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Outline

I This lecture
1. Gradient and accelerated gradient descent methods

I Next lecture
1. The quadratic case and conjugate gradient
2. Other optimization methods
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Recommended reading

I Chapters 2, 3, 5, 6 in Nocedal, Jorge, and Wright, Stephen J., Numerical
Optimization, Springer, 2006.

I Chapter 9 in Boyd, Stephen, and Vandenberghe, Lieven, Convex optimization,
Cambridge university press, 2009.

I Chapter 1 in Bertsekas, Dimitris, Nonlinear Programming, Athena Scientific,
1999.

I Chapters 1, 2 and 4 in Nesterov, Yurii, Introductory Lectures on Convex
Optimization: A Basic Course, Vol. 87, Springer, 2004.
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Overview

Overview
This lecture covers the basics of numerical methods for unconstrained and smooth
convex minimization.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 39



Recall: convex, unconstrained, smooth minimization

Problem (Mathematical formulation)

F ? := min
x∈Rp

{F (x) := f(x)} (1)

where f is convex and twice differentiable.
Note that (1) is unconstrained.

How de we design efficient optimization algorithms with accuracy-computation
tradeoffs for this class of functions?
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Basic principles of descent methods

Template for iterative descent methods

1. Let x0 ∈ dom(f) be a starting point.
2. Generate a sequence of vectors x1,x2, · · · ∈ dom(f) so that we have descent:

f(xk+1) < f(xk), for all k = 0, 1, . . .

until xk is ε-optimal.

Such a sequence
{

xk
}
k≥0

can be generated as:

xk+1 = xk + αkpk

where pk is a descent direction and αk > 0 a step-size.

Remarks
I Iterative algorithms can use various oracle information from the objective, such as
its value, gradient, or Hessian, in different ways to obtain αk and pk

I These choices determine the overall convergence rate and complexity
I The type of oracle information used becomes a defining characteristic
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Basic principles of descent methods

A condition for local descent directions
The iterates are given as:

xk+1 = xk + αkpk

By Taylor’s theorem, we have

f(xk+1) = f(xk) + αk〈∇f(xk), pk〉+O(α2
k ‖p‖

2
2).

For αk small enough, the term αk〈∇f(xk), pk〉 dominates O(α2
k) for a fixed pk.

Therefore, in order to have f(xk+1) < f(xk), we require

〈∇f(xk), pk〉 < 0
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Basic principles of descent methods

Local steepest descent direction
Since

〈∇f(xk), pk〉 = ‖∇f(xk)‖‖pk‖ cos θ ,

where θ is the angle between ∇f(xk) and pk, we have that

pk := −∇f(xk)

is the local steepest descent direction.

level sets

xk
rf(xk)

pk
xk + D(f, xk)

Figure: Descent directions in 2D should be an element of the cone of descent directions D(f, ·).
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A reminder on notation

Important notation used throughout the whole lecture:
I F l,mL : Functions that are l-times differentiable with m-th order Lipschitz property

I In this lecture, m = 1, and l ∈ {1, 2,∞}

I F l,mL,µ: Subset of F
l,m
L also satisfying µ-strong convexity
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Gradient descent methods

Gradient descent (GD) algorithm
The gradient method we discussed before indeed use the local steepest direction:

pk = −∇f(xk)

so that
xk+1 = xk − αk∇f(xk).

Key question: How do we choose αk so that we are guaranteed to successfully
descend? (ideally as fast as possible)

Answer: By exploiting the structures within the convex function
When f ∈ F2,1

L , we can use αk = 1/L so that xk+1 = xk − 1
L
∇f(xk) is contractive.

I Note that the above GD method only uses the gradient information, and hence, it
is called a first-order method.

First-order methods employ only first-order oracle information about the objective,
namely the value of f and ∇f at specific points.
I Second-order methods also use the Hessian ∇2f .
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Recall: Gradient descent methods - a geometrical intuition

xk

f(x)

x?
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Recall: Gradient descent methods - a geometrical intuition

Structure'in'op,miza,on:' xk

f(x)

x?

(1) f(x) � f(xk) + hrf(xk),x � xki
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Recall: Gradient descent methods - a geometrical intuition

f(x)

Majorize: 

Minimize: 

Structure'in'op,miza,on:' xk

xk+1 = arg min
x

QL(x,xk)

= arg min
x

����x �
✓
xk � 1

L
rf(xk)

◆����
2

= xk � 1

L
rf(xk)

f(x)  f(xk) + hrf(xk),x � xki +
L

2
kx � xkk2

2 := QL(x,xk)

(2) f(x)  f(xk) + hrf(xk),x � xki +
L

2
kx � xkk2

2

xk+1x?

(1) f(x) � f(xk) + hrf(xk),x � xki
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Recall: Gradient descent methods - a geometrical intuition

slower'

Structure'in'op,miza,on:'

Majorize: 

Minimize: 

xk

xk+1 = arg min
x

QL0(x,xk)

= arg min
x

����x �
✓
xk � 1

L0rf(xk)

◆����
2

= xk � 1

L0rf(xk)

f(x)

(2) f(x)  f(xk) + hrf(xk),x � xki +
L

2
kx � xkk2

2

xk+1

x?

f(x)  f(xk) + hrf(xk),x � xki +
L0

2
kx � xkk2

2 := QL0(x,xk)

(1) f(x) � f(xk) + hrf(xk),x � xki
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Recall: Gradient descent methods - a geometrical intuition

x?Structure'in'op,miza,on:'

Majorize: 

Minimize: 

xk

(3) f(x) � f(xk) + hrf(xk),x � xki +
µ

2
kx � xkk2

2

f(x)
xk+1 = arg min

x
QL(x,xk)

= arg min
x

����x �
✓
xk � 1

L
rf(xk)

◆����
2

= xk � 1

L
rf(xk)

f(x)  f(xk) + hrf(xk),x � xki +
L

2
kx � xkk2

2 := QL(x,xk)

(2) f(x)  f(xk) + hrf(xk),x � xki +
L

2
kx � xkk2

2

(1) f(x) � f(xk) + hrf(xk),x � xki
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Convergence rate of gradient descent

Theorem
Let the starting point for GD be x0 ∈ dom(f).
I If f ∈ F2,1

L , with the choice α = 1
L
, the iterates of GD satisfy

f(xk)− f(x?) ≤
2L
k + 4

‖x0 − x?‖2
2

I If f ∈ F2,1
L,µ, with the choice α = 2

L+µ , the iterates of GD satisfy

‖xk − x?‖2 ≤
(
L− µ
L+ µ

)k
‖x0 − x?‖2

I If f ∈ F2,1
L,µ, with the choice α = 1

L
, the iterates of GD satisfy

‖xk − x?‖2 ≤
(
L− µ
L+ µ

) k
2
‖x0 − x?‖2
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Proof of convergence rates of gradient descent
I We first need to prove a basic result about functions in F1,1

L

Lemma
Let f ∈ F1,1

L . Then it holds that

1
L
‖∇f(x)−∇f(y)‖2 ≤ 〈∇f(x)−∇f(y),x− y〉 (2)

Proof (Advanced material).
First, recall the following result about Lipschitz gradient functions h ∈ F1,1

L

h(x) ≤ h(y) + 〈∇h(y),x− y〉+
L

2
‖x− y‖2

2. (3)

To prove the result, let φ(y) := f(y)− 〈∇f(x),y〉, with ∇φ(y) = ∇f(y)−∇f(x). Clearly,
φ(y) attains its minimum value at y? = x. Hence, and by also applying (3) with h = φ and
x = y− 1

L∇φ(y), we get

φ(x) ≤ φ
(

y−
1
L
∇φ(y)

)
≤ φ(y)−

1
2L
‖∇φ(y)‖2

2.

Substituting the above definitions into the left and right hand sides gives

f(x) + 〈∇f(x),y− x〉+
1

2L
‖∇f(x)−∇f(y)‖2

2 ≤ f(y) (4)

By adding two copies of (4) with each other, with x and y swapped, we obtain (2).
�
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The proof of convergence rates - part I

Theorem
If f ∈ F2,1

L , with the choice α = 1
L
, the iterates of GD satisfy

f(xk)− f(x?) ≤
2L
k + 4

‖x0 − x?‖2
2 (5)

Proof - part I
I Consider the constant step-size iteration xk+1 = xk − α∇f(xk).

I Let rk := ‖xk − x?‖, where x? denotes a minimizer. Show rk ≤ r0 .

r
2
k+1 := ‖xk+1 − x?‖2 = ‖xk − x? − α∇f(xk)‖2

= ‖xk − x?‖2 − 2α〈∇f(xk)−∇f(x?),xk − x?〉+ α
2‖∇f(xk)‖2

≤ r2
k − α(2/L− α)‖∇f(xk)‖2 (by (2))

≤ r2
k, ∀α < 2/L.

Hence, the gradient iterations are contractive when α < 2/L for all k ≥ 0.

I An auxiliary result: Let ∆k := f(xk)− f?. Show ∆k ≤ r0‖∇f(xk)‖ .

∆k ≤ 〈∇f(xk),xk − x?〉 ≤ ‖∇f(xk)‖‖xk − x?‖ = rk‖∇f(xk)‖ ≤ r0‖∇f(xk)‖.
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The proof of convergence rates - part II

Proof - part II
I We can establish convergence along with the auxiliary result above:

f(xk+1) ≤ f(xk) + 〈∇f(xk),xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

= f(xk)− ωk‖∇f(xk)‖2
, ωk := α(1− Lα/2).

Subtract f∗ from both sides and apply the last inequality of the previous slide to get

∆k+1 ≤ ∆k − (ωk/r
2
0)∆2

k . Thus, dividing by ∆k+1∆k

∆−1
k+1 ≥ ∆−1

k + (ωk/r
2
0)∆k/∆k+1 ≥ ∆−1

k + (ωk/r
2
0).

By induction, we have ∆−1
k+1 ≥ ∆−1

0 + (ωk/r
2
0)(k + 1). Then, taking (·)−1 of both sides

(and hence replacing ≥ by ≤) and substituting all of the definitions gives

f(xk)− f(x?) ≤
2(f(x0)− f(x?))‖x0 − x?‖2

2
2‖x0 − x?‖2

2 + kα(2− αL)(f(x0)− f?)
,

I In order to choose the optimal step-size, we maximize the function φ(α) = α(2− αL).
Hence, the optimal step size for the gradient method for f ∈ F1,1

L
is given by α = 1

L .

I Finally, since f(x0) ≤ f∗ +∇f(x?)T (x0 − x?) + (L/2)‖x0 − x?‖2
2 = f∗ + (L/2)r2

0 ,
we obtain (5).

�
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The proof of convergence rates - part III

Theorem
I If f ∈ F2,1

L,µ, with the choice α = 2
L+µ , the iterates of GD satisfy

‖xk − x?‖2 ≤
(
L− µ
L+ µ

)k
‖x0 − x?‖2 (6)

I If f ∈ F2,1
L,µ, with the choice α = 1

L
, the iterates of GD satisfy

‖xk − x?‖2 ≤
(
L− µ
L+ µ

) k
2
‖x0 − x?‖2 (7)

Before proving the convergence rate, we first need a result about functions in F1,1
L,µ. It

is proved similarly to (2).

Theorem
If f ∈ F1,1

L,µ, then for any x and y, we have

〈∇f(x)−∇f(y),x− y〉 ≥
µL

µ+ L
‖x− y‖2 +

1
µ+ L

‖∇f(x)−∇f(y)‖2. (8)
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The proof of convergence rates - part III

Proof of (6) and (7)

I Let rk = ‖xk − x?‖. Then, using (8) and the fact that ∇f(x∗) = 0, we have

r2
k+1 = ‖xk+1 − x? − α∇f(xk)‖2

= r2
k − 2α〈∇f(xk),xk − x?〉+ α2‖∇f(xk)‖2

≤
(

1−
2αµL
µ+ L

)
r2
k + α

(
α−

2
µ+ L

)
‖∇f(xk)‖2

I Since µ ≤ L, we have α ≤ 2
µ+L in both the cases α = 1

L
or α = 2

µ+L . So the
last term in the previous inequality is negative, and hence

r2
k+1 ≤

(
1−

2αµL
µ+ L

)k
r2

0

I Plugging α = 1
L

and α = 2
µ+L , we obtain the rates as advertised.

I For f ∈ F1,1
L,µ, the optimal step-size is given by α = 2

µ+L (i.e., it optimizes the
worst case bound).

�
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Convergence rate of gradient descent

Convergence rate of gradient descent

f ∈ F2,1
L , α =

1
L

f(xk)− f(x?) ≤
2L
k + 4

‖x0 − x?‖2
2

f ∈ F2,1
L,µ, α =

2
L+ µ

‖xk − x?‖2 ≤
(
L− µ
L+ µ

)k
‖x0 − x?‖2

f ∈ F2,1
L,µ, α =

1
L

‖xk − x?‖2 ≤
(
L− µ
L+ µ

) k
2
‖x0 − x?‖2

Remarks
I Assumption: Lipschitz gradient. Result: convergence rate in objective values.
I Assumption: Strong convexity. Result: convergence rate in sequence of the
iterates and in objective values.

I Note that the suboptimal step-size choice α = 1
L

adapts to the strongly convex
case (i.e., it features a linear rate vs. the standard sublinear rate).
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Example: Ridge regression

Optimization formulation

I Let A ∈ Rn×p and b ∈ Rn given by the model b = Ax\ + w, where w ∈ Rn is
some noise.

I We can try to estimate x\ by solving the Tikhonov regularized least squares

min
x∈Rp

f(x) :=
1
2
‖b−Ax‖2

2 +
ρ

2
‖x‖2

2.

where ρ ≥ 0 is a regularization parameter.

Remarks
I f ∈ F2,1

L,µ with:
I L = λp(AT A) + ρ;
I µ = λ1(AT A) + ρ;
I where λ1(AT A) ≤ . . . ≤ λp(AT A) are the eigenvalues of AT A.

I The ratio L
µ

decreases as ρ increases, leading to faster linear convergence.

I Note that if n < p and ρ = 0, we have µ = 0, hence f ∈ F2,1
L and we can expect

only O(1/k) convergence from the gradient descent method.
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Example: Ridge regression
Case 1:

n = 500, p = 2000, ρ = 0
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Case 2:
n = 500, p = 2000, ρ = 0.01λp(ATA)
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Information theoretic lower bounds [3]

What is the best achievable rate for a first-order method (one using gradient
information but not higher-order quantities)?

f ∈ F∞,1L : Smooth and Lipschitz-gradient
It is possible to construct a function in F∞,1L , for which any first order method must
satisfy

f(xk)− f(x?) ≥
3L

32(k + 1)2 ‖x
0 − x?‖2

2 for all k ≤ (p− 1)/2

f ∈ F∞,1L,µ : Smooth and strongly convex
It is possible to construct a function in F∞,1L,µ , for which any first order method must
satisfy

‖xk − x?‖2 ≥
( √

L− √µ
√
L+ √µ

)k
‖x0 − x?‖2

Gradient descent is O(1/k) for F∞,1L and it is slower for F∞,1L,µ ,
hence it does not achieve the lower bounds!
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Accelerated gradient descent algorithm

Problem
Is it possible to design optimal first-order methods with convergence rates matching
the theoretical lower bounds?

Solution [Nesterov’s accelerated scheme]
Accelerated Gradient (AG) methods achieve optimal convergence rates at a negligible
increase in the computational cost.

Accelerated Gradient algorithm for
F1,1
L (AG-L)

1. Set x0 = y0 ∈ dom(f) and t0 := 1.
2. For k = 0, 1, . . ., iterate

xk+1 = yk − 1
L
∇f(yk)

tk+1 = (1 +
√

4t2
k

+ 1)/2
yk+1 = xk+1 + (tk−1)

tk+1
(xk+1 − xk)

Accelerated Gradient algorithm for
F1,1
L,µ (AG-µL)

1. Choose x0 = y0 ∈ dom(f)
2. For k = 0, 1, . . ., iterate{

xk+1 = yk − 1
L
∇f(yk)

yk+1 = xk+1 + γ(xk+1 − xk)
where γ =

√
L−√µ√
L+√µ

.

NOTE: AG is not monotone, but the cost-per-iteration is essentially the same as GD.
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Solution [Nesterov’s accelerated scheme]
Accelerated Gradient (AG) methods achieve optimal convergence rates at a negligible
increase in the computational cost.

Accelerated Gradient algorithm for
F1,1
L (AG-L)

1. Set x0 = y0 ∈ dom(f) and t0 := 1.
2. For k = 0, 1, . . ., iterate

xk+1 = yk − 1
L
∇f(yk)

tk+1 = (1 +
√

4t2
k

+ 1)/2
yk+1 = xk+1 + (tk−1)

tk+1
(xk+1 − xk)

Accelerated Gradient algorithm for
F1,1
L,µ (AG-µL)

1. Choose x0 = y0 ∈ dom(f)
2. For k = 0, 1, . . ., iterate{

xk+1 = yk − 1
L
∇f(yk)

yk+1 = xk+1 + γ(xk+1 − xk)
where γ =

√
L−√µ√
L+√µ

.

NOTE: AG is not monotone, but the cost-per-iteration is essentially the same as GD.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 27/ 39



Accelerated gradient descent algorithm

Problem
Is it possible to design optimal first-order methods with convergence rates matching
the theoretical lower bounds?

Solution [Nesterov’s accelerated scheme]
Accelerated Gradient (AG) methods achieve optimal convergence rates at a negligible
increase in the computational cost.

Accelerated Gradient algorithm for
F1,1
L (AG-L)

1. Set x0 = y0 ∈ dom(f) and t0 := 1.
2. For k = 0, 1, . . ., iterate

xk+1 = yk − 1
L
∇f(yk)

tk+1 = (1 +
√

4t2
k

+ 1)/2
yk+1 = xk+1 + (tk−1)

tk+1
(xk+1 − xk)

Accelerated Gradient algorithm for
F1,1
L,µ (AG-µL)

1. Choose x0 = y0 ∈ dom(f)
2. For k = 0, 1, . . ., iterate{

xk+1 = yk − 1
L
∇f(yk)

yk+1 = xk+1 + γ(xk+1 − xk)
where γ =

√
L−√µ√
L+√µ

.

NOTE: AG is not monotone, but the cost-per-iteration is essentially the same as GD.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 27/ 39



Global convergence of AGD [3]

Theorem (f is convex with Lipschitz gradient)
If f ∈ F1,1

L or F1,1
L,µ, the sequence {xk}k≥0 generated by AGD-L satisfies

f(xk)− f? ≤
4L

(k + 2)2 ‖x
0 − x?‖2

2, ∀k ≥ 0. (9)

AGD-L is optimal for F1,1
L but NOT for F1,1

L,µ!

Theorem (f is strongly convex with Lipschitz gradient)
If f ∈ F1,1

L,µ, the sequence {xk}k≥0 generated by AGD-µL satisfies

f(xk)− f? ≤ L
(

1−
√

µ

L

)k
‖x0 − x?‖2

2, ∀k ≥ 0 (10)

‖xk − x?‖2 ≤

√
2L
µ

(
1−

√
µ

L

) k
2
‖x0 − x?‖2, ∀k ≥ 0. (11)

I AGD-L’s iterates are not guaranteed to converge.
I AGD-L does not have a linear convergence rate for F1,1

L,µ.
I AGD-µL does, but needs to know µ.

AGD achieves the iteration lowerbound within a constant!
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Example: Ridge regression
Case 1:

n = 500, p = 2000, ρ = 0
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Case 2:
n = 500, p = 2000, ρ = 0.01λp(ATA)
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Enhancements

Two enhancements
1. Line-search for estimating L for both GD and AGD.
2. Restart strategies for AGD.

When do we need a line-search procedure?
We can use a line-search procedure for both GD and AGD when
I L is known but it is expensive to evaluate;
I The global constant L usually does not capture the local behavior of f or it is
unknown;

Line-search
At each iteration, we try to find a constant Lk that satisfies:

f(xk+1) ≤ QLk
(xk+1,yk) := f(yk) + 〈∇f(yk),xk+1 − yk〉+

Lk

2
‖xk+1 − yk‖2

2.

Here: L0 > 0 is given (e.g., L0 := c
‖∇f(x1)−∇f(x0)‖2

‖x1−x0‖2
) for c ∈ (0, 1].
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How can we better adapt to the local geometry?

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

L

2
kx � xkk2

2

�

f(xk)

QL(x,xk)

Global quadratic upper bound
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�f(xk)

x1

x2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

Lk

2
kx � xkk2

2

�

f(xk)

QLk
(x,xk)

Local quadratic upper bound

applies only locally

f(x)  f(xk) + rf(xk)T (x � xk) +
Lk

2
kx � xkk2

2
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Enhancements

Why do we need a restart strategy?

I AG-µL requires knowledge of µ and AG-L does not have optimal convergence for
strongly convex f .

I AG is non-monotonic (i.e., f(xk+1) ≤ f(xk) is not always satisfied).
I AG has a periodic behavior, where the momentum depends on the local condition
number κ = L/µ.

I A restart strategy tries to reset this momentum whenever we observe high
periodic behavior. We often use function values but other strategies are possible.

Restart strategies

1. O’Donoghue - Candes’s strategy [4]: There are at least three options: Restart
with fixed number of iterations, restart based on objective values, and restart
based on a gradient condition.

2. Giselsson-Boyd’s strategy [2]: Do not require tk = 1 and do not necessary
require function evaluations.

3. Fercoq-Qu’s strategy [1]: Unconditional periodic restart for strongly convex
functions. Do not require the strong convexity parameter.
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Oscillatory behavior of AGD
I Minimize a quadratic function f(x) = xTΦx, with p = 200 and
κ(Φ) = L/µ = 2.4× 104

I Use stepsize α = 1/L and update xk+1 + γk+1(xk+1 − xk) where
I γk+1 = θk(1− θk)/(θ2

k + θk+1)
I θk+1 solves θ2

k+1 = (1− θk+1)θ2
k + qθk+1.

I The parameter q should be equal to the reciprocal of condition number q∗ = µ/L.
I A different choice of q might lead to oscillatory behavior.
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Figure 1: Convergence of Algorithm 1 with different estimates of q.

Interpretation. The optimal momentum depends on the condition number of the function;
specifically, higher momentum is required when the function has a higher condition number. Under-
estimating the amount of momentum required leads to slower convergence. However we are more
often in the other regime, that of overestimated momentum, because generally q = 0, in which case
βk ↑ 1; this corresponds to high momentum and rippling behavior, as we see in Figure 1. This
can be visually understood in Figure (2), which shows the trajectories of sequences generated by
Algorithm 1 minimizing a positive definite quadratic in two dimensions, under q = q⋆, the optimal
choice of q, and q = 0. The high momentum causes the trajectory to overshoot the minimum and
oscillate around it. This causes a rippling in the function values along the trajectory. Later we
shall demonstrate that the period of these ripples is proportional to the square root of the (local)
condition number of the function.

Lastly we mention that the condition number is a global parameter; the sequence generated by
an accelerated scheme may enter regions that are locally better conditioned, say, near the optimum.
In these cases the choice of q = q⋆ is appropriate outside of this region, but once we enter it we
expect the rippling behavior associated with high momentum to emerge, despite the optimal choice
of q.

4
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Example: Ridge regression
Case 1:

n = 500, p = 2000, ρ = 0
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Case 2:
n = 500, p = 2000, ρ = 0.01λp(ATA)
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The (special) quadratic case – Step-size
Consider the minimization of a quadratic function

min
x
f(x) :=

1
2
〈x,Ax〉 − 〈b,x〉

where A is a p× p symmetric positive definite matrix, i.e., A = AT � 0.

Gradient Descent

αk = 1/L with L = ‖A‖

Steepest descent

αk =
‖∇f(xk)‖2

〈∇f(xk),A∇f(xk)〉
(12)

Barzilai-Borwein

αk =
‖∇f(xk−1)‖2

〈∇f(xk−1),A∇f(xk−1)〉
(13)
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The (special) quadratic case – convergence rates
For f(x) = 1

2 〈x,Ax〉 − 〈b,x〉, we have L = ‖A‖ = λp and µ = λ1, where
0 < λ1 ≤ λ2 ≤ · · ·λp are the eigenvalues of A.

Theorem (Gradient Descent)

‖xk − x?‖2 ≤
(

1−
λ1

λp

)k
‖x0 − x?‖2

Theorem (Steepest Descent)

‖xk+1 − x?‖A ≤
(
λp − λ1

λp + λ1

)k
‖x0 − x?‖A

Theorem (Barzilai-Borwein)
Under the condition λp < 2λ1

‖xk+1 − x?‖2 ≤
(
λp − λ1

λ1

)k
‖x0 − x?‖2
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Example: Quadratic function

Case 1: n = p = 100, κ(A) = 10
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Case 1: n = p = 100, κ(A) = 100
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