yk + λk−1−1

λk
(yk − yk−1).

3b. yk+1 = proxγk+1g(xk − γk+1G(xk , θk)).

Remark. Some rules to update (λk)k∈N when (γk)k∈N is non-increasing:
I λk ∝ (k + k0)α with 0 < α < 1, for some k0 > 0.
I λk = 1 + k

2 .

I λk+1 = 1
2 + 1

2

√
1 + 4λ2

k .
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Stochastic FISTA: Almost sure convergence

Theorem (Almost sure convergence of stochastic FISTA [11])
Suppose that:
1. 0 < γk < 1/L and lim γkλ

2
k = +∞.

2. lim supk→∞ ‖xk‖ < +∞.
3. For any B > 0, there exist constants (Kk)k∈N such that∑

k∈N

γk+1λk(1 + γk+1λk)Kk < +∞,

E[‖G(xk , θk)−∇f (xk)‖2|Fk ]1{
∩j≤k{‖xj‖≤B}

} ≤ Kk .

Then,
F(yk)→ F(x?) almost surely.
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Stochastic FISTA - Convergence in expectation

Theorem (Mean convergence of Stochastic FISTA [11])
Suppose that:
1. 0 < γk ≤ 1/L.
2. supk ‖xk‖ ≤ B almost surely.

3. Bk = D + 2
∑k

j=1 γ
2
j+1λ

2
j E[‖∆j‖2] < +∞ where

∆k = G(xk , θk)−∇f (xk),

D = γ1E[F(x0)− F(x?)] +
1
2

(B + ‖x?‖)2.

Then,
E[F(yk+1)− F(x?)] ≤

Bk
γk+1λ2

k
.
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