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Motivation

Motivation
This lecture illustrates how compressive sensing generalizes as a source separation
problem in a unified framework.

It turns out that the formulation of a convex estimator for the source separation
problem, in general, requires minimizing the sum of two nonsmooth convex functions.
We derive the statistical performance guarantee of such an estimator, and show
algorithms that address the composite nonsmooth convex minimization problems.
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Source separation

Problem (Source separation)
Let x\,y\ ∈ Rp be two unknown vectors. How do we estimate x\ and y\ given
z := x\ + y\?

Observation
Source separation is impossible if we do not have any additional information about x\
and y\.

Example
Obviously, without any additional information, the equation z = x\ + y\ has infinite
possible solutions for (x\,y\).

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 06: Motivation for nonsmooth, constrained minimization

Source separation

Problem (Source separation)
Let x\,y\ ∈ Rp be two unknown vectors. How do we estimate x\ and y\ given
z := x\ + y\?

Observation
Source separation is impossible if we do not have any additional information about x\
and y\.

Example
Obviously, without any additional information, the equation z = x\ + y\ has infinite
possible solutions for (x\,y\).

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 06: Motivation for nonsmooth, constrained minimization

Insights from nearly trivial examples

Example
Let z = (2, 1)T := x\ + y\. Without additional information it is impossible to
perfectly recover x\ and y\.

However, suppose now we know x\ = (x\, 0)T and y\ = (0, y\)T , then we can
perfectly recover x\ = (2, 0)T and y\ = (0, 1)T .

Insight: To have a well-posed source separation problem, some information on the
signal structures is needed.

Example
Suppose now that we know x\ = (2, x\)T and y\ = (0, y\)T , then it is still impossible
to perfectly recover x\ and y\.

Insight: The structures must be incoherent in some sense.
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A classical well-posed source separation problem

Problem (Spikes and sines)
Let x\,y\ ∈ Rp be sparse, and let D denote the discrete cosine transform (DCT)
matrix. How do we estimate x\ and y\ given z := x\ + Dy\?

z
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A classical well-posed source separation problem

Problem (Spikes and sines)
Let x\,y\ ∈ Rp be sparse, and let D denote the discrete cosine transform (DCT)
matrix. How do we estimate x\ and y\ given z := x\ + Dy\?

Observation: x\ and y\ are sparse︸  ︷︷  ︸
signal structure

in different bases︸                   ︷︷                   ︸
incoherence

.

z = x\ + y\
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Other applications of the source separation problem

Problem (Signal denoising [22])
Let x\ ∈ Rp and let w\ ∈ Rp denote some unknown noise. How do we estimate x\
(and thus also w\) given b = x\ + w\?

Applications: Wireless communications with narrowband interferences, signal
processing with impulse noises, etc.

Problem (Morphological component analysis [11])
Let x\,y\ ∈ Rp be sparse, and U,V ∈ Rn×p. How do we estimate x\ and y\ given
z := Ux\ + Vy\?

Applications: Spikes and Sines, texture separation, image inpainting, etc.

Problem (Robust principal component analysis (PCA) [3])
Let X\ ∈ Rp×p be sparse and Y\ ∈ Rp×p be low-rank. How do we estimate X\ and
Y\ given Z := X\ + Y\?

Applications: Background separation in videos, face recognition, etc.
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How do we solve the spikes and sines problem?

Problem (Spikes and sines)
Let x\,y\ ∈ Rp be sparse, and let D denote the discrete cosine transform (DCT)
matrix. How do we estimate x\ and y\ given z := x\ + Dy\?

We want to find sparse estimates (x̂, ŷ) such that z = x̂ + Dŷ.

`0-“norm” approach

(x̂, ŷ) ∈ arg min
x,y∈Rp

{
‖x‖0 + ρ ‖y‖0 : z = x + Dy

}
,

with some ρ > 0 that trades the relative sparsity of x and y.

We consider the case where ρ ≡ 1 in the following few slides.

`0-“norm” approach (ρ ≡ 1)

Define A :=
[

I D
]
and û :=

[
x̂
ŷ

]
.

û ∈ arg min
u∈R2p

{
‖u‖0 : z = Au

}
.
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Uncertainty principle

Theorem (Uncertainty principle1 [9])
For any x ∈ Rp such that x , 0, ‖x‖0 + ‖Dx‖0 ≥ 2√p.

Theorem ([8, 12])
If
∥∥x\
∥∥

0
+
∥∥y\
∥∥

0
<
√p, then û is uniquely defined and û = u\, or (x̂, ŷ) = (x\,y\).

Proof.
By definition null (A) =

{
(xT , (−Dx)T )T : x ∈ Rp

}
.

Suppose we have two estimates û1 := (x̂T
1 , ŷT

1 )T and û2 := (x̂T
2 , ŷT

2 )T such that
Aû1 = Aû2 = z. Then û1 − û2 ∈ null (A) and thus x̂1 − x̂2 = −D (ŷ1 − ŷ2).

By the uncertainty principle we have either ‖û1 − û2‖0 ≥ 2√p or û1 − û2 = 0. By
definition ‖û1‖0 <

√p and ‖û2‖0 <
√p, which means that ‖û1 − û2‖0 < 2√p.

Thus we conclude û1 = û2. �

1Heisenberg’s uncertainty principle in quantum mechanics is proved by a continuous counterpart of this
uncertainty principle [24]. Indeed, Heisenberg’s uncertainty principle, unlike many physics laws, is not concluded
from experimental results but is a direct mathematical result.
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Generalization via incoherence

Consider the following generalization.

Problem
Let U,V ∈ Rp×p be two orthogonal matrices. Let x\,y\ ∈ Rp be sparse, and define
u\ := ((x\)T , (y\)T )T . How do we estimate x\ and y\ given

z :=
[

U V
]

u\ := Au\?

Can we still solve the problem by the following approach?

`0-“norm” approach

û :=
[

x̂
ŷ

]
:= arg min

u∈R2p

{
‖u‖0 : z = Au

}
.
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Incoherence and generalized uncertainty principle

Definition (Incoherence [12, 13])
Two orthogonal matrices U,V ∈ Rp×p are mutually incoherent if with some K > 0,

√p max
1≤`,k≤p

{|〈u`,vk〉|} ≤ K ,

where u`/vk denotes the `th/kth column of U/V.

Example (A maximally incoherent example)
Take U := I and V := D the DCT matrix. Then U and V are mutually incoherent
with K = 1, which achieves the lower bound of K .

Theorem (Welch bound [23])
Let A := [a1, . . . ,ap2 ] ∈ Rp1×p2 , p1 < p2, such that ‖aj‖2 = 1 for all
j ∈ {1, . . . , p2}. Then

max
i,j
|〈ai ,aj〉| ≥

√
p2 − p1

p1 (p2 − 1)
.

Observation: K ≥
√ p

p−1 .
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Incoherence and generalized uncertainty principle

Theorem (Generalized uncertainty principle [12, 13])
Let U,V ∈ Rp×p be mutually incoherent orthogonal matrices with parameter K . Let
x,y, z ∈ Rp such that z = Ux = Vy. Then

‖x‖0 + ‖y‖0 ≥
2√p

K
.

Similarly we can prove the following result.

Theorem ([12, 13])
Assume that U,V are mutually incoherent orthogonal matrices with parameter K > 0.
If
∥∥x\
∥∥

0
+
∥∥y\
∥∥

0
<
√p
K , then û is uniquely defined and û = u\, or (x̂, ŷ) = (x\,y\).
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Computational issue

Consider the general estimator of (x\,y\) given z := Ux\ + Vy\.

`0-“norm” approach

(x̂, ŷ) ∈ arg min
x,y∈Rp

{
‖x‖0 + ρ ‖y‖0 : z = Ux + Vy

}
.

with some ρ > 0 that trades the relative sparsity of x and y.

Observation: Since (x,y) 7→ Ux + Vy is a linear mapping, there exists a matrix A
such that z = Ax̃\, where x̃\ := ((x\)T , (y\)T )T . In fact A :=

[
U V

]
.

Tractability
Choosing ρ = 1, we have

ˆ̃x ∈ arg min
x̃∈R2p

{
‖x̃‖0 : z = Ax̃

}
.

Recall from Lecture 4 that this procedure is NP-hard.
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Formulation with the `1-norm
Recall the basis pursuit denoising estimator for compressed sensing.

Definition (Basis pursuit denosing)
Let x\ ∈ Rp, A ∈ Rn×p, and b := Ax\. The basis pursuit denoising estimator for x\
is given by

x̂BPDN ∈ arg min
x∈Rp

{
‖x‖1 : ‖b−Ax‖2 ≤ κ

}
.

for some κ ≥ 0.

It is natural to consider the following convex optimization analogy with κ = 0.

`1-norm approach

(x̂, ŷ) ∈ arg min
x,y∈Rp

{
‖x‖1 + ρ ‖y‖1 : z = Ux + Vy

}
with some ρ > 0.

Generalization: Define atomic sets Ax as the set of columns of U and Ay as the set
of columns of V. Let x̃\ = Ux\ and ỹ\ = Vy\. Then, we equivalently have

(ˆ̃x, ˆ̃y) ∈ arg min
x̃,ỹ∈Rp

{
‖x̃‖Ax

+ ρ ‖ỹ‖Ay
: z = x̃ + ỹ

}
with some ρ > 0.
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Atomic norms revisited

Definition (Atomic sets & atoms)
An atomic set A is a set of vectors in Rp. An atom is an element in an atomic set.

Definition (Gauge function)
Let C be a convex set in Rp, the gauge function associated with C is given by

gC(x) := inf {t : x = tc with some c ∈ C, t > 0} , ∀x ∈ Rp.

Definition (Atomic norm)
Let A be an atomic set in Rp, the atomic norm associated with A is given by

‖x‖A := gconv(A)(x), ∀x ∈ Rp,

where conv(A) denotes the convex hull of A.
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General recipe for source separation

Problem
Source separation Let Ax and Ay be two atomic sets in Rp, and let x\ ∈ Rp and
y\ ∈ Rp be simple with respect to Ax and Ay respectively. How do we estimate x\
and y\ given z := x\ + y\?

A general recipe

(x̂, ŷ) ∈ arg min
x,y∈Rp

{
‖x‖Ax

+ ρ ‖y‖Ay
: z = x + y

}
with some ρ > 0. In the sequel, we consider how to choose ρ.

Alternative formulations
Other variants are possible. For instance, consider the following constrained variant

(x̂, ŷ) ∈ arg min
x,y∈Rp

{
‖x‖Ax

: z = x + y, ‖y‖Ay
≤ κ
}
.

When κ =
∥∥y\
∥∥
Ay

, the true vectors are feasible. As compared to the regularized
version, the difficulty of choosing ρ shifts to the difficulty of choosing κ.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 06: Motivation for nonsmooth, constrained minimization

Example: Robust PCA

Problem (Robust principal component analysis (PCA) [3])
Let X ∈ Rp×p be sparse and Y ∈ Rp×p be low-rank. How do we estimate X and Y
given Z := X + Y?

Observation:
I X is simple with respect to the atomic set
AX :=

{
AX : ‖AX‖0 = 1, ‖AX‖F = 1

}
, and

I Y is simple with respect to the atomic set
AY :=

{
AY : rank(AY) = 1, ‖AY‖F = 1

}
.

Atomic norm approach

(X̂, Ŷ) ∈ arg min
X,Y∈Rp×p

{
‖X‖AX

+ ρ ‖Y‖AY

}
with some ρ > 0. Theory states that ρ = 1/√p is nearly optimal.

Recall that ‖X‖AX
= ‖vec(X)‖1 and ‖Y‖AY

= ‖Y‖S1
.
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Incoherence revisited

Problem
Let x\ ∈ Rp and y\ ∈ Rp be simple with respect to atomic sets Ax and Ay,
respectively. How to we estimate x\ and y\ given z := x\ + y\?

Example (A coherent example)
When Ax := Ay := {±e1, . . . ,±ep} , it is again impossible to recover x\ and y\
perfectly.

Example (An incoherent example)
When Ax := {±e1, . . . ,±ep} and Ay := DAx with the DCT matrix D, we obtain
the incoherent spikes and sines model.
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Random basis model

Now we introduce an orthogonal matrix, or a change of basis for one atomic set, to
model the incoherence.

Problem
Let Q ∈ Rp×p be an orthogonal matrix. Let x\ ∈ Rp and y\ ∈ Rp be simple with
respect to atomic sets Ax and Ay, respectively. How do we estimate x\ and y\ given
z := x\ + Qy\?

Example (An incoherent example)
When Ax := Ay := {±e1, . . . ,±ep} and Q := D is the DCT matrix, we obtain the
solvable spikes and sines model.

Insight: The recovery performance depends on the choice of the matrix Q.

Random basis model
Let Q ∈ Rp×p be a random orthogonal matrix. Let x\ ∈ Rp and y\ ∈ Rp be simple
with respect to atomic sets Ax and Ay, respectively. What is the probability of
perfectly recovering x\ and y\ given z := x\ + Qy\?
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Rigorous definition of the random orthogonal matrix

Definition (Orthogonal group)
A matrix Q ∈ Rp×p is orthogonal if QT Q = QQT = I.

The set of orthogonal matrices in Rp×p, called the orthogonal group, is denoted by Op.

Definition (? Haar measure on Op, cf. [19] for a rigorous definition)
A Haar measure on Op is a measure µ on the Borel subsets of Op such that for each
Borel subset E,

µ(E) = µ(QE) := µ({Qe : e ∈ E}).

Insight: The definition is an analogy of the uniform distribution for Op.

Example ([2])
Let M ∈ Rp×p be a matrix of i.i.d. standard Gaussian random variables, and let
M = UΣVT be its singular value decomposition. Then U is a random matrix drawn
from the Haar measure on Op.

Definition (Random basis)
A random basis of Rp is a random matrix drawn from the Haar measure on Op.
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Condition of perfect recovery via tangent cones
Recall the definition of a tangent cone.

Definition (Tangent cone)
Let g be a proper lower semi-continuous convex function. The tangent cone Tg (x) of
the function g at a point x\ ∈ Rp is defined as

Tg (x) := cone
{

y− x : g(y) ≤ g(x\),y ∈ Rp
}
.

�
x : g(x)  g(x\)

 

x\

Tg(x
\)

yy � x\
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Refined random basis model

Refined random basis model [18]
Let Q ∈ Rp×p be a random basis. Let x\ ∈ Rp and y\ ∈ Rp be simple with respect to
atomic sets Ax and Ay, respectively. What is the probability of perfectly recovering
x\ and y\ given z := x\ + Qy\?

Define
(x̂(ρ), ŷ(ρ)) := arg min

x,y∈Rp

{
‖x‖Ax

+ ρ ‖y‖Ay
: x + Qy = z

}
Theorem ([1, 17])
Let d

(
T‖·‖Ax

(
x\
))

and d
(
T‖·‖Ay

(
y\
))

denote the statistical dimensions2 of the

tangent cones T‖·‖Ax

(
x\
)
and T‖·‖Ay

(
y\
)
respectively. Then there exists a ρ > 0

such that (x̂(ρ), ŷ(ρ)) = (x\,y\) with probability at least 1− η if

1
p

[
d
(
T‖·‖Ax

(
x\
))

+ d
(
T‖·‖Ay

(
y\
))]

≤ 1−

√
8 log(4/η)

p
.

2To be defined later. For now, think of them as the Gaussian widths of the cones.
Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 06: Motivation for nonsmooth, constrained minimization
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(x̂(ρ), ŷ(ρ)) := arg min

x,y∈Rp

{
‖x‖Ax

+ ρ ‖y‖Ay
: x + Qy = z

}
Theorem ([1, 17])
Let d

(
T‖·‖Ax

(
x\
))

and d
(
T‖·‖Ay

(
y\
))

denote the statistical dimensions2 of the

tangent cones T‖·‖Ax

(
x\
)
and T‖·‖Ay

(
y\
)
respectively. Then there exists a ρ > 0
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An equivalent formulation

First we consider an equivalent formulation of

(x̂(ρ), ŷ(ρ)) := arg min
x,y∈Rp

{
‖x‖Ax

+ ρ ‖y‖Ay
: x + Qy = z

}
.

Proposition
Let x\,y\ ∈ Rp and Q ∈ Rp×p be given, and let z := x\ + Qy\. Define

(x̂′, ŷ′) := arg min
x∈Rp

{
‖x‖Ax

: ‖y‖Ay
≤
∥∥y\
∥∥
Ay

,x + Qy = z
}
.

Then there exists a ρ > 0 such that (x̂(ρ), ŷ(ρ)) = (x̂′, ŷ′).

Proof.
We can use similar arguments as in Lecture 4. �
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Condition of perfect recovery via tangent cones

Recall

(x̂′, ŷ′) ∈ arg min
x,y∈Rp

{
‖x‖Ax

: ‖y‖Ay
≤
∥∥y\
∥∥
Ay

, z = x + Qy
}
.

Observation 1
x\ + T‖·‖Ax

(
x\
)
includes all x such that ‖x‖Ax

≤
∥∥x\
∥∥
Ax

.

x\ + T‖·‖Ax

(
x\
)
includes all possible minimizers ignoring the constraint.

Observation 2
y\ + T‖·‖Ay

(
y\
)
includes all y ∈ Rp such that ‖y‖Ay

≤
∥∥y\
∥∥
Ay

.

x\−QT‖·‖Ay

(
y\
)
includes all x ∈ Rp such that ‖y‖Ay

≤
∥∥y\
∥∥
Ay

and z = x + Qy.

x\ −QT‖·‖Ay

(
y\
)
includes all feasible points.
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Condition of perfect recovery via tangent cones

Proposition ([1, 18])
(x̂′, ŷ′) = (x\,y\) if and only if T‖·‖Ax

(
x\
)
∩
(
−Q T‖·‖Ay

(
y\
))

= {0}.

x\ + Tk·kAx
(x\)

x\ � QTk·kAy
(y\)

x\
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Condition of perfect recovery via tangent cones

Proposition ([1, 18])
(x̂′, ŷ′) = (x\,y\) if and only if T‖·‖Ax

(
x\
)
∩
(
−Q T‖·‖Ay

(
y\
))

= {0}.

x\ + Tk·kAx
(x\)

x\ � QTk·kAy
(y\)

x\
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Condition of perfect recovery via tangent cones

Proposition ([1, 18])
(x̂′, ŷ′) = (x\,y\) if and only if T‖·‖Ax

(
x\
)
∩
(
−Q T‖·‖Ay

(
y\
))

= {0}.

x\ + Tk·kAx
(x\) x\ � QTk·kAy

(y\)

x\
9 feasible minimizer

\

x̂
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Approximate kinematic formula

Definition (Statistical dimension [1])
Let C be a convex cone in Rp. The statistical dimension of C is defined as

d (C) := E
[∥∥Πcl(C) (g)

∥∥2
2

]
,

where Πcl(C) : Rp → Rp denotes the projection operator onto cl (C).
Statistical dimension leads to interesting generalizations in the sequel.

Theorem (Approximate kinematic formula [1])
Let C1 and C2 be convex cones in Rp, and let Q be a random basis. Then

1
p

[d (C1) + d (C2)] ≤ 1−
cη
√p

⇒ P ({C1 ∩QC2 = {0}}) ≥ 1− η,

1
p

[d (C1) + d (C2)] ≥ 1 +
cη
√p

⇒ P ({C1 ∩QC2 , {0}}) ≥ 1− η,

with any η ∈ (0, 1), where cη :=
√

8 log(4/η).

Proof: This is an approximation of the kinematic formula from [15].
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Performance guarantee

Recall the definition

(x̂′, ŷ′) := arg min
x,y∈Rp

{
‖x‖Ax

: ‖y‖Ay
≤
∥∥y\
∥∥
Ay

,x + Qy = z
}
.

Theorem ([1])
Let η ∈ (0, 1). If

d
(
T‖·‖Ax

(
x\
))

+ d
(
T‖·‖Ay

(
y\
))
≤ p − cη

√p,

where cη :=
√

8 log(4/η), then (x̂′, ŷ′) = (x\,y\) with probability at least 1− η.

Proof.
Combine the condition of perfect recovery and the approximate kinematic formula.
Then apply the equivalence relation between (x̂′, ŷ′) and (x̂(ρ), ŷ(ρ)). �
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Performance guarantee

Recall the definition

(x̂(ρ), ŷ(ρ)) := arg min
x,y∈Rp

{
‖x‖Ax

+ ρ ‖y‖Ay
: x + Qy = z

}
.

Corollary
Let η ∈ (0, 1). If

d
(
T‖·‖Ax

(
x\
))

+ d
(
T‖·‖Ay

(
y\
))
≤ p − cη

√p,

where cη :=
√

8 log(4/η), then there exists ρ > 0 such that (x̂(ρ), ŷ(ρ)) = (x\,y\).

Proof.
Recall the equivalence relation between (x̂′, ŷ′) and (x̂(ρ), ŷ(ρ)). �

Successful recovery if p & d
(
T‖·‖Ax

(
x\
))

+ d
(
T‖·‖Ay

(
y\
))

.
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Properties of the statistical dimension
Recall the definition of the statistical dimension.

Definition (Statistical dimension [1])
Let C be a convex cone in Rp. The statistical dimension of C is defined as

d (C) := E
[∥∥Πcl(C) (g)

∥∥2
2

]
,

where Πcl(C) : Rp → Rp denotes the projection operator onto cl (C).

Proposition ([1, 4])
1. (Rotational invariance) Let C be a convex cone. Then d (C) = d (QC) for any

orthogonal matrix Q.
2. (Monotonicity) Let C1 ⊆ C2 be two convex cones. Then d (C1) ≤ d (C2).
3. (Subspace) For each subspace L ⊆ Rp, d (L) = dim (L).
4. (Complementarity) Let C ⊆ be a convex cone and C◦ be its polar cone. Then

d (C1) + d (C◦) = p.

Observation: Statistical dimension extends the idea of the affine dimension of vector
spaces to convex cones.
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Some examples

Example (Convex cones [1])
1. Let C :=

{
x := (x1, . . . , xp)T : xi ≥ 0 ∀i,x ∈ Rp

}
. Then d (C) = 1

2 d.

2. Let C :=
{

x := (x̃T , xp)T : ‖x̃‖2 ≤ xp, x̃ ∈ Rp−1, xp > 0
}
. Then d (C) = 1

2 d.

3. Let C :=
{

X : X � 0,X ∈ Rp×p
}
. Then d (C) = 1

4 p(p + 1).

Example (Tangent cones [1, 4])
1. Let x ∈ Rp be s-sparse, and f : x 7→ ‖x‖1. Then d

(
Tf (x)

)
≤ 2s log

( p
s

)
+ 5

4 s.

2. Let x := (x1, . . . , xp)T ∈ Rp such that
∣∣{i : |xi | = ‖x‖∞

}∣∣ ≤ s, and
f : x 7→ ‖x‖∞. Then d

(
Tf (x)

)
= p − 1

2 s.

3. Let X ∈ Rp×p of rank r , and f : X 7→ ‖X‖S1
. Then d

(
Tf (X)

)
≤ 3r(2p − r).

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 06: Motivation for nonsmooth, constrained minimization

Relation between Gaussian width and statistical dimension

An equivalent definition of the statistical dimension is given by the following.

Proposition ([1, 4])
Let C be a convex cone in Rp. The statistical dimension is given by

d (C) := E
[

sup
x∈C∩Bp

〈g,x〉2
]
,

where Bp denotes the unit `2-norm ball in Rp, and g is a vector of i.i.d. standard
Gaussian random variables.

Note that this definition is very close to the definition of the Gaussian width.

Proposition ([1])
Let C be a convex cone in Rp, and Sp be the unit `2-norm sphere. Then

[w (C ∩ Sp)]2 ≤ d (C) ≤ [w (C ∩ Sp)]2 + 1,

where w(·) denotes the Gaussian width in Lecture 4.

Insight: [w(C ∩ Sp)]2 ∼ d (C).
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Compressed sensing revisited

Recall the following compressed sensing problem, the basis pursuit denoising estimator
x̂BPDN, and the optimality condition.

Problem (Compressed sensing)
Let x\ ∈ Rp be simple with respect to an atomic set A, and let A ∈ Rn×p with
p > n. How do we estimate x\ given b := Ax\ and A?

Definition (Basis pursuit denoising estimator)

x̂BPDN ∈ arg min
x∈Rp

{
‖x‖A : b = Ax

}
.

Proposition ([5])
Define f : x 7→ ‖x‖A. Then x̂BPDN is uniquely defined and perfectly recovers x\, i.e.,
x̂BPDN = x\, if and only if

Tf
(

x\
)
∩ null (A) = {0} .
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Compressed sensing revisited

?Fact
Let A ∈ Rn×p be a random matrix of i.i.d. standard Gaussian random variables with
p > n. Let L be a (p− n)-dimensional subspace in Rp. Then null (A) is equivalent to
QL almost surely, where Q ∈ Rp denotes the random basis.

Thus the probability that Tf
(

x\
)
∩ null (A) = {0} is equal to the probability that

Tf
(

x\
)
∩QL = {0}.

Note that Tf
(

x\
)
and L are two convex cones. Thus we can apply the approximate

kinematic formula and obtain the following.

Theorem (Performance guarantee with statistical dimension [1])
Assume that A ∈ Rn×p is a matrix of i.i.d. standard Gaussian random variables with
n < p. Let η ∈ (0, 1). Then x̂BPDN = x\ with probability at least 1− η given that

n ≥ d
(
Tf
(

x\
))
− cη

√p,

where f : x 7→ ‖x‖A, and cη :=
√

8 log(4/η).
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Compressed sensing revisited

Recall the result we obtained in Lecture 2.

Theorem (Performance guarantee with Gaussian width [5])
Assume that A ∈ Rn×p is a matrix of i.i.d. standard Gaussian random variables with
n < p. Then x̂BPDN = x\ with probability at least
1− exp

{
− 1

2

[√
n − w

(
Sp ∩ Tf

(
x\
))]}

given that

n ≥ w
(
Sp ∩ Tf

(
x\
))2

+ 1,

where f : x 7→ ‖x‖A, and Sp denotes the unit `2-norm sphere.

Insight: [w(C ∩ Sp)]2 ∼ d (C).

What is the benefit of using the statistical dimension?
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Making use of the converse part

Recall the approximate kinematic formula.

Theorem (Approximate kinematic formula [1])
Let C1 and C2 be convex cones in Rp, and let Q be a random basis. Then

1
p

[d (C1) + d (C2)] ≤ 1−
cη
√p

⇒ P ({C1 ∩QC2 = {0}}) ≥ 1− η,

1
p

[d (C1) + d (C2)] ≥ 1 +
cη
√p

⇒ P ({C1 ∩QC2 , {0}}) ≥ 1− η,

with any η ∈ (0, 1), where cη :=
√

8 log(4/η).

Insight: When 1
p [d (C1) + d (C2)] ≥ 1 + cη√p , it is impossible to have

P ({C1 ∩QC1 = {0}}) arbitrarily close to 1.
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A complete result for source separation

Random basis model [18]
Let Q ∈ Rp×p be a random basis. Let x\ ∈ Rp and y\ ∈ Rp be simple with respect to
atomic sets Ax and Ay, respectively. Define z := x\ + Qy\ and

(x̂′, ŷ′) ∈ arg minx,y∈Rp

{
‖x‖Ax

: ‖y‖Ay
≤
∥∥y\
∥∥
Ay

, z = x + Qy
}
. What is the

probability of (x̂′, ŷ′) = (x\,y\)?

Theorem ([1])
Let f : x 7→ ‖x‖Ax

and g : y 7→ ‖y‖Ay
.

d
(
Tf
(

x\
))

+ d
(
Tg
(

y\
))
≤ p − cη

√p ⇒ P
({

(x̂′, ŷ′) = (x\,y\)
})
≥ 1− η,

d
(
Tf
(

x\
))

+ d
(
Tg
(

y\
))
≥ p + cη

√p ⇒ P
({

(x̂′, ŷ′) , (x\,y\)
})
≥ 1− η,

for any η ∈ (0, 1), where cη :=
√

8 log(4/η).

Successful recovery if and only if p & d
(
Tf
(

x\
))

+ d
(
Tg
(

y\
))

.

We say there is a phase transition at p ≈ d
(
Tf
(

x\
))

+ d
(
Tg
(

y\
))

.
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Numerical result

0 25 50 75 100
0

25

50

75

100
Demixing sparse + sparse

95% success
50% success
5% success
Theory

Number of nonzeros in

N
um

be
r o

f n
on

ze
ro

s 
in

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 06: Motivation for nonsmooth, constrained minimization

A complete result for compressive sensing

Problem (Compressed sensing)
Let x\ ∈ Rp be simple with respect to an atomic set A, and let A ∈ Rn×p be a matrix
of i.i.d. standard Gaussian random variables with p > n. Define b := Ax\ and
x̂BPDN ∈ arg minx∈Rp

{
‖x‖A : b = Ax

}
. What is the probability of x̂BPDN = x\?

Theorem ([1])
Let f : x 7→ ‖x‖A. Then

n ≥ d
(
Tf
(

x\
))
− cη

√p ⇒ P
({

x̂BPDN = x\
})
≥ 1− η,

n ≤ d
(
Tf
(

x\
))

+ cη
√p ⇒ P

({
x̂BPDN , x\)

})
≥ 1− η,

where cη :=
√

8 log(4/η).

Successful recovery if and only if n & d
(
Tf
(

x\
))

.

We say there is a phase transition at n ≈ d
(
Tf
(

x\
))

.
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Numerical result
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Extension to compressive multiple source separation

Problem (Compressive multiple source separation)
Let A ∈ Rn×p with n < p. Let Ai , i = 1, . . . ,N be atomic sets in Rp, and x\i ∈ Rp

be simple with respect to Ai for all i ∈ {1, . . . ,N}. Let Q1, . . . ,QN ∈ Rp×p be
independent random bases and define z := A

(
Q1x\1 + · · ·+ QN x\N

)
. What is the

probability of (x̂1, . . . , x̂N ) = (x\1, . . . ,x
\
N ) with

(x̂1, . . . , x̂N ) ∈ arg min
x1,...,xN∈Rp

{
‖x1‖A1

: ‖xi‖Ai
≤
∥∥x\i
∥∥
Ai
, i = 2, . . . ,N ,

z = A (Q1x1 + ·+ QN xN )
}

?
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Extension to compressive multiple source separation

Recall that when we have z := x\1 + x\2 ∈ R
p, (x̂1, x̂2) = (x\1,x

\
2) with high

probability if and only if

d
(
T‖·‖A1

(
x\1
))

+ d
(
T‖·‖A2

(
x\2
))
. p = dim (z) .

A reasonable guess
(x̂1, . . . , x̂N ) = (x\1, . . . ,x

\
N ) with high probability if and only if

N∑
i=1

d
(
T‖·‖Ai

(
x\i
))
. n = dim (z) .
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Optimality condition

Definition (Minkowski sum)
Let S1 and S2 be two sets. The Minkowski sum of S1 and S2 is given by

S1 + S2 := {s1 + s2 : s1 ∈ S1, s2 ∈ S2} .

Theorem ([16])
Define Ci := T‖·‖Ai

(
x\
)
, i = 1, . . . ,N , CN+1 := null (A). We have

(x̂1, . . . , x̂N ) = (x\1, . . . ,x
\
N ) if and only if

Ci ∩

(
−
∑
j,i

Cj

)
= {0}

for all i ∈ {1, . . . ,N + 1}.
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? Phase transition for compressive multiple source separation

Theorem ([16])
Define

dmax := max
i∈{1,...,N}

{
d
(
T‖·‖Ai

(
x\
))}

dtotal :=
N∑

i=1

d
(
T‖·‖Ai

(
x\
))

For any η ∈ (0, 1),

n ≥ dtotal + p
(

cη +
√

2cηdmax

)
⇒ P

(
(x̂1, . . . , x̂N ) = (x\1, . . . ,x

\
N )
)
≥ 1− η,

n ≤ dtotal − p
(

cη +
√

2cηdmax

)
⇒ P

(
(x̂1, . . . , x̂N ) , (x\1, . . . ,x

\
N )
)
≥ 1− η,

where cη := log(4p/η).

Successful recovery if and only if n & dtotal.

We say there is a phase transition at n ≈ dtotal.
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Outline

I Today
1. Source separation problem
2. Incoherence and uncertainty principle
3. Phase transition via statistical dimension
4. Phase transition via convex polytopes
5. Nonsmooth convex minimization by smoothing

I Next week
1. Constrained convex minimization
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Basic notions about convex polytopes

Definition (Convex polytope)
A convex polytope in Rn is the convex hull of a finite set of points in Rn .

By definition we find the relation between convex polytopes and unit atomic norm
balls.

Proposition
A set P ⊂ Rn is a convex polytope if and only if it is a unit atomic norm ball of a
finite atomic set in Rn .

Example
Define ei := (δ1,i , . . . , δn, i)T ∈ Rn .

Let A := {e1, . . . , en} ⊂ Rn . Then the unit atomic norm ball associated with A is a
convex polytope called the simplex.

Let A := {±e1, . . . ,±en} ⊂ Rn . The the unit atomic norm ball associated with A is
a convex polytope called the cross-polytope.
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Basic notions about convex polytopes

Definition (s-face)
An s-face of a convex polytope P is an s-dimensional face of P.

The set of all s-faces of P is denoted by Fs(P).

Example
A 0–face of a convex polytope P ⊂ Rn is a vertex of P.

An n − 1–face of a convex polytope P ⊂ Rn is a facet of P.

Example (Cross-polytope)
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Basic notions about convex polytopes

Definition (s-face)
An s-face of a convex polytope P is an s-dimensional face of P.

The set of all s-faces of P is denoted by Fs(P).

Example
A 0–face of a convex polytope P ⊂ Rn is a vertex of P.

An n − 1–face of a convex polytope P ⊂ Rn is a facet of P.

Example (Cross-polytope)
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Basic notions about convex polytopes

Definition (s-face)
An s-face of a convex polytope P is an s-dimensional face of P.

The set of all s-faces of P is denoted by Fs(P).

Example
A 0–face of a convex polytope P ⊂ Rn is a vertex of P.

An n − 1–face of a convex polytope P ⊂ Rn is a facet of P.

Example (Cross-polytope)

2-face
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Basic notions about convex polytopes

Definition (Centrally symmetric sets)
A pair (x,y) ∈ Rn × Rn is called an antipodal pair if x = −y.

A set E is centrally symmetric if for any antipodal pair (x,y) such that x ∈ E, y ∈ E.

Example (Cross-polytope)
The cross-polytope (or `1-ball) C is centrally symmetric since ∀x ∈ C, i.e., ‖x‖1 ≤ 1,
then y = −x, satisfies ‖y‖1 = ‖x‖1 ≤ 1, so y ∈ C.
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Basic notions about convex polytopes

Definition (s-neighborliness)
A centrally symmetric convex polytope P is s-neighborly if any (s + 1) vertices not
including an antipodal pair span a face of P.

Example (Cross-polytope)
The cross-polytope is 2-neighborly, since any combination of 3 vertices, not including
an antipodal pair, span a face of C.

Figure: Combination of 3 vertices, not including an antipodal pair, span a face of C
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Basic notions about convex polytopes

Definition (s-neighborliness)
A centrally symmetric convex polytope P is s-neighborly if any (s + 1) vertices not
including an antipodal pair span a face of P.

Example (Cross-polytope)
The cross-polytope is 2-neighborly, since any combination of 3 vertices, not including
an antipodal pair, span a face of C.

Figure: Combination of 3 vertices, not including an antipodal pair, span a face of C
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Basic notions about convex polytopes

Definition (s-neighborliness)
A centrally symmetric convex polytope P is s-neighborly if any (s + 1) vertices not
including an antipodal pair span a face of P.

Example (Cross-polytope)
The cross-polytope is 2-neighborly, since any combination of 3 vertices, not including
an antipodal pair, span a face of C.

Figure: Combination of 3 vertices, including an antipodal pair, does not span a face of C
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Basic notions about convex polytopes

Definition (s-neighborliness)
A centrally symmetric convex polytope P is s-neighborly if any (s + 1) vertices not
including an antipodal pair span a face of P.

Example (Cross-polytope)
The cross-polytope is 2-neighborly, since any combination of 3 vertices, not including
an antipodal pair, span a face of C.

Figure: Combination of 3 vertices, including an antipodal pair, does not span a face of C
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An equivalence relation

Consider estimating x\ ∈ Rp given A ∈ Rn×p, n < p, and b := Ax\ ∈ Rn by

x̂BPDN ∈ arg min
x∈Rp

{
‖x‖1 : b = Ax

}
.

Denote by C the cross-polytope in Rp, and define P := AC := {y : y = Ax,x ∈ C}.
Note that P is also a convex polytope.

Theorem (`0/`1 equivalence [7])
The following two statements are equivalent.
1. P has 2p vertices and is s-neighborly.
2. For every s-sparse x\ ∈ Rp, x̂BPDN is uniquely defined and x̂BPDN = x\.
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Geometric intuition behind the `0/`1 equivalence

Insight 1
A sparse vector x\ is on a k-face of the crosspolytope with k =

∥∥x\
∥∥

0
− 1.

Insight 2
Let C ⊂ Rp be the crosspolytope and A ∈ Rn×p with n < p. Define P := AC. Then
F`(AC) ⊆ AF`(C) for all `.

Some faces of C may not survive after being transformed by A.

Insight 3
Assume

∥∥x\
∥∥

1
= 1 without loss of generality. To have x̂BPDN = x\, it is necessary

that Ax\ is on a face of P := AC.

Conclusion
It is necessary that all `-faces of C, 0 ≤ ` ≤ s − 1, survive to have x̂BPDN = x\ for all
x\ being s-sparse.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 06: Motivation for nonsmooth, constrained minimization

Geometric intuition behind the `0/`1 equivalence

Recall the theorem statement.

Theorem (`0/`1 equivalence [7])
The following two statements are equivalent.
1. P has 2p vertices and is s-neighborly.
2. For every s-sparse x\ ∈ Rp, x̂BPDN is uniquely defined and x̂BPDN = x\.

The conclusion in the previous slide is in fact both necessary and sufficient.

Lemma ([7])
P := AC has 2p vertices and is s-neighborly if and only if for all 0 ≤ ` ≤ s − 1,
AF ∈ F`(AC).

Conclusion
x̂BPDN = x\ for all x\ being s-sparse, if and only if all `-faces of C, 0 ≤ ` ≤ s − 1,
survive after being transformed by A.
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Face counting

Consider the ratio
γ` :=

|F`(AC)|
|F`(C)|

.

If γ` = 1 for all 1 ≤ ` ≤ s − 1, then x̂BPDN = x\ for all s-sparse x\.

Theorem ([6, 10])
Let A ∈ Rn×p be a matrix of i.i.d. standard Gaussian random variables. Consider the
triple (n, p, s) with n = δp and s = ρn, 0 < δ, ρ < 1. Then there exists a function
ρ(δ) such that

lim
p→∞

γs =
{

1 ρ < ρ(δ),
0 ρ > ρ(δ).
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Outline

I Today
1. Source separation problem
2. Incoherence and uncertainty principle
3. General recipe for source separation
4. Phase transition via statistical dimension
5. Phase transition via convex polytopes
6. Selection of the parameter
7. Nonsmooth convex minimization by smoothing

I Next week
1. Constrained convex minimization
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Caveat Emptor

The theories presented are based on the equivalence relation between

(x̂(ρ), ŷ(ρ)) ∈ arg min
x,y∈Rp

{
‖x‖Ax

+ ρ ‖y‖Ay
: z = x + y

}
and

(x̂′, ŷ′) ∈ arg min
x,y∈Rp

{
‖x‖Ax

: ‖y‖Ay
≤
∥∥y\
∥∥
Ay

, z = x + y
}
.

Caveat Emptor
We select ρ such that (x̂(ρ), ŷ(ρ)) = (x̂′, ŷ′). That is, the selection of ρ requires the
information of y\, which is intractable.

We show a semi-practical approach for a slightly different problem setting.
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Problem setting

Corrupted compressive sensing [14]
Let Ax ⊂ Rp and Ay ⊂ Rn be two atomic sets, and x\ ∈ Rp and y\ ∈ Rn be simple
with respect to Ax and Ay respectively. Let A ∈ Rn×p, n < p, be a random matrix
with i.i.d. Gaussian random variables ∼ N (0, 1/n). Let z := Ax\ + y\ + w, where w
denotes some unknown noise.

Define the estimator

(x̂(ρ), ŷ(ρ)) ∈ arg min
x,y∈Rp

{
‖x‖Ax

+ ρ ‖y‖Ay
: ‖z− (Ax + y)‖2 ≤ κ

}
.

How good is the estimation performance of (x̂(ρ), ŷ(ρ))?
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A general bound for arbitrary ρ

Theorem (? Recovery error bound [14])
For any tx, ty > 0 such that ρ = tx/ty,√∥∥x̂(ρ)− x\

∥∥2
+
∥∥ŷ(ρ)− y\

∥∥2
≤

2κ
ε

with probability at least 1− exp
[
−(1/2)

(
an − τ − ε

√
n
)2
]
given that

an − ε
√

n > τ , where

τ := 2η
(

tx ∂
∥∥x\
∥∥
Ax

)
+ η

(
ty ∂
∥∥y\
∥∥
Ay

)
+ 3
√

2π +
1
√

2
+

1
√

2π
,

and an := E
[
‖g‖2

]
≈
√

n, g ∈ Rn ∼ N (0, I).

The function η is called the Gaussian distance, which characterizes how large a set is.

Definition (Gaussian distance [14])
Let C ⊂ Rn and g ∈ Rn ∼ N (0, I). The Gaussian distance of C is given by

η(C) :=

√
E

[
inf

x∈C
‖g− x‖2

2

]
.
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Some known upper bounds on the Gaussian distance

Example (`1-norm)
Let x ∈ Rp be s-sparse. Then η2(t ∂ ‖x‖1) ≤ 2s log(p/s) + (3/2)s when
t :=

√
2 log(p/s).

The following alternative bound is tighter when s/p is large.

Example (`1-norm)
Let x ∈ Rp be s-sparse. Then η2(t ∂ ‖x‖1) ≤ p

[
1− 2

π

(
1− s

p

)2
]
when

t :=
√

2
π

(
1− s

p

)
.

Example (Nuclear norm)
Let X ∈ Rp×p be rank-r . Then η2(t ∂ ‖X‖∗) ≤ p2

[
1−
(

4
27

)2 (
1− r

p

)3
]
when

t := 4
27 (p − r)

√
p−r
p .
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Semi-practical approach

Recall that tx and ty are only involved in the definition of τ in the recovery error
bound, which establishes a lower bound on the minimum number of samples n.

Semi-practical approach [14]
Choose ρ := tx

ty
to achieve the sharpest theoretical upper bounds on

η

(
tx ∂
∥∥x\
∥∥
Ax

)
and η

(
ty ∂
∥∥y\
∥∥
Ay

)
(cf. the previous slide).

Warning!
Some knowledge on x\ and y\ is still required. For example, s :=

∥∥x\
∥∥

0
is required

for ‖·‖Ax
being the `1-norm, and r := rank

(
X\
)
is required for ‖·‖Ax

being the
nuclear norm.
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Outline

I Today
1. Source separation problem
2. Incoherence and uncertainty principle
3. General recipe for source separation
4. Phase transition via statistical dimension
5. Phase transition via convex polytopes
6. Selection of the parameter
7. Nonsmooth convex minimization by smoothing

I Next week
1. Constrained convex minimization
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Composite convex minimization formulation

Problem (Source separation)
Let Ax and Ay be two atomic sets in Rp and x\ ∈ Rp and y\ ∈ Rp are simple with
respect to Ax and Ay respectively. Let z := x\ + y\. We consider the estimator

(x̂, ŷ) ∈ arg min
x,y∈Rp

{
‖x‖Ax

+ ρ ‖y‖Ay
: z = x + y

}
.

Equivalent composite convex minimization formulation{
x̂ ∈ arg minx∈Rp

{
‖x‖Ax

+ ρ ‖z− x‖Ay

}
ŷ := z− x̂ (trivial)

.

I If ‖·‖Ax
or ‖·‖Ay

is smooth, we can apply algorithms such as ISTA or FISTA.
I What can we do if both ‖·‖Ax

and ‖·‖Ay
are nonsmooth?
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Smoothing for nonsmooth composite convex minimization
Now we consider the general nonsmooth convex minimization problem.

Problem (Nonsmooth composite convex minimization)

F? := min
x∈Rp

{F(x) := f (x) + g(x)} (1)

where f and g are both proper, closed, convex and nonsmooth.

Smoothing approach
Approximate f by a smooth function f̃ . Then, use the following approximation

F̃∗ := min
x∈Rp

{
F̃(x) := f̃ (x) + g(x)

}
and obtain a numerical solution by the composite minimization algorithms, such as
ISTA or FISTA.

Terminology
f̃ is called a smoother of f .
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Illustration of the smoothing idea

Example: 1-dimensional function f (x) = |x| and its smoother
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Thursday, June 26, 14

Here, fγ(x) = γ log(ex/γ + e−x/γ) is a smoother of f (x) = |x|.

Example (Multidimensional case)
fγ(x) := γ

∑n
i=1 log [exp((Ax− b)i/γ) + exp(−(Ax− b)i/γ)] is a smoother of

f (x) := ‖Ax− b‖1.
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Smoothable functions

Definition (Smoothable function)
f ∈ F(Rp) is called smoothable over a convex set X if:
1. There exists (γ,DX ,L) ∈ R3

++ and fγ ∈ F1,1
L (X ) such that

fγ(x)− γDX ≤ f (x) ≤ fγ(x) + γDX , ∀x ∈ X , (2)

2. fγ is convex and its gradient is Lipschitz continuous with constant Lγ over X , i.e.:

‖∇fγ(x)−∇f (x̂)‖∗ ≤ Lγ‖x− x̂‖, x, x̂ ∈ X .
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Smoothable functions

One strategy

I Smooth f by fγ ∈ F1,1
L (Rp).

I Solve the smoothed problem

F?γ := min
x∈Rp

{Fγ(x) := fγ(x) + g(x)} . (3)

by FISTA to obtain a solution x?γ .
I Characterize how x?γ approximates a true solution x? of (1).

Then using [fast] gradient algorithms for the smoothed problem. 3

3When f ∈ F1,1
L (Rp) and g is smoothable, one can smooth g and simply apply the fast gradient method in

Lecture 3
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Example 1: `1-norm

Smoothed function fγ of the `1-norm f (x) := ‖x‖1

fγ(x) := γ

p∑
i=1

log(exi/γ + e−xi/γ).

I fγ is smooth and ∇fγ is Lipschitz continuous with Lfγ := 1/γ.
I fγ(x)− γp ln(2) ≤ f (x) ≤ fγ(x) for all x ∈ Rp.

1-dimensional function
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Example 2: Spectral norm λ1(X)

Smoothed function of the spectral norm f (X) := λ1(X)
• The spectral function f (X) := λ1(X) is the maximum eigenvalue of a symmetric
matrix X ∈ Sp×p.
• Multinomial logistic smoother fγ(X):

fγ(X) := γ ln
( p∑

i=1

eλi(X)/γ
)
.

I fγ is smooth and ∇fγ is Lipschitz continuous with Lfγ = γ−1.
I fγ(x)− γ ln(p) ≤ f (x) ≤ fγ(x) for all X ∈ Sp.

2-dimensional example
The spectral function f : S2 → R defined as

f (X) ≡ f
([

X11 X12
X12 X22

])
:=

(X11 + X22)
2

+

√
(X11 + X22)2

4
− (X11X22 −X2

12).
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Proximity functions

Definition (Proximity functions)
A µb-strongly convex and continuous function bX is called a proximity function (or
prox-function) of a convex set X if X ⊆ dom(bX ).

Example (Well-known prox-functions)

I bX (x) := 1
2‖x‖

2
2 is a prox-function of X ≡ Rp (simplest one, µb = 1).

I bX (x) := p +
∑p

i=1 xi log(xi) is a prox-function of the standard simplex

X := {x ∈ Rp
+ :

p∑
i=1

xi = 1},

where µb = 1 measured in `1-norm (entropy prox-function).
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Prox-center and prox-diameter

Definition (Prox-center and prox-diameter)

I A point xc defined as
xc := argmin

x∈X
bX (x)

is called the prox-center of X w.r.t. bX .
I The quantity

Db
X := sup

x∈X
bX (x)

is called the prox-diameter of X w.r.t. bX .

Note:
I The point xc always exists.
I Convention: bX (xc) = 0.
I If X is bounded, then 0 ≤ Db

X < +∞.
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Example

Example (Entropy function)

I The center point of the entropy prox-function bX (x) := p +
∑p

i=1 xi log(xi) is

xc := (1/p, 1/p, · · · , 1/p)T ∈ Rp.

I The prox-diameter of bX (x) := p +
∑p

i=1 xi log(xi) is

Db
X := 1− 1/p.
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Nesterov’s smoothing technique

Problem (Max-structure function)
Given A ∈ Rp×q , a convex function f ∗ ∈ F(Rq) and a nonempty, closed convex set
U ∈ Rq . Is the following function smoothable?

f (x) := max
u∈U
{uT Ax− f ∗(u)}, ∀x ∈ Rp. (4)

Definition (Nesterov’s smoother)
For f given by (4), the function:

fγ(x) := max
u∈U
{uT Ax− f ∗(u)− γbU (u)} (5)

is a smoother of f , where bU is a prox-function of U and γ > 0 is a smoothness
parameter.
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Key estimates

Proposition (Nesterov’s lemma [20])
I The function f defined by (4) is a smoothable function by fγ defined by (5).

I Parameters: (γ,Db
U ,Lfγ ), where Db

U is the prox-diameter of U and Lfγ := ‖A‖2

µb
.

I Approximate bound:

fγ(x) ≤ f (x) ≤ fγ(x) + γDb
U , ∀x ∈ R

p. (6)
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Example 1: `1-norm

Problem (`1-norm)
Is f (x) := ‖x‖1 a smoothable function? (in Nesterov’s sense).

Smoother for f

fγ(x) := max
u∈Rp

{xT u− (γ/2)‖u‖2
2 : ‖u‖∞ ≤ 1}.

I fγ is smooth and ∇fγ is Lipschitz continuous with Lfγ = γ−1.
I fγ(x) ≤ f (x) ≤ fγ(x) + γ

√
n for all x ∈ Rp.
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Example 2: Nuclear norm

Is the nuclear norm smoothable?
Problem: f (X) := ‖X‖? - the nuclear norm of matrix X ∈ Rn×p.

Prox-smoother

fγ(X) := max
U∈Rn×p

{tr(XU)− (γ/2)‖U‖2
F : σ1(U) ≤ 1}.

I fγ is smooth and ∇fγ is Lipschitz continuous with Lfγ = γ−1.
I fγ(X) ≤ f (X) ≤ fγ(X) + γ

√
mn for all X ∈ Rn×p.
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Smoothing to nonsmooth minimization

Problem (Nonsmooth composite formulation)

F? := min
x∈Rp

{F(x) := f (x) + g(x)} . (7)

Assumption A.3
f ∈ F(Rp) is smoothable and g ∈ Fprox(Rp).

Two-step strategy

1. Smooth f by fγ to obtain the smoothed problem:

F?γ := min
x∈Rp

{Fγ(x) := fγ(x) + g(x)} . (8)

2. Apply FISTA to solve the smoothed problem (8).
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Smoothing fast proximal-gradient

Smoothing fast proximal-gradient
1. Give an accuracy ε > 0. Choose x0 ∈ Rp as a starting point.
Set γ := ε

Dp
U
.

2. Set y0 := x0 and t0 := 1.
3. For k = 0, 1, · · · , perform:

xk+1 := proxλg
(

yk − λ∇fγ(yk)
)
, λ := 1/Lf ,

tk+1 := 0.5(1 +
√

4t2
k + 1),

ηk+1 := (tk − 1)/tk+1,
yk+1 := xk+1 + ηk+1(xk+1 − xk).

(9)

Complexity per iteration

I One gradient ∇fγ(yk)
I One prox-operator of g
I 8 arithmetic operations for tk+1 and ηk+1;
I 2 more vector additions and 1 scalar-vector multiplication.

The cost per iteration is almost the same as in proximal-gradient scheme.
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Global complexity

Theorem (Global complexity [20])
The worst-case complexity to reach F(xk)− F? ≤ ε is

O

(
2
√

2‖A‖2

√
Dp
UR0

√
µpε

)
, (10)

where R0 := max
x?∈S?

‖x0 − x?‖2.
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Proof of Global complexity

Sketch of proof.
By using FISTA to (8) and the convergence theorem of FISTA, we have

Fγ(xk)− Fγ(x) ≤
2Lfγ

(k + 2)2 ‖x
0 − x‖2

2, ∀x ∈ Rn .

Using (6), we have F(xk)− F(x?) ≤ Fγ(xk)− Fγ(x?) + γDp
U . Hence

F(xk)− F(x?) ≤
2‖A‖2

2
γ(k + 2)2 R2

0 + γDp
U = ε.

Minimizing the right-hand side s(γ) := 2‖A‖2
2

γ(k+2)2 R2
0 + γDp

U w.r.t. γ, we have

γ =
√

2‖A‖2R0

(k+2)
√

Dp
U

.

Using this γ and the fact s(γ) = ε, we γ = ε
Dp
U

and

k + 2 ≥ 2
√

2‖A‖2

√
Dp
UR0

√
µpε

,

which leads to (10). �
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Example: Robust PCA

Problem (RPCA problem)

F? := min
L∈Rn×p

F(L) := ‖vec(M− L)‖1︸                 ︷︷                 ︸
f (L)

+λ‖L‖∗︸   ︷︷   ︸
g(L)

 .

Strategy

I Case 1: Smooth f (L) := ‖vec(M− L)‖1 by

fγ(L) := γ
∑

i,j

log(e(Mij−Lij)/γ + e−(Mij−Lij)/γ).

I Case 2: Smooth g(L) := ‖L‖∗ by

gγ(L) := max
U

{
tr(LT U)− (γ/2)‖U‖2

F | λ1(U) ≤ 1
}
.
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A self-concordant barrier analogue of the smoothing approach

Problem (Max-structure function)
Given A ∈ Rp×q , a convex function f ∗ ∈ F(Rq) and a nonempty, closed convex set
U ∈ Rq . Is the following function smoothable?

f (x) := max
u∈U
{uT Ax− f ∗(u)}, ∀x ∈ Rp.

Definition (Nesterov’s smoother)

fγ(x) := max
u∈U
{uT Ax− f ∗(u)− γpU (u)}

is a smoother of f , where pU is a prox-function of U and γ > 0 is a smoothness
parameter.
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A self-concordant barrier analogue of the smoothing approach

Problem (Max-structure function)
Given A ∈ Rp×q , a convex function f ∗ ∈ F(Rq) and a nonempty, closed convex set
U ∈ Rq . Is the following function smoothable?

f (x) := max
u∈U
{uT Ax− f ∗(u)}, ∀x ∈ Rp.

Definition (Self-concordant barrier smoother [21])

fσ(x) := max
u∈U
{uT Ax− f ∗(u)− σbU (u)}

is a smoother of f , where bU is a self-concordant barrier of U and γ > 0 is a
smoothness parameter.
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Recall: Self-concordant barrier

Definition (Self-concordant function)
A convex function f : dom(f ) ⊂ Rn → R with an open domain is said to be
self-concordant with parameter M ≥ 0, if |φ′′′(t)| ≤ M [φ′′(t)]3/2, where
φ(t) := f (x + tv) for all t ∈ R, x ∈ dom(f ) and v such that x + tv ∈ dom(f ).

When M = 2, the function f is said to be standard self-concordant.

Definition (Self-concordant barrier)
A standard self-concordant function f is a ν-self-concordant barrier of the set dom(f )
with parameter ν > 0 if

sup
u∈Rp

{
2uT∇f (x)− u∇2f (x)u

}
≤ ν, ∀x ∈ dom(f ).

Example

I f (x) := −
∑p

i=1 ln(xi) is a p-self-concordant barrier of Rp
++.

I f (X) := − ln det(X) is a p-self-concordant barrier of Sp
++.
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Key estimates

Definition (Analytic center)
Let bU be a self-concordant barrier of a convex set U . The analytic center is defined as

uc := arg min
u∈int(U)

bU (u).

Convention: bU (uc) = 0; otherwise shift the original bU by the constant −bU (uc).

Theorem ([21])
Define fc(x) = uT

c Ax− f ∗(u). For any σ > 0, fσ is convex and

fσ(x) ≤ f (x) ≤ fσ(x) + σν

{
1 +
[

ln
( f (x)− fc(x)

σν

)]
+

}
,

where [a]+ := max {0, a}.

Observation: If f (x)− fc(x) ≤ σν exp(ρ), |f (x)− fσ(x)| ≤ (1 + ρ)σν → 0 as σ ↓ 0
with any ρ ∈ R.
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? Differentiability

Theorem ([21])
The smoother fσ is differentiable in int(dom(fσ)) and ∇fσ(x) = AT u?(x).

For any x,y ∈ int(dom(fσ)),

‖∇fσ(y)−∇fσ(x)‖2 ≤ σ
−1cA(y) [cA(y) + ‖∇fσ(y)−∇fσ(x)‖] ‖y− x‖2 ,

where

cA(y) :=
∥∥AT∇2bU (u?(x))A

∥∥1/2
2

,

u?(x) := arg max
u∈U

{
uT Ax− f ∗(u)− σbU (u)

}
.

Observation: ∇fσ is Lipschitz-like.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 06: Motivation for nonsmooth, constrained minimization

A gradient method for self-concordant barrier smoothing

Barrier smoothing with the gradient method
1. Give the smoothness parameter σ > 0 and an accuracy ε > 0.
Choose x0 ∈ Rp as a starting point.
2. For k = 0, 1, · · · , perform:
1. Calculate ∇fσ(xk) := AT u?(xk).

2. Compute rk :=
∥∥∇fσ(xk)

∥∥
2
and ck

A := cA(xk).

3. If rk ≤ ε, terminate.
4. Otherwise, update xk+1 := xk − αk∇fσ(xk), where
αk := σ

[
ck

A

(
ck

A + rk
)]−1.

Observation: The step size αk adapts to the local structure of fσ .

Theorem (cf. [21] for details)

fσ(xk)− f ?σ ≤
4cA

2
∥∥x0 − x?σ

∥∥2
2

σk
,

where x?σ := arg minx f (x), f ?σ := fσ(x?σ), and cA is any upper bound of cA(x) on
dom(fσ).
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Advantages of self-concordant barrier smoothing

Advantage 1: Faster convergence
The step size αk adapts to the local structure of the smoother, and thus the algorithm
can converge fast.

Recall: αk ≡ 1/Lfγ for Nesterov smoothing.

Advantage 2: Easier subproblems
The domain dom(bU ) is the interior of U , meaning that solving for u?(xk) is
equivalent to solving the unconstrained optimization problem

u?(xk) := arg max
u

{
uT Ax− f ∗(u)− σbU (u)

}
.

Recall: For Nesterov smoothing we have

u?(xk) := arg max
u∈U

{
uT Ax− f ∗(u)− σpU (u)

}
.
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Example: Quadratically constrained quadratic programming

Quadratically constrained quadratic programming (QCQP)
Let A ∈ Rm×n , Q ∈ Rm×m be positive semidefinite, B ∈ Rm×m be Hermitian
positive definite, and b ∈ Rm . A QCQP problem takes the following form.

g? := min
y∈Rm

{
yT Qy + bT y : yT By ≤ 1,AT y = 0

}
.

The equivalent dual form of QCQP is the following.

f ? := min
x∈Rn

{
f (x) := max

u

{
uT (Ax− b)−

1
2

uT Qu : u ∈ U
}}

,

where U :=
{

u : uT Bu ≤ 1,u ∈ Rm
}
.

Observation: When Q is singular, f is nonsmooth.

Two approaches to solve the dual form of QCQP

1. Nesterov smoothing: Choose the prox-function pU (u) := 1
2 uT Bu.

2. Barrier smoothing: Choose the self-concordant barrier
bU (u) := − ln

(
1− uT Bu

)
.
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Numerical result
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Orange: Nesterov smoothing with line search; Red: Barrier smoothing

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 06: Motivation for nonsmooth, constrained minimization

References I

[1] Dennis Amelunxen, Martin Lotz, Michael B. McCoy, and Joel A. Tropp.
Living on the edge: Phase transitions in convex programs with random data.
2014.
arXiv:1303.6672v2 [cs.IT].

[2] T. W. Anderson, I. Olkin, and L. G. Underhill.
Generation of random orthogonal matrices.
SIAM J. Sci. Stat. Comput., 8(4):625–629, 1987.

[3] Emmanuel Candès, Xiaodong Li, Yi Ma, and John Wright.
Robust principal component analysis?
J. ACM, 58(3), may 2011.

[4] Venkat Chandrasekaran and Michael I. Jordan.
Computational and statistical tradeoffs via convex relaxation.
Proc. Natl. Acad. Sci., 110(13):E1181–E1190, 2013.

[5] Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, and Alan S. Willsky.
The convex geometry of linear inverse problems.
Found. Comput. Math., 12:805–849, 2012.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 06: Motivation for nonsmooth, constrained minimization

References II

[6] David Donoho and Jared Tanner.
Observed universality of phase transitions in high-dimensional geometry, with implications for
modern data analysis and signal processing.
Phil. Trans. R. Soc. A, 367:4273–4293, 2009.

[7] David L. Donoho.
Neighborly polytopes and sparse solution of underdetermined linear equations.
Technical report, Stanford University, 2004.

[8] David L. Donoho and Xiaoming Huo.
Uncertainty principles and ideal atomic decomposition.
IEEE Trans. Inf. Theory, 47(7):2845–2862, November 2001.

[9] David L. Donoho and Philip B. Stark.
Uncertainty principles and signal recovery.
SIAM J. Appl. Math., 49(3):906–931, June 1989.

[10] David L. Donoho and Jared Tanner.
Counting faces of randomly projected polytopes when the projection radically lowers
dimension.
J. Amer. Math. Soc., 22(1):1–53, January 2009.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 06: Motivation for nonsmooth, constrained minimization

References III

[11] M. Elad, J.-L. Starck, P. Querre, and D. L. Donoho.
Simultaneous cartoon and texture image inpainting using morphological component analysis
(MCA).
Appl. Comput. Harmon. Anal., 19:340–358, 2005.

[12] Michael Elad and Alfred M. Bruckstein.
A generalized uncertainty principle and sparse representation in pairs of bases.
IEEE Trans. Inf. Theory, 48(9):2558–2567, September 2002.

[13] Simon Foucart and Holger Rauhut.
A Mathematical Introduction to Compressive Sensing.
Birkhäuser, Basel, 2013.

[14] Rina Foygel and Lester Mackey.
Corrupted sensing: Novel guarantees for separating structured signals.
2014.
arXiv:1305.2524v2 [cs.IT].

[15] Daniel A. Klain and Gian-Carlo Rota.
Introduction to Geometric Probability.
Cambridge Univ. Press, Cambridge, UK, 1997.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 06: Motivation for nonsmooth, constrained minimization

References IV
[16] Michael B. McCoy.

A geometric analysis of convex demixing.
PhD thesis, California Institute of Technology, 2013.

[17] Michael B. McCoy, Volkan Cevher, Quoc Tran-Dinh, Afsaneh Asaei, and Luca Baldassarre.
Convexity in source separation: Models, geometry, and algorithms.
IEEE Signal Process. Mag., 31(3):87–95, May 2014.

[18] Michael B. McCoy and Joel A. Tropp.
Sharp recovery bounds for convex demixing, with applications.
Found. Comput. Math., 14:503–567, 2014.

[19] Vitali D. Milman and Gideon Schechtman.
Asymptotic Theory of Finite Dimensional Normed Spaces.
Springer-Verl., second edition, 2001.

[20] Yu. Nesterov.
Smooth minimization of non-smooth functions.
Math. Program., Ser. A, 103:127–152, 2005.

[21] Tran-Dinh Quoc, Yen-Huan Li, and Volkan Cevher.
Barrier smoothing for nonsmooth convex minimization.
In 2014 IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), pages 1503–1507,
2014.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 06: Motivation for nonsmooth, constrained minimization

References V

[22] Ghristoph Studer, Patrick Kuppinger, Graeme Pope, and Helmut Bölcskei.
Recovery of sparsely corrupted signals.
IEEE Trans. Inf. Theory, 58(5):3115–3130, May 2012.

[23] L. R. Welch.
Lower bounds on the maximum cross correlation of signals.
IEEE Trans. Inf. Theory, IT-20(3):397–399, May 1974.

[24] Hermann Weyl.
The Theory of Groups and Quantum Mechanics.
Dover, 1950.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation


	Lecture 06: Motivation for nonsmooth, constrained minimization

