Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2014)

License Information for Mathematics of Data Slides

- This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.
- Share Alike
 - The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

Today

- 1. Source separation problem
- 2. Incoherence and uncertainty principle
- 3. General recipe for source separation
- 4. Phase transition via statistical dimension
- 5. Phase transition via convex polytopes
- 6. Selection of the parameter
- 7. Nonsmooth convex minimization by smoothing
- Next week
 - 1. Constrained convex minimization

Recommended reading

- D. Amelunxen *et al.*, "Living on the edge: Phase transitions in convex programs with random data," 2014, arXiv:1303.6672v2 [cs.IT].
- M.B. McCoy et al., "Convexity in source separation," IEEE Sig. Process. Mag., vol. 31, pp. 87–95, 2014.
- * *D.L. Donoho and J. Tanner, "Counting faces of randomly projected polytopes when the projection radically lowers dimension," J. Amer. Math. Soc., vol. 22, no. 1, pp. 1–53, 2009.
- Y. Nesterov, "Smooth minimization of nonsmooth functions," Math. Program., Ser. A, vol. 103, pp. 127–152, 2005.

Motivation

Motivation

This lecture illustrates how compressive sensing generalizes as a *source separation problem* in a unified framework.

It turns out that the formulation of a convex estimator for the source separation problem, in general, requires minimizing the sum of two *nonsmooth* convex functions. We derive the statistical performance guarantee of such an estimator, and show algorithms that address the composite nonsmooth convex minimization problems.

Outline

Today

- 1. Source separation problem
- 2. Incoherence and uncertainty principle
- 3. General recipe for source separation
- 4. Phase transition via statistical dimension
- 5. Phase transition via convex polytopes
- 6. Nonsmooth convex minimization by smoothing
- Next week
 - 1. Constrained convex minimization

Source separation

Problem (Source separation)

Let $x^{\natural},y^{\natural}\in \mathbb{R}^p$ be two unknown vectors. How do we estimate x^{\natural} and y^{\natural} given $z:=x^{\natural}+y^{\natural}?$

Source separation

Problem (Source separation)

Let $x^{\natural},y^{\natural}\in\mathbb{R}^{p}$ be two unknown vectors. How do we estimate x^{\natural} and y^{\natural} given $z:=x^{\natural}+y^{\natural}?$

Observation

Source separation is impossible if we do not have any additional information about \mathbf{x}^{\natural} and $\mathbf{y}^{\natural}.$

Example

Obviously, without any additional information, the equation $\mathbf{z}=\mathbf{x}^{\natural}+\mathbf{y}^{\natural}$ has infinite possible solutions for $(\mathbf{x}^{\natural},\mathbf{y}^{\natural}).$

Insights from nearly trivial examples

Example

Let $\mathbf{z} = (2, 1)^T := \mathbf{x}^{\natural} + \mathbf{y}^{\natural}$. Without additional information it is impossible to perfectly recover \mathbf{x}^{\natural} and \mathbf{y}^{\natural} .

However, suppose now we know $\mathbf{x}^{\natural} = (x^{\natural}, 0)^T$ and $\mathbf{y}^{\natural} = (0, y^{\natural})^T$, then we can perfectly recover $\mathbf{x}^{\natural} = (2, 0)^T$ and $\mathbf{y}^{\natural} = (0, 1)^T$.

Insight: To have a well-posed source separation problem, some information on the *signal structures* is needed.

Example

Suppose now that we know $\mathbf{x}^{\natural} = (2, x^{\natural})^T$ and $\mathbf{y}^{\natural} = (0, y^{\natural})^T$, then it is still impossible to perfectly recover \mathbf{x}^{\natural} and \mathbf{y}^{\natural} .

Insight: The structures must be *incoherent* in some sense.

A classical well-posed source separation problem

Problem (Spikes and sines)

Let $\mathbf{x}^{\natural}, \mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be sparse, and let \mathbf{D} denote the discrete cosine transform (DCT) matrix. How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z} := \mathbf{x}^{\natural} + \mathbf{D}\mathbf{y}^{\natural}$?

 \mathbf{z}

A classical well-posed source separation problem

Problem (Spikes and sines)

Let $\mathbf{x}^{\natural}, \mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be sparse, and let \mathbf{D} denote the discrete cosine transform (DCT) matrix. How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z} := \mathbf{x}^{\natural} + \mathbf{D}\mathbf{y}^{\natural}$?

Other applications of the source separation problem

Problem (Signal denoising [22])

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ and let $\mathbf{w}^{\natural} \in \mathbb{R}^{p}$ denote some unknown noise. How do we estimate \mathbf{x}^{\natural} (and thus also \mathbf{w}^{\natural}) given $\mathbf{b} = \mathbf{x}^{\natural} + \mathbf{w}^{\natural}$?

Applications: Wireless communications with narrowband interferences, signal processing with impulse noises, etc.

Problem (Morphological component analysis [11])

Let $\mathbf{x}^{\natural}, \mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be sparse, and $\mathbf{U}, \mathbf{V} \in \mathbb{R}^{n \times p}$. How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z} := \mathbf{U}\mathbf{x}^{\natural} + \mathbf{V}\mathbf{y}^{\natural}$?

Applications: Spikes and Sines, texture separation, image inpainting, etc.

Problem (Robust principal component analysis (PCA) [3]) Let $\mathbf{X}^{\natural} \in \mathbb{R}^{p \times p}$ be sparse and $\mathbf{Y}^{\natural} \in \mathbb{R}^{p \times p}$ be low-rank. How do we estimate \mathbf{X}^{\natural} and \mathbf{Y}^{\natural} given $\mathbf{Z} := \mathbf{X}^{\natural} + \mathbf{Y}^{\natural}$?

Applications: Background separation in videos, face recognition, etc.

Outline

Today

- 1. Source separation problem
- 2. Incoherence and uncertainty principle
- 3. General recipe for source separation
- 4. Phase transition via statistical dimension
- 5. Phase transition via convex polytopes
- 6. Nonsmooth convex minimization by smoothing
- Next week
 - 1. Constrained convex minimization

How do we solve the spikes and sines problem?

Problem (Spikes and sines)

Let $\mathbf{x}^{\natural}, \mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be sparse, and let \mathbf{D} denote the discrete cosine transform (DCT) matrix. How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z} := \mathbf{x}^{\natural} + \mathbf{D}\mathbf{y}^{\natural}$?

We want to find sparse estimates $(\hat{\mathbf{x}}, \hat{\mathbf{y}})$ such that $\mathbf{z} = \hat{\mathbf{x}} + \mathbf{D}\hat{\mathbf{y}}$.

 ℓ_0 -"norm" approach

$$(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \arg\min_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}} \left\{ \left\| \mathbf{x} \right\|_{0} + \rho \left\| \mathbf{y} \right\|_{0} : \mathbf{z} = \mathbf{x} + \mathbf{D}\mathbf{y} \right\},\$$

with some $\rho > 0$ that trades the relative sparsity of x and y.

We consider the case where $\rho \equiv 1$ in the following few slides.

$$\begin{split} \ell_0\text{-"norm" approach } \left(\rho \equiv 1\right) \\ \text{Define } \mathbf{A} := \begin{bmatrix} \mathbf{I} & \mathbf{D} \end{bmatrix} \text{ and } \hat{\mathbf{u}} := \begin{bmatrix} \hat{\mathbf{x}} \\ \hat{\mathbf{y}} \end{bmatrix}. \\ \\ \hat{\mathbf{u}} \in \arg\min_{\mathbf{u} \in \mathbb{R}^{2p}} \left\{ \|\mathbf{u}\|_0 : \mathbf{z} = \mathbf{A}\mathbf{u} \right\}. \end{split}$$

Uncertainty principle

Theorem (Uncertainty principle¹ [9]) For any $\mathbf{x} \in \mathbb{R}^p$ such that $\mathbf{x} \neq \mathbf{0}$, $\|\mathbf{x}\|_0 + \|\mathbf{Dx}\|_0 \ge 2\sqrt{p}$.

 $\begin{array}{l} \mbox{Theorem ([8, 12])} \\ \mbox{If } \left\| \mathbf{x}^{\natural} \right\|_{0} + \left\| \mathbf{y}^{\natural} \right\|_{0} < \sqrt{p}, \mbox{ then } \hat{\mathbf{u}} \mbox{ is uniquely defined and } \hat{\mathbf{u}} = \mathbf{u}^{\natural}, \mbox{ or } (\hat{\mathbf{x}}, \hat{\mathbf{y}}) = (\mathbf{x}^{\natural}, \mathbf{y}^{\natural}). \end{array}$

Proof.

By definition null $(\mathbf{A}) = \left\{ (\mathbf{x}^T, (-\mathbf{D}\mathbf{x})^T)^T : \mathbf{x} \in \mathbb{R}^p \right\}.$

Suppose we have two estimates $\hat{\mathbf{u}}_1 := (\hat{\mathbf{x}}_1^T, \hat{\mathbf{y}}_1^T)^T$ and $\hat{\mathbf{u}}_2 := (\hat{\mathbf{x}}_2^T, \hat{\mathbf{y}}_2^T)^T$ such that $A\hat{\mathbf{u}}_1 = A\hat{\mathbf{u}}_2 = \mathbf{z}$. Then $\hat{\mathbf{u}}_1 - \hat{\mathbf{u}}_2 \in \operatorname{null}(A)$ and thus $\hat{\mathbf{x}}_1 - \hat{\mathbf{x}}_2 = -D(\hat{\mathbf{y}}_1 - \hat{\mathbf{y}}_2)$.

By the uncertainty principle we have either $\|\hat{\mathbf{u}}_1 - \hat{\mathbf{u}}_2\|_0 \ge 2\sqrt{p}$ or $\hat{\mathbf{u}}_1 - \hat{\mathbf{u}}_2 = \mathbf{0}$. By definition $\|\hat{\mathbf{u}}_1\|_0 < \sqrt{p}$ and $\|\hat{\mathbf{u}}_2\|_0 < \sqrt{p}$, which means that $\|\hat{\mathbf{u}}_1 - \hat{\mathbf{u}}_2\|_0 < 2\sqrt{p}$. Thus we conclude $\hat{\mathbf{u}}_1 = \hat{\mathbf{u}}_2$.

¹Heisenberg's uncertainty principle in quantum mechanics is proved by a continuous counterpart of this uncertainty principle [24]. Indeed, Heisenberg's uncertainty principle, unlike many physics laws, is not concluded from experimental results but is a direct mathematical result.

Generalization via incoherence

Consider the following generalization.

Problem

Let $\mathbf{U},\mathbf{V}\in\mathbb{R}^{p\times p}$ be two orthogonal matrices. Let $\mathbf{x}^{\natural},\mathbf{y}^{\natural}\in\mathbb{R}^{p}$ be sparse, and define $\mathbf{u}^{\natural}:=((\mathbf{x}^{\natural})^{T},(\mathbf{y}^{\natural})^{T})^{T}.$ How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given

$$\mathbf{z} := \begin{bmatrix} \mathbf{U} & \mathbf{V} \end{bmatrix} \mathbf{u}^{\natural} := \mathbf{A} \mathbf{u}^{\natural}?$$

Can we still solve the problem by the following approach?

ℓ_0 -"norm" approach

$$\hat{\mathbf{u}} := \begin{bmatrix} \hat{\mathbf{x}} \\ \hat{\mathbf{y}} \end{bmatrix} := \arg\min_{\mathbf{u} \in \mathbb{R}^{2p}} \left\{ \|\mathbf{u}\|_0 : \mathbf{z} = \mathbf{A}\mathbf{u} \right\}.$$

Incoherence and generalized uncertainty principle

Definition (Incoherence [12, 13])

Two orthogonal matrices $\mathbf{U}, \mathbf{V} \in \mathbb{R}^{p \times p}$ are mutually incoherent if with some K > 0,

$$\sqrt{p} \max_{1 \le \ell, k \le p} \{ |\langle \mathbf{u}_{\ell}, \mathbf{v}_{k} \rangle | \} \le K,$$

where $\mathbf{u}_{\ell}/\mathbf{v}_k$ denotes the $\ell th/k$ th column of \mathbf{U}/\mathbf{V} .

Example (A maximally incoherent example)

Take U := I and V := D the DCT matrix. Then U and V are mutually incoherent with K = 1, which achieves the lower bound of K.

Theorem (Welch bound [23]) Let $\mathbf{A} := [\mathbf{a}_1, \dots, \mathbf{a}_{p_2}] \in \mathbb{R}^{p_1 \times p_2}$, $p_1 < p_2$, such that $\|\mathbf{a}_j\|_2 = 1$ for all $j \in \{1, \dots, p_2\}$. Then $\max_{i,j} |\langle \mathbf{a}_i, \mathbf{a}_j \rangle| \ge \sqrt{\frac{p_2 - p_1}{p_1 (p_2 - 1)}}.$

Observation: $K \ge \sqrt{\frac{p}{p-1}}$.

Incoherence and generalized uncertainty principle

Theorem (Generalized uncertainty principle [12, 13])

Let $\mathbf{U}, \mathbf{V} \in \mathbb{R}^{p \times p}$ be mutually incoherent orthogonal matrices with parameter K. Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^p$ such that $\mathbf{z} = \mathbf{U}\mathbf{x} = \mathbf{V}\mathbf{y}$. Then

$$\|\mathbf{x}\|_0 + \|\mathbf{y}\|_0 \ge \frac{2\sqrt{p}}{K}.$$

Similarly we can prove the following result.

Theorem ([12, 13])

Assume that \mathbf{U}, \mathbf{V} are mutually incoherent orthogonal matrices with parameter K > 0. If $\left\|\mathbf{x}^{\natural}\right\|_{0} + \left\|\mathbf{y}^{\natural}\right\|_{0} < \frac{\sqrt{p}}{K}$, then $\hat{\mathbf{u}}$ is uniquely defined and $\hat{\mathbf{u}} = \mathbf{u}^{\natural}$, or $(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = (\mathbf{x}^{\natural}, \mathbf{y}^{\natural})$.

Outline

Today

- 1. Source separation problem
- 2. Incoherence and uncertainty principle
- 3. General recipe for source separation
- 4. Phase transition via statistical dimension
- 5. Phase transition via convex polytopes
- 6. Nonsmooth convex minimization by smoothing
- Next week
 - 1. Constrained convex minimization

Computational issue

 $\label{eq:consider} \text{Consider the general estimator of } (\mathbf{x}^{\natural}, \mathbf{y}^{\natural}) \text{ given } \mathbf{z} := \mathbf{U} \mathbf{x}^{\natural} + \mathbf{V} \mathbf{y}^{\natural}.$

 ℓ_0 -"norm" approach

$$(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \arg\min_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_0 + \rho \, \|\mathbf{y}\|_0 : \mathbf{z} = \mathbf{U}\mathbf{x} + \mathbf{V}\mathbf{y} \right\}.$$

with some $\rho > 0$ that trades the relative sparsity of x and y.

Observation: Since $(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{U}\mathbf{x} + \mathbf{V}\mathbf{y}$ is a linear mapping, there exists a matrix \mathbf{A} such that $\mathbf{z} = \mathbf{A}\tilde{\mathbf{x}}^{\natural}$, where $\tilde{\mathbf{x}}^{\natural} := ((\mathbf{x}^{\natural})^T, (\mathbf{y}^{\natural})^T)^T$. In fact $\mathbf{A} := \begin{bmatrix} \mathbf{U} & \mathbf{V} \end{bmatrix}$.

Tractability

Choosing $\rho = 1$, we have

$$\hat{\tilde{\mathbf{x}}} \in \arg\min_{\tilde{\mathbf{x}} \in \mathbb{R}^{2p}} \left\{ \left\| \tilde{\mathbf{x}} \right\|_0 : \mathbf{z} = \mathbf{A} \tilde{\mathbf{x}} \right\}.$$

Recall from Lecture 4 that this procedure is NP-hard.

Formulation with the ℓ_1 -norm

Recall the basis pursuit denoising estimator for compressed sensing.

Definition (Basis pursuit denosing)

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$, $\mathbf{A} \in \mathbb{R}^{n \times p}$, and $\mathbf{b} := \mathbf{A}\mathbf{x}^{\natural}$. The basis pursuit denoising estimator for \mathbf{x}^{\natural} is given by

$$\hat{\mathbf{x}}_{\mathsf{BPDN}} \in \arg\min_{\mathbf{x}\in\mathbb{R}^p} \left\{ \|\mathbf{x}\|_1 : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 \le \kappa \right\}.$$

for some $\kappa \geq 0$.

It is natural to consider the following *convex optimization* analogy with $\kappa = 0$.

 ℓ_1 -norm approach

$$(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \arg\min_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_1 + \rho \, \|\mathbf{y}\|_1 : \mathbf{z} = \mathbf{U}\mathbf{x} + \mathbf{V}\mathbf{y} \right\}$$

with some $\rho > 0$.

Generalization: Define atomic sets $\mathcal{A}_{\mathbf{x}}$ as the set of columns of \mathbf{U} and $\mathcal{A}_{\mathbf{y}}$ as the set of columns of \mathbf{V} . Let $\tilde{\mathbf{x}}^{\natural} = \mathbf{U}\mathbf{x}^{\natural}$ and $\tilde{\mathbf{y}}^{\natural} = \mathbf{V}\mathbf{y}^{\natural}$. Then, we equivalently have

$$(\hat{\tilde{\mathbf{x}}}, \hat{\tilde{\mathbf{y}}}) \in \arg\min_{\tilde{\mathbf{x}}, \tilde{\mathbf{y}} \in \mathbb{R}^p} \left\{ \left\| \tilde{\mathbf{x}} \right\|_{\mathcal{A}_{\mathbf{x}}} + \rho \left\| \tilde{\mathbf{y}} \right\|_{\mathcal{A}_{\mathbf{y}}} : \mathbf{z} = \tilde{\mathbf{x}} + \tilde{\mathbf{y}} \right\}$$

with some $\rho > 0$.

Atomic norms revisited

Definition (Atomic sets & atoms)

An *atomic set* A is a set of vectors in \mathbb{R}^p . An *atom* is an element in an atomic set.

Definition (Gauge function)

Let C be a convex set in \mathbb{R}^p , the gauge function associated with C is given by

 $g_{\mathcal{C}}(\mathbf{x}) := \inf \left\{ t : \mathbf{x} = t\mathbf{c} \text{ with some } \mathbf{c} \in \mathcal{C}, t > 0 \right\}, \quad \forall \mathbf{x} \in \mathbb{R}^p.$

Definition (Atomic norm)

Let \mathcal{A} be an *atomic set* in \mathbb{R}^p , the **atomic norm** associated with \mathcal{A} is given by

$$\|\mathbf{x}\|_{\mathcal{A}} := g_{\operatorname{conv}(\mathcal{A})}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^p,$$

where $\operatorname{conv}(\mathcal{A})$ denotes the *convex hull* of \mathcal{A} .

General recipe for source separation

Problem

Source separation Let $\mathcal{A}_{\mathbf{x}}$ and $\mathcal{A}_{\mathbf{y}}$ be two atomic sets in \mathbb{R}^p , and let $\mathbf{x}^{\natural} \in \mathbb{R}^p$ and $\mathbf{y}^{\natural} \in \mathbb{R}^p$ be simple with respect to $\mathcal{A}_{\mathbf{x}}$ and $\mathcal{A}_{\mathbf{y}}$ respectively. How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z} := \mathbf{x}^{\natural} + \mathbf{y}^{\natural}$?

A general recipe

$$(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \arg\min_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^p} \left\{ \left\| \mathbf{x} \right\|_{\mathcal{A}_{\mathbf{x}}} + \rho \left\| \mathbf{y} \right\|_{\mathcal{A}_{\mathbf{y}}} : \mathbf{z} = \mathbf{x} + \mathbf{y} \right\}$$

with some $\rho > 0$. In the sequel, we consider how to choose ρ .

Alternative formulations

Other variants are possible. For instance, consider the following constrained variant

$$(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \arg\min_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_{\mathcal{A}_{\mathbf{x}}} : \mathbf{z} = \mathbf{x} + \mathbf{y}, \|\mathbf{y}\|_{\mathcal{A}_{\mathbf{y}}} \leq \kappa \right\}.$$

When $\kappa = \left\| \mathbf{y}^{\natural} \right\|_{\mathcal{A}_{\mathbf{y}}}$, the true vectors are feasible. As compared to the regularized version, the difficulty of choosing ρ shifts to the difficulty of choosing κ .

Example: Robust PCA

Problem (Robust principal component analysis (PCA) [3])

Let $X \in \mathbb{R}^{p \times p}$ be sparse and $Y \in \mathbb{R}^{p \times p}$ be low-rank. How do we estimate X and Y given Z := X + Y?

Observation:

- $\begin{array}{l} \bullet \ \mathbf{X} \text{ is simple with respect to the atomic set} \\ \mathcal{A}_{\mathbf{X}} := \left\{ \mathbf{A}_{\mathbf{X}} : \left\| \mathbf{A}_{\mathbf{X}} \right\|_{0} = 1, \left\| \mathbf{A}_{\mathbf{X}} \right\|_{F} = 1 \right\}, \text{ and} \end{array}$
- ► Y is *simple* with respect to the atomic set $\mathcal{A}_{\mathbf{Y}} := \left\{ \mathbf{A}_{\mathbf{Y}} : \operatorname{rank}(\mathbf{A}_{\mathbf{Y}}) = 1, \|\mathbf{A}_{\mathbf{Y}}\|_{F} = 1 \right\}.$

Atomic norm approach

$$(\hat{\mathbf{X}}, \hat{\mathbf{Y}}) \in \arg\min_{\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{p \times p}} \left\{ \|\mathbf{X}\|_{\mathcal{A}_{\mathbf{X}}} + \rho \, \|\mathbf{Y}\|_{\mathcal{A}_{\mathbf{Y}}} \right\}$$

with some $\rho > 0$. Theory states that $\rho = 1/\sqrt{p}$ is nearly optimal.

 $\text{Recall that } \left\|\mathbf{X}\right\|_{\mathcal{A}_{\mathbf{X}}} = \left\|\operatorname{vec}(\mathbf{X})\right\|_1 \text{ and } \left\|\mathbf{Y}\right\|_{\mathcal{A}_{\mathbf{Y}}} = \left\|\mathbf{Y}\right\|_{S_1}.$

Outline

Today

- 1. Source separation problem
- 2. Incoherence and uncertainty principle
- 3. General recipe for source separation
- 4. Phase transition via statistical dimension
- 5. Phase transition via convex polytopes
- 6. Nonsmooth convex minimization by smoothing
- Next week
 - 1. Constrained convex minimization

Incoherence revisited

Problem

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ and $\mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be simple with respect to atomic sets $\mathcal{A}_{\mathbf{x}}$ and $\mathcal{A}_{\mathbf{y}}$, respectively. How to we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z} := \mathbf{x}^{\natural} + \mathbf{y}^{\natural}$?

Example (A coherent example)

When $\mathcal{A}_{\mathbf{x}} := \mathcal{A}_{\mathbf{y}} := \{\pm \mathbf{e}_1, \dots, \pm \mathbf{e}_p\}$, it is again impossible to recover \mathbf{x}^{\natural} and \mathbf{y}^{\natural} perfectly.

Example (An incoherent example)

When $\mathcal{A}_{\mathbf{x}} := \{\pm \mathbf{e}_1, \dots, \pm \mathbf{e}_p\}$ and $\mathcal{A}_{\mathbf{y}} := \mathbf{D}\mathcal{A}_{\mathbf{x}}$ with the DCT matrix \mathbf{D} , we obtain the incoherent spikes and sines model.

Random basis model

Now we introduce an orthogonal matrix, or a *change of basis* for one atomic set, to model the incoherence.

Problem

Let $\mathbf{Q} \in \mathbb{R}^{p \times p}$ be an orthogonal matrix. Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ and $\mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be simple with respect to atomic sets $\mathcal{A}_{\mathbf{x}}$ and $\mathcal{A}_{\mathbf{y}}$, respectively. How do we estimate \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z} := \mathbf{x}^{\natural} + \mathbf{Q}\mathbf{y}^{\natural}$?

Example (An incoherent example)

When $A_x := A_y := \{\pm e_1, \dots, \pm e_p\}$ and Q := D is the DCT matrix, we obtain the solvable spikes and sines model.

Insight: The recovery performance depends on the choice of the matrix ${\bf Q}.$

Random basis model

Let $\mathbf{Q} \in \mathbb{R}^{p \times p}$ be a random orthogonal matrix. Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ and $\mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be simple with respect to atomic sets $\mathcal{A}_{\mathbf{x}}$ and $\mathcal{A}_{\mathbf{y}}$, respectively. What is the probability of perfectly recovering \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z} := \mathbf{x}^{\natural} + \mathbf{Q}\mathbf{y}^{\natural}$?

Rigorous definition of the *random orthogonal matrix*

Definition (Orthogonal group)

A matrix $\mathbf{Q} \in \mathbb{R}^{p \times p}$ is orthogonal if $\mathbf{Q}^T \mathbf{Q} = \mathbf{Q} \mathbf{Q}^T = \mathbf{I}$.

The set of orthogonal matrices in $\mathbb{R}^{p \times p}$, called the orthogonal group, is denoted by \mathcal{O}_p .

Definition (* Haar measure on \mathcal{O}_p , cf. [19] for a rigorous definition)

A Haar measure on \mathcal{O}_p is a measure μ on the Borel subsets of \mathcal{O}_p such that for each Borel subset $\mathcal{E},$

$$\mu(\mathcal{E}) = \mu(\mathbf{Q}\mathcal{E}) := \mu(\{\mathbf{Q}e : e \in \mathcal{E}\}).$$

Insight: The definition is an analogy of the *uniform distribution* for \mathcal{O}_p .

Example ([2])

Let $\mathbf{M} \in \mathbb{R}^{p \times p}$ be a matrix of i.i.d. standard Gaussian random variables, and let $\mathbf{M} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ be its singular value decomposition. Then \mathbf{U} is a random matrix drawn from the Haar measure on \mathcal{O}_p .

Definition (Random basis)

A random basis of \mathbb{R}^p is a random matrix drawn from the Haar measure on \mathcal{O}_p .

Recall the definition of a tangent cone.

Definition (Tangent cone)

Let g be a proper lower semi-continuous convex function. The tangent cone $\mathcal{T}_{g}(\mathbf{x})$ of the function g at a point $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ is defined as

$$\mathcal{T}_{g}\left(\mathbf{x}\right) := \operatorname{cone}\left\{\mathbf{y} - \mathbf{x} : g(\mathbf{y}) \leq g(\mathbf{x}^{\natural}), \mathbf{y} \in \mathbb{R}^{p}\right\}.$$

Refined random basis model

Refined random basis model [18]

Let $\mathbf{Q} \in \mathbb{R}^{p \times p}$ be a *random basis*. Let $\mathbf{x}^{\natural} \in \mathbb{R}^p$ and $\mathbf{y}^{\natural} \in \mathbb{R}^p$ be simple with respect to atomic sets $\mathcal{A}_{\mathbf{x}}$ and $\mathcal{A}_{\mathbf{y}}$, respectively. What is the probability of perfectly recovering \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z} := \mathbf{x}^{\natural} + \mathbf{Q}\mathbf{y}^{\natural}$?

²To be defined later. For now, think of them as the Gaussian widths of the cones.

Refined random basis model

Refined random basis model [18]

Let $\mathbf{Q} \in \mathbb{R}^{p \times p}$ be a *random basis*. Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ and $\mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be simple with respect to atomic sets $\mathcal{A}_{\mathbf{x}}$ and $\mathcal{A}_{\mathbf{y}}$, respectively. What is the probability of perfectly recovering \mathbf{x}^{\natural} and \mathbf{y}^{\natural} given $\mathbf{z} := \mathbf{x}^{\natural} + \mathbf{Q}\mathbf{y}^{\natural}$?

Define

$$(\hat{\mathbf{x}}(\rho), \hat{\mathbf{y}}(\rho)) := \arg \min_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_{\mathcal{A}_{\mathbf{x}}} + \rho \, \|\mathbf{y}\|_{\mathcal{A}_{\mathbf{y}}} : \mathbf{x} + \mathbf{Q}\mathbf{y} = \mathbf{z} \right\}$$

Theorem ([1, 17]) Let $d\left(\mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{X}}}}\left(\mathbf{x}^{\natural}\right)\right)$ and $d\left(\mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{Y}}}}\left(\mathbf{y}^{\natural}\right)\right)$ denote the statistical dimensions² of the tangent cones $\mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{X}}}}\left(\mathbf{x}^{\natural}\right)$ and $\mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{Y}}}}\left(\mathbf{y}^{\natural}\right)$ respectively. Then there exists a $\rho > 0$ such that $(\hat{\mathbf{x}}(\rho), \hat{\mathbf{y}}(\rho)) = (\mathbf{x}^{\natural}, \mathbf{y}^{\natural})$ with probability at least $1 - \eta$ if $\frac{1}{n} \left[d\left(\mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{X}}}}\left(\mathbf{x}^{\natural}\right)\right) + d\left(\mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{Y}}}}\left(\mathbf{y}^{\natural}\right)\right) \right] \leq 1 - \sqrt{\frac{8\log(4/\eta)}{n}}.$

²To be defined later. For now, think of them as the Gaussian widths of the cones.

An equivalent formulation

First we consider an equivalent formulation of

$$\left(\hat{\mathbf{x}}(\rho), \hat{\mathbf{y}}(\rho)\right) := \arg\min_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^p} \left\{ \left\|\mathbf{x}\right\|_{\mathcal{A}_{\mathbf{x}}} + \rho \left\|\mathbf{y}\right\|_{\mathcal{A}_{\mathbf{y}}} : \mathbf{x} + \mathbf{Q}\mathbf{y} = \mathbf{z} \right\}.$$

Proposition

Let $\mathbf{x}^{\natural}, \mathbf{y}^{\natural} \in \mathbb{R}^{p}$ and $\mathbf{Q} \in \mathbb{R}^{p \times p}$ be given, and let $\mathbf{z} := \mathbf{x}^{\natural} + \mathbf{Q}\mathbf{y}^{\natural}$. Define

$$(\hat{\mathbf{x}}', \hat{\mathbf{y}}') := \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_{\mathcal{A}_{\mathbf{x}}} : \|\mathbf{y}\|_{\mathcal{A}_{\mathbf{y}}} \leq \left\|\mathbf{y}^{\natural}\right\|_{\mathcal{A}_{\mathbf{y}}}, \mathbf{x} + \mathbf{Q}\mathbf{y} = \mathbf{z} \right\}.$$

Then there exists a $\rho > 0$ such that $(\hat{\mathbf{x}}(\rho), \hat{\mathbf{y}}(\rho)) = (\hat{\mathbf{x}}', \hat{\mathbf{y}}')$.

Proof.

We can use similar arguments as in Lecture 4.

Recall

$$(\hat{\mathbf{x}}', \hat{\mathbf{y}}') \in \arg\min_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_{\mathcal{A}_{\mathbf{x}}} : \|\mathbf{y}\|_{\mathcal{A}_{\mathbf{y}}} \leq \left\| \mathbf{y}^{\sharp} \right\|_{\mathcal{A}_{\mathbf{y}}}, \mathbf{z} = \mathbf{x} + \mathbf{Q}\mathbf{y} \right\}.$$

$$\begin{array}{l} & \text{Observation 1} \\ \mathbf{x}^{\natural} + \mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{x}}}}\left(\mathbf{x}^{\natural}\right) \text{ includes all } \mathbf{x} \text{ such that } \|\mathbf{x}\|_{\mathcal{A}_{\mathbf{x}}} \leq \left\|\mathbf{x}^{\natural}\right\|_{\mathcal{A}_{\mathbf{x}}}. \\ & \mathbf{x}^{\natural} + \mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{x}}}}\left(\mathbf{x}^{\natural}\right) \text{ includes all possible minimizers ignoring the constraint.} \end{array}$$

 $\begin{array}{l} & \text{Observation 2} \\ & \mathbf{y}^{\natural} + \mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{y}}}}\left(\mathbf{y}^{\natural}\right) \text{ includes all } \mathbf{y} \in \mathbb{R}^{p} \text{ such that } \|\mathbf{y}\|_{\mathcal{A}_{\mathbf{y}}} \leq \left\|\mathbf{y}^{\natural}\right\|_{\mathcal{A}_{\mathbf{y}}} \cdot \\ & \mathbf{x}^{\natural} - \mathbf{Q}\mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{y}}}}\left(\mathbf{y}^{\natural}\right) \text{ includes all } \mathbf{x} \in \mathbb{R}^{p} \text{ such that } \|\mathbf{y}\|_{\mathcal{A}_{\mathbf{y}}} \leq \left\|\mathbf{y}^{\natural}\right\|_{\mathcal{A}_{\mathbf{y}}} \text{ and } \mathbf{z} = \mathbf{x} + \mathbf{Q}\mathbf{y}. \\ & \mathbf{x}^{\natural} - \mathbf{Q}\mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{y}}}}\left(\mathbf{y}^{\natural}\right) \text{ includes all feasible points.} \end{array}$

Proposition ([1, 18])

$$(\hat{\mathbf{x}}',\hat{\mathbf{y}}') = (\mathbf{x}^{\natural},\mathbf{y}^{\natural}) \text{ if and only if } \mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{x}}}}\left(\mathbf{x}^{\natural}\right) \cap \left(-\mathbf{Q}\,\mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{y}}}}\left(\mathbf{y}^{\natural}\right)\right) = \{\mathbf{0}\}.$$

$$\begin{split} & \text{Proposition} \left(\begin{bmatrix} 1, \ 18 \end{bmatrix} \right) \\ & (\hat{\mathbf{x}}', \hat{\mathbf{y}}') = (\mathbf{x}^{\natural}, \mathbf{y}^{\natural}) \text{ if and only if } \mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{x}}}} \left(\mathbf{x}^{\natural} \right) \cap \left(-\mathbf{Q} \, \mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{y}}}} \left(\mathbf{y}^{\natural} \right) \right) = \{ \mathbf{0} \}. \end{split}$$

 $\begin{array}{l} \mbox{Proposition ([1, 18])} \\ (\hat{\mathbf{x}}', \hat{\mathbf{y}}') = (\mathbf{x}^{\natural}, \mathbf{y}^{\natural}) \mbox{ if and only if } \mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{x}}}} \left(\mathbf{x}^{\natural}\right) \cap \left(-\mathbf{Q} \ \mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{y}}}} \left(\mathbf{y}^{\natural}\right)\right) = \{\mathbf{0}\}. \end{array}$

Approximate kinematic formula

Definition (Statistical dimension [1])

Let ${\mathcal C}$ be a convex cone in ${\mathbb R}^p.$ The statistical dimension of ${\mathcal C}$ is defined as

$$d(\mathcal{C}) := \mathbb{E}\left[\left\|\Pi_{\mathrm{cl}(\mathcal{C})}(\mathbf{g})\right\|_{2}^{2}\right],$$

where $\Pi_{cl(\mathcal{C})} : \mathbb{R}^p \to \mathbb{R}^p$ denotes the projection operator onto $cl(\mathcal{C})$. Statistical dimension leads to interesting generalizations in the sequel.

Theorem (Approximate kinematic formula [1]) Let C_1 and C_2 be convex cones in \mathbb{R}^p , and let \mathbf{Q} be a random basis. Then

$$\frac{1}{p} \left[d\left(\mathcal{C}_{1}\right) + d\left(\mathcal{C}_{2}\right) \right] \leq 1 - \frac{c_{\eta}}{\sqrt{p}} \quad \Rightarrow \quad \mathbb{P}\left(\left\{ \mathcal{C}_{1} \cap \mathbf{Q}\mathcal{C}_{2} = \left\{ \mathbf{0} \right\} \right\} \right) \geq 1 - \eta,$$
$$\frac{1}{p} \left[d\left(\mathcal{C}_{1}\right) + d\left(\mathcal{C}_{2}\right) \right] \geq 1 + \frac{c_{\eta}}{\sqrt{p}} \quad \Rightarrow \quad \mathbb{P}\left(\left\{ \mathcal{C}_{1} \cap \mathbf{Q}\mathcal{C}_{2} \neq \left\{ \mathbf{0} \right\} \right\} \right) \geq 1 - \eta,$$

with any $\eta \in (0,1)$, where $c_{\eta} := \sqrt{8 \log(4/\eta)}$.

Proof: This is an approximation of the kinematic formula from [15].

Performance guarantee

Recall the definition

$$(\hat{\mathbf{x}}', \hat{\mathbf{y}}') := \arg\min_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_{\mathcal{A}_{\mathbf{x}}} : \|\mathbf{y}\|_{\mathcal{A}_{\mathbf{y}}} \le \left\|\mathbf{y}^{\natural}\right\|_{\mathcal{A}_{\mathbf{y}}}, \mathbf{x} + \mathbf{Q}\mathbf{y} = \mathbf{z} \right\}.$$

Theorem ([1]) Let $\eta \in (0, 1)$. If $d\left(\mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{x}}}}\left(\mathbf{x}^{\natural}\right)\right) + d\left(\mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{y}}}}\left(\mathbf{y}^{\natural}\right)\right) \leq p - c_{\eta}\sqrt{p},$ where $c_{\eta} := \sqrt{8\log(4/\eta)}$, then $(\hat{\mathbf{x}}', \hat{\mathbf{y}}') = (\mathbf{x}^{\natural}, \mathbf{y}^{\natural})$ with probability at least $1 - \eta$.

Proof.

Combine the condition of perfect recovery and the approximate kinematic formula. Then apply the equivalence relation between $(\hat{\mathbf{x}}', \hat{\mathbf{y}}')$ and $(\hat{\mathbf{x}}(\rho), \hat{\mathbf{y}}(\rho))$.

Performance guarantee

Recall the definition

$$\left(\hat{\mathbf{x}}(\rho), \hat{\mathbf{y}}(\rho)\right) := \arg \min_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^p} \left\{ \left\|\mathbf{x}\right\|_{\mathcal{A}_{\mathbf{x}}} + \rho \left\|\mathbf{y}\right\|_{\mathcal{A}_{\mathbf{y}}} : \mathbf{x} + \mathbf{Q}\mathbf{y} = \mathbf{z} \right\}.$$

Corollary

Let $\eta \in (0, 1)$. If

$$d\left(\mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{x}}}}\left(\mathbf{x}^{\natural}\right)\right) + d\left(\mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{y}}}}\left(\mathbf{y}^{\natural}\right)\right) \leq p - c_{\eta}\sqrt{p},$$

where $c_{\eta} := \sqrt{8\log(4/\eta)}$, then there exists $\rho > 0$ such that $(\hat{\mathbf{x}}(\rho), \hat{\mathbf{y}}(\rho)) = (\mathbf{x}^{\natural}, \mathbf{y}^{\natural})$.

Proof.

Recall the equivalence relation between $(\hat{\mathbf{x}}', \hat{\mathbf{y}}')$ and $(\hat{\mathbf{x}}(\rho), \hat{\mathbf{y}}(\rho))$.

Successful recovery if
$$p \gtrsim d\left(\mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{Y}}}}\left(\mathbf{x}^{\natural}\right)\right) + d\left(\mathcal{T}_{\|\cdot\|_{\mathcal{A}_{\mathbf{Y}}}}\left(\mathbf{y}^{\natural}\right)\right)$$

Properties of the statistical dimension

Recall the definition of the statistical dimension.

Definition (Statistical dimension [1])

Let ${\mathcal C}$ be a convex cone in ${\mathbb R}^p.$ The statistical dimension of ${\mathcal C}$ is defined as

$$d\left(\mathcal{C}\right) := \mathbb{E}\left[\left\|\Pi_{\mathrm{cl}(\mathcal{C})}\left(\mathbf{g}\right)\right\|_{2}^{2}\right],$$

where $\Pi_{cl(\mathcal{C})} : \mathbb{R}^p \to \mathbb{R}^p$ denotes the projection operator onto $cl(\mathcal{C})$.

Proposition ([1, 4])

- 1. (Rotational invariance) Let C be a convex cone. Then $d(C) = d(\mathbf{Q}C)$ for any orthogonal matrix \mathbf{Q} .
- 2. (Monotonicity) Let $C_1 \subseteq C_2$ be two convex cones. Then $d(C_1) \leq d(C_2)$.
- 3. (Subspace) For each subspace $\mathcal{L} \subseteq \mathbb{R}^p$, $d(\mathcal{L}) = \dim(\mathcal{L})$.
- 4. (Complementarity) Let $C \subseteq$ be a convex cone and C° be its polar cone. Then $d(C_1) + d(C^{\circ}) = p$.

Observation: Statistical dimension extends the idea of the affine dimension of vector spaces to convex cones.

Some examples

Example (Convex cones [1])

1. Let
$$\mathcal{C} := \left\{ \mathbf{x} := (x_1, \dots, x_p)^T : x_i \ge 0 \ \forall i, \mathbf{x} \in \mathbb{R}^p \right\}$$
. Then $d(\mathcal{C}) = \frac{1}{2}d$.

2. Let
$$\mathcal{C} := \left\{ \mathbf{x} := (\tilde{\mathbf{x}}^T, x_p)^T : \|\tilde{\mathbf{x}}\|_2 \le x_p, \tilde{\mathbf{x}} \in \mathbb{R}^{p-1}, x_p > 0 \right\}$$
. Then $d(\mathcal{C}) = \frac{1}{2}d$.

3. Let
$$C := \left\{ \mathbf{X} : \mathbf{X} \succeq \mathbf{0}, \mathbf{X} \in \mathbb{R}^{p \times p} \right\}$$
. Then $d(C) = \frac{1}{4}p(p+1)$.

Example (Tangent cones [1, 4])

1. Let
$$\mathbf{x} \in \mathbb{R}^p$$
 be s-sparse, and $f : \mathbf{x} \mapsto \|\mathbf{x}\|_1$. Then $d\left(\mathcal{T}_f(\mathbf{x})\right) \leq 2s \log\left(\frac{p}{s}\right) + \frac{5}{4}s$.

2. Let
$$\mathbf{x} := (x_1, \dots, x_p)^T \in \mathbb{R}^p$$
 such that $\left|\left\{i : |x_i| = \|\mathbf{x}\|_{\infty}\right\}\right| \leq s$, and $f : \mathbf{x} \mapsto \|\mathbf{x}\|_{\infty}$. Then $d\left(\mathcal{T}_f(\mathbf{x})\right) = p - \frac{1}{2}s$.

3. Let
$$\mathbf{X} \in \mathbb{R}^{p \times p}$$
 of rank r , and $f : \mathbf{X} \mapsto \|\mathbf{X}\|_{S_1}$. Then $d\left(\mathcal{T}_f(\mathbf{X})\right) \leq 3r(2p-r)$.

Relation between Gaussian width and statistical dimension

An equivalent definition of the statistical dimension is given by the following.

Proposition ([1, 4])

Let C be a convex cone in \mathbb{R}^p . The statistical dimension is given by

$$d\left(\mathcal{C}
ight) := \mathbb{E}\left[\sup_{\mathbf{x}\in\mathcal{C}\cap\mathcal{B}_{p}}\left\langle\mathbf{g},\mathbf{x}
ight
angle^{2}
ight],$$

where \mathcal{B}_p denotes the unit ℓ_2 -norm ball in \mathbb{R}^p , and g is a vector of *i.i.d.* standard Gaussian random variables.

Note that this definition is very close to the definition of the Gaussian width.

Proposition ([1])

Let C be a convex cone in \mathbb{R}^p , and S_p be the unit ℓ_2 -norm sphere. Then

$$[w(\mathcal{C} \cap \mathcal{S}_p)]^2 \le d(\mathcal{C}) \le [w(\mathcal{C} \cap \mathcal{S}_p)]^2 + 1,$$

where $w(\cdot)$ denotes the Gaussian width in Lecture 4.

Insight: $[w(\mathcal{C} \cap \mathcal{S}_p)]^2 \sim d(\mathcal{C}).$

Compressed sensing revisited

Recall the following compressed sensing problem, the basis pursuit denoising estimator \hat{x}_{BPDN} , and the optimality condition.

Problem (Compressed sensing)

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ be simple with respect to an atomic set \mathcal{A} , and let $\mathbf{A} \in \mathbb{R}^{n \times p}$ with p > n. How do we estimate \mathbf{x}^{\natural} given $\mathbf{b} := \mathbf{A}\mathbf{x}^{\natural}$ and \mathbf{A} ?

Definition (Basis pursuit denoising estimator)

$$\hat{\mathbf{x}}_{\text{BPDN}} \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \left\| \mathbf{x} \right\|_{\mathcal{A}} : \mathbf{b} = \mathbf{A}\mathbf{x} \right\}.$$

Proposition ([5])

Define $f: \mathbf{x} \mapsto \|\mathbf{x}\|_{\mathcal{A}}$. Then $\hat{\mathbf{x}}_{\text{BPDN}}$ is uniquely defined and perfectly recovers \mathbf{x}^{\natural} , i.e., $\hat{\mathbf{x}}_{\text{BPDN}} = \mathbf{x}^{\natural}$, if and only if

$$\mathcal{T}_{f}\left(\mathbf{x}^{\natural}\right)\cap\mathrm{null}\left(\mathbf{A}
ight)=\left\{\mathbf{0}
ight\}.$$

Compressed sensing revisited

*Fact

Let $\mathbf{A} \in \mathbb{R}^{n \times p}$ be a random matrix of i.i.d. standard Gaussian random variables with p > n. Let \mathcal{L} be a (p - n)-dimensional subspace in \mathbb{R}^p . Then $\operatorname{null}(\mathbf{A})$ is equivalent to $\mathbf{Q}\mathcal{L}$ almost surely, where $\mathbf{Q} \in \mathbb{R}^p$ denotes the random basis.

Thus the probability that $\mathcal{T}_{f}(\mathbf{x}^{\natural}) \cap \operatorname{null}(\mathbf{A}) = \{\mathbf{0}\}$ is equal to the probability that $\mathcal{T}_{f}(\mathbf{x}^{\natural}) \cap \mathbf{Q}\mathcal{L} = \{\mathbf{0}\}.$

Note that $\mathcal{T}_f(\mathbf{x}^{\natural})$ and \mathcal{L} are two convex cones. Thus we can apply the approximate kinematic formula and obtain the following.

Theorem (Performance guarantee with statistical dimension [1])

Assume that $\mathbf{A} \in \mathbb{R}^{n \times p}$ is a matrix of i.i.d. standard Gaussian random variables with n < p. Let $\eta \in (0, 1)$. Then $\hat{\mathbf{x}}_{\text{BPDN}} = \mathbf{x}^{\natural}$ with probability at least $1 - \eta$ given that

$$n \geq d\left(\mathcal{T}_{f}\left(\mathbf{x}^{\natural}
ight)
ight) - c_{\eta}\sqrt{p},$$

where $f : \mathbf{x} \mapsto \|\mathbf{x}\|_{\mathcal{A}}$, and $c_{\eta} := \sqrt{8 \log(4/\eta)}$.

Compressed sensing revisited

Recall the result we obtained in Lecture 2.

Theorem (Performance guarantee with Gaussian width [5]) Assume that $\mathbf{A} \in \mathbb{R}^{n \times p}$ is a matrix of i.i.d. standard Gaussian random variables with n < p. Then $\hat{\mathbf{x}}_{BPDN} = \mathbf{x}^{\natural}$ with probability at least $1 - \exp\left\{-\frac{1}{2}\left[\sqrt{n} - w\left(\mathcal{S}_p \cap \mathcal{T}_f\left(\mathbf{x}^{\natural}\right)\right)\right]\right\}$ given that $n \ge w\left(\mathcal{S}_p \cap \mathcal{T}_f\left(\mathbf{x}^{\natural}\right)\right)^2 + 1$,

where $f : \mathbf{x} \mapsto \|\mathbf{x}\|_{\mathcal{A}}$, and \mathcal{S}_p denotes the unit ℓ_2 -norm sphere.

Insight: $[w(\mathcal{C} \cap \mathcal{S}_p)]^2 \sim d(\mathcal{C}).$

What is the benefit of using the statistical dimension?

Making use of the converse part

Recall the approximate kinematic formula.

Theorem (Approximate kinematic formula [1]) Let C_1 and C_2 be convex cones in \mathbb{R}^p , and let \mathbf{Q} be a random basis. Then $\frac{1}{p} [d(C_1) + d(C_2)] \leq 1 - \frac{c_\eta}{\sqrt{p}} \implies \mathbb{P}(\{C_1 \cap \mathbf{Q}C_2 = \{\mathbf{0}\}\}) \geq 1 - \eta,$ $\frac{1}{p} [d(C_1) + d(C_2)] \geq 1 + \frac{c_\eta}{\sqrt{p}} \implies \mathbb{P}(\{C_1 \cap \mathbf{Q}C_2 \neq \{\mathbf{0}\}\}) \geq 1 - \eta,$ with any $\eta \in (0, 1)$, where $c_\eta := \sqrt{8\log(4/\eta)}$.

Insight: When $\frac{1}{p} [d(C_1) + d(C_2)] \ge 1 + \frac{c_{\eta}}{\sqrt{p}}$, it is *impossible* to have $\mathbb{P}(\{C_1 \cap \mathbf{Q}C_1 = \{\mathbf{0}\}\})$ arbitrarily close to 1.

A complete result for source separation

Random basis model [18]

Let $\mathbf{Q} \in \mathbb{R}^{p \times p}$ be a random basis. Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ and $\mathbf{y}^{\natural} \in \mathbb{R}^{p}$ be simple with respect to atomic sets $\mathcal{A}_{\mathbf{x}}$ and $\mathcal{A}_{\mathbf{y}}$, respectively. Define $\mathbf{z} := \mathbf{x}^{\natural} + \mathbf{Q}\mathbf{y}^{\natural}$ and $(\hat{\mathbf{x}}', \hat{\mathbf{y}}') \in \arg\min_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}} \left\{ \|\mathbf{x}\|_{\mathcal{A}_{\mathbf{x}}} : \|\mathbf{y}\|_{\mathcal{A}_{\mathbf{y}}} \leq \|\mathbf{y}^{\natural}\|_{\mathcal{A}_{\mathbf{y}}}, \mathbf{z} = \mathbf{x} + \mathbf{Q}\mathbf{y} \right\}$. What is the

probability of $(\hat{\mathbf{x}}', \hat{\mathbf{y}}') = (\mathbf{x}^{\natural}, \mathbf{y}^{\natural})$?

Theorem ([1]) Let $f : \mathbf{x} \mapsto \|\mathbf{x}\|_{\mathcal{A}_{\mathbf{x}}}$ and $g : \mathbf{y} \mapsto \|\mathbf{y}\|_{\mathcal{A}_{\mathbf{y}}}$. $d\left(\mathcal{T}_{f}\left(\mathbf{x}^{\natural}\right)\right) + d\left(\mathcal{T}_{g}\left(\mathbf{y}^{\natural}\right)\right) \leq p - c_{\eta}\sqrt{p} \Rightarrow \mathbb{P}\left(\left\{\left(\hat{\mathbf{x}}', \hat{\mathbf{y}}'\right) = \left(\mathbf{x}^{\natural}, \mathbf{y}^{\natural}\right)\right\}\right) \geq 1 - \eta,$ $d\left(\mathcal{T}_{f}\left(\mathbf{x}^{\natural}\right)\right) + d\left(\mathcal{T}_{g}\left(\mathbf{y}^{\natural}\right)\right) \geq p + c_{\eta}\sqrt{p} \Rightarrow \mathbb{P}\left(\left\{\left(\hat{\mathbf{x}}', \hat{\mathbf{y}}'\right) \neq \left(\mathbf{x}^{\natural}, \mathbf{y}^{\natural}\right)\right\}\right) \geq 1 - \eta,$ for any $\eta \in (0, 1)$, where $c_{\eta} := \sqrt{8\log(4/\eta)}$.

Successful recovery if and only if $p \gtrsim d\left(\mathcal{T}_{f}\left(\mathbf{x}^{\natural}\right)\right) + d\left(\mathcal{T}_{g}\left(\mathbf{y}^{\natural}\right)\right)$.

We say there is a *phase transition* at $p \approx d\left(\mathcal{T}_{f}\left(\mathbf{x}^{\natural}\right)\right) + d\left(\mathcal{T}_{g}\left(\mathbf{y}^{\natural}\right)\right)$.

Numerical result

A complete result for compressive sensing

Problem (Compressed sensing)

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ be simple with respect to an atomic set \mathcal{A} , and let $\mathbf{A} \in \mathbb{R}^{n \times p}$ be a matrix of i.i.d. standard Gaussian random variables with p > n. Define $\mathbf{b} := \mathbf{A}\mathbf{x}^{\natural}$ and $\hat{\mathbf{x}}_{BPDN} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ \|\mathbf{x}\|_{\mathcal{A}} : \mathbf{b} = \mathbf{A}\mathbf{x} \right\}$. What is the probability of $\hat{\mathbf{x}}_{BPDN} = \mathbf{x}^{\natural}$?

Theorem ([1]) Let $f : \mathbf{x} \mapsto ||\mathbf{x}||_{\mathcal{A}}$. Then $n \ge d\left(\mathcal{T}_{f}\left(\mathbf{x}^{\natural}\right)\right) - c_{\eta}\sqrt{p} \implies \mathbb{P}\left(\left\{\hat{\mathbf{x}}_{BPDN} = \mathbf{x}^{\natural}\right\}\right) \ge 1 - \eta,$ $n \le d\left(\mathcal{T}_{f}\left(\mathbf{x}^{\natural}\right)\right) + c_{\eta}\sqrt{p} \implies \mathbb{P}\left(\left\{\hat{\mathbf{x}}_{BPDN} \neq \mathbf{x}^{\natural}\right\}\right) \ge 1 - \eta,$ where $c_{\eta} := \sqrt{8\log(4/\eta)}.$

Successful recovery if and only if $n \ge d\left(\mathcal{T}_f(\mathbf{x}^{\natural})\right)$.

We say there is a *phase transition* at $n \approx d\left(\mathcal{T}_{f}\left(\mathbf{x}^{\natural}\right)\right)$.

Numerical result

Extension to compressive multiple source separation

Problem (Compressive multiple source separation)

Let $\mathbf{A} \in \mathbb{R}^{n \times p}$ with n < p. Let \mathcal{A}_i , i = 1, ..., N be atomic sets in \mathbb{R}^p , and $\mathbf{x}_i^{\natural} \in \mathbb{R}^p$ be simple with respect to \mathcal{A}_i for all $i \in \{1, ..., N\}$. Let $\mathbf{Q}_1, ..., \mathbf{Q}_N \in \mathbb{R}^{p \times p}$ be independent random bases and define $\mathbf{z} := \mathbf{A} \left(\mathbf{Q}_1 \mathbf{x}_1^{\natural} + \cdots + \mathbf{Q}_N \mathbf{x}_N^{\natural} \right)$. What is the probability of $(\hat{\mathbf{x}}_1, ..., \hat{\mathbf{x}}_N) = (\mathbf{x}_1^{\natural}, ..., \mathbf{x}_N^{\natural})$ with

$$\begin{aligned} (\hat{\mathbf{x}}_{1},\ldots,\hat{\mathbf{x}}_{N}) \in \arg\min_{\mathbf{x}_{1},\ldots,\mathbf{x}_{N}\in\mathbb{R}^{p}} \left\{ \left\|\mathbf{x}_{1}\right\|_{\mathcal{A}_{1}}:\left\|\mathbf{x}_{i}\right\|_{\mathcal{A}_{i}} \leq \left\|\mathbf{x}_{i}^{\natural}\right\|_{\mathcal{A}_{i}}, i=2,\ldots,N, \\ \mathbf{z}=\mathbf{A}\left(\mathbf{Q}_{1}\mathbf{x}_{1}+\cdot+\mathbf{Q}_{N}\mathbf{x}_{N}\right)\right\}? \end{aligned}$$

Extension to compressive multiple source separation

Recall that when we have $\mathbf{z}:=\mathbf{x}_1^{\natural}+\mathbf{x}_2^{\natural}\in\mathbb{R}^p$, $(\hat{\mathbf{x}}_1,\hat{\mathbf{x}}_2)=(\mathbf{x}_1^{\natural},\mathbf{x}_2^{\natural})$ with high probability if and only if

$$d\left(\mathcal{T}_{\left\|\cdot\right\|_{\mathcal{A}_{1}}}\left(\mathbf{x}_{1}^{\natural}\right)\right)+d\left(\mathcal{T}_{\left\|\cdot\right\|_{\mathcal{A}_{2}}}\left(\mathbf{x}_{2}^{\natural}\right)\right)\lesssim p=\dim\left(\mathbf{z}\right).$$

A reasonable guess

 $(\hat{\mathbf{x}}_1,\ldots,\hat{\mathbf{x}}_N)=(\mathbf{x}_1^{\natural},\ldots,\mathbf{x}_N^{\natural})$ with high probability if and only if

$$\sum_{i=1}^{N} d\left(\mathcal{T}_{\|\cdot\|_{\mathcal{A}_{i}}}\left(\mathbf{x}_{i}^{\natural}\right)\right) \leq n = \dim\left(\mathbf{z}\right).$$

Optimality condition

Definition (Minkowski sum)

Let S_1 and S_2 be two sets. The Minkowski sum of S_1 and S_2 is given by

$$\mathcal{S}_1 + \mathcal{S}_2 := \left\{ \mathbf{s}_1 + \mathbf{s}_2 : \mathbf{s}_1 \in \mathcal{S}_1, \mathbf{s}_2 \in \mathcal{S}_2 \right\}.$$

Theorem ([16]) Define $C_i := \mathcal{T}_{\|\cdot\|_{\mathcal{A}_i}} (\mathbf{x}^{\natural}), \ i = 1, ..., N, \ \mathcal{C}_{N+1} := \text{null} (\mathbf{A}).$ We have $(\hat{\mathbf{x}}_1, ..., \hat{\mathbf{x}}_N) = (\mathbf{x}_1^{\natural}, ..., \mathbf{x}_N^{\natural})$ if and only if $C_i \cap \left(-\sum_{j \neq i} C_j\right) = \{\mathbf{0}\}$

for all $i \in \{1, ..., N+1\}$.

* Phase transition for compressive multiple source separation

Theorem ([16])

Define

$$d_{\max} := \max_{i \in \{1, \dots, N\}} \left\{ d\left(\mathcal{T}_{\|\cdot\|_{\mathcal{A}_{i}}}\left(\mathbf{x}^{\natural}\right)\right) \right\}$$
$$d_{total} := \sum_{i=1}^{N} d\left(\mathcal{T}_{\|\cdot\|_{\mathcal{A}_{i}}}\left(\mathbf{x}^{\natural}\right)\right)$$

For any $\eta \in (0,1)$,

$$n \ge d_{total} + p\left(c_{\eta} + \sqrt{2c_{\eta}} d_{\max}\right) \quad \Rightarrow \quad \mathbb{P}\left(\left(\hat{\mathbf{x}}_{1}, \dots, \hat{\mathbf{x}}_{N}\right) = \left(\mathbf{x}_{1}^{\natural}, \dots, \mathbf{x}_{N}^{\natural}\right)\right) \ge 1 - \eta,$$
$$n \le d_{total} - p\left(c_{\eta} + \sqrt{2c_{\eta}} d_{\max}\right) \quad \Rightarrow \quad \mathbb{P}\left(\left(\hat{\mathbf{x}}_{1}, \dots, \hat{\mathbf{x}}_{N}\right) \neq \left(\mathbf{x}_{1}^{\natural}, \dots, \mathbf{x}_{N}^{\natural}\right)\right) \ge 1 - \eta,$$

where $c_{\eta} := \log(4p/\eta)$.

Successful recovery if and only if $n \gtrsim d_{\text{total}}$.

We say there is a *phase transition* at $n \approx d_{\text{total}}$.

Outline

- Today
 - 1. Source separation problem
 - 2. Incoherence and uncertainty principle
 - 3. Phase transition via statistical dimension
 - 4. Phase transition via convex polytopes
 - 5. Nonsmooth convex minimization by smoothing
- Next week
 - 1. Constrained convex minimization

Definition (Convex polytope)

A convex polytope in \mathbb{R}^n is the convex hull of a finite set of points in \mathbb{R}^n .

By definition we find the relation between convex polytopes and unit atomic norm balls.

Proposition

A set $\mathcal{P} \subset \mathbb{R}^n$ is a convex polytope if and only if it is a unit atomic norm ball of a finite atomic set in \mathbb{R}^n .

Example

Define $\mathbf{e}_i := (\delta_{1,i}, \dots, \delta_n, i)^T \in \mathbb{R}^n$.

Let $\mathcal{A} := \{e_1, \dots, e_n\} \subset \mathbb{R}^n$. Then the unit atomic norm ball associated with \mathcal{A} is a convex polytope called the *simplex*.

Let $\mathcal{A} := \{\pm e_1, \dots, \pm e_n\} \subset \mathbb{R}^n$. The the unit atomic norm ball associated with \mathcal{A} is a convex polytope called the *cross-polytope*.

Definition (s-face)

An s-face of a convex polytope \mathcal{P} is an s-dimensional face of \mathcal{P} .

```
The set of all s-faces of \mathcal{P} is denoted by \mathcal{F}_s(\mathcal{P}).
```

Example

A 0-face of a convex polytope $\mathcal{P} \subset \mathbb{R}^n$ is a vertex of \mathcal{P} .

An n-1-face of a convex polytope $\mathcal{P} \subset \mathbb{R}^n$ is a facet of \mathcal{P} .

Definition (s-face)

An s-face of a convex polytope \mathcal{P} is an s-dimensional face of \mathcal{P} .

```
The set of all s-faces of \mathcal{P} is denoted by \mathcal{F}_s(\mathcal{P}).
```

Example

A 0-face of a convex polytope $\mathcal{P} \subset \mathbb{R}^n$ is a vertex of \mathcal{P} .

An n-1-face of a convex polytope $\mathcal{P} \subset \mathbb{R}^n$ is a facet of \mathcal{P} .

Definition (s-face)

An s-face of a convex polytope \mathcal{P} is an s-dimensional face of \mathcal{P} .

```
The set of all s-faces of \mathcal{P} is denoted by \mathcal{F}_s(\mathcal{P}).
```

Example

A 0-face of a convex polytope $\mathcal{P} \subset \mathbb{R}^n$ is a vertex of \mathcal{P} .

An n-1-face of a convex polytope $\mathcal{P} \subset \mathbb{R}^n$ is a facet of \mathcal{P} .

Definition (Centrally symmetric sets)

A pair $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^n \times \mathbb{R}^n$ is called an *antipodal pair* if $\mathbf{x} = -\mathbf{y}$.

A set \mathcal{E} is *centrally symmetric* if for any antipodal pair (\mathbf{x}, \mathbf{y}) such that $\mathbf{x} \in \mathcal{E}$, $\mathbf{y} \in \mathcal{E}$.

Example (Cross-polytope)

The cross-polytope (or ℓ_1 -ball) C is *centrally symmetric* since $\forall x \in C$, i.e., $\|x\|_1 \leq 1$, then y = -x, satisfies $\|y\|_1 = \|x\|_1 \leq 1$, so $y \in C$.

Definition (*s*-neighborliness)

A centrally symmetric convex polytope \mathcal{P} is *s*-neighborly if any (s+1) vertices not including an antipodal pair span a face of \mathcal{P} .

Example (Cross-polytope)

The cross-polytope is 2-neighborly, since any combination of 3 vertices, not including an antipodal pair, span a face of C.

Figure: Combination of 3 vertices, not including an antipodal pair, span a face of $\ensuremath{\mathcal{C}}$

Definition (*s*-neighborliness)

A centrally symmetric convex polytope \mathcal{P} is *s*-neighborly if any (s+1) vertices not including an antipodal pair span a face of \mathcal{P} .

Example (Cross-polytope)

The cross-polytope is 2-neighborly, since any combination of 3 vertices, not including an antipodal pair, span a face of C.

Figure: Combination of 3 vertices, not including an antipodal pair, span a face of $\ensuremath{\mathcal{C}}$

Definition (*s*-neighborliness)

A centrally symmetric convex polytope \mathcal{P} is *s*-neighborly if any (s+1) vertices not including an antipodal pair span a face of \mathcal{P} .

Example (Cross-polytope)

The cross-polytope is 2-neighborly, since any combination of 3 vertices, not including an antipodal pair, span a face of C.

Figure: Combination of 3 vertices, including an antipodal pair, does not span a face of $\ensuremath{\mathcal{C}}$

Definition (*s*-neighborliness)

A centrally symmetric convex polytope \mathcal{P} is *s*-neighborly if any (s+1) vertices not including an antipodal pair span a face of \mathcal{P} .

Example (Cross-polytope)

The cross-polytope is 2-neighborly, since any combination of 3 vertices, not including an antipodal pair, span a face of C.

Figure: Combination of 3 vertices, including an antipodal pair, does not span a face of $\ensuremath{\mathcal{C}}$

An equivalence relation

Consider estimating $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ given $\mathbf{A} \in \mathbb{R}^{n \times p}$, n < p, and $\mathbf{b} := \mathbf{A}\mathbf{x}^{\natural} \in \mathbb{R}^{n}$ by

$$\hat{\mathbf{x}}_{\mathsf{BPDN}} \in \arg\min_{\mathbf{x}\in\mathbb{R}^p} \left\{ \|\mathbf{x}\|_1 : \mathbf{b} = \mathbf{A}\mathbf{x} \right\}.$$

Denote by C the cross-polytope in \mathbb{R}^p , and define $\mathcal{P} := \mathbf{A}C := \{\mathbf{y} : \mathbf{y} = \mathbf{A}\mathbf{x}, \mathbf{x} \in C\}$. Note that \mathcal{P} is also a convex polytope.

Theorem $(\ell_0/\ell_1 \text{ equivalence [7]})$

The following two statements are equivalent.

- 1. \mathcal{P} has 2p vertices and is *s*-neighborly.
- 2. For every s-sparse $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$, $\hat{\mathbf{x}}_{BPDN}$ is uniquely defined and $\hat{\mathbf{x}}_{BPDN} = \mathbf{x}^{\natural}$.

Geometric intuition behind the ℓ_0/ℓ_1 equivalence

Insight 1

A sparse vector \mathbf{x}^{\natural} is on a k-face of the crosspolytope with $k = \|\mathbf{x}^{\natural}\|_{0} - 1$.

Insight 2

Let $\mathcal{C} \subset \mathbb{R}^p$ be the crosspolytope and $\mathbf{A} \in \mathbb{R}^{n \times p}$ with n < p. Define $\mathcal{P} := \mathbf{A}\mathcal{C}$. Then $\mathcal{F}_{\ell}(\mathbf{A}\mathcal{C}) \subseteq \mathbf{A}\mathcal{F}_{\ell}(\mathcal{C})$ for all ℓ .

Some faces of C may not survive after being transformed by A.

Insight 3

Assume $\|\mathbf{x}^{\natural}\|_{1} = 1$ without loss of generality. To have $\hat{\mathbf{x}}_{\text{BPDN}} = \mathbf{x}^{\natural}$, it is necessary that $\mathbf{A}\mathbf{x}^{\natural}$ is on a face of $\mathcal{P} := \mathbf{A}\mathcal{C}$.

Conclusion

It is necessary that all ℓ -faces of C, $0 \le \ell \le s - 1$, survive to have $\hat{\mathbf{x}}_{\text{BPDN}} = \mathbf{x}^{\natural}$ for all \mathbf{x}^{\natural} being *s*-sparse.

Geometric intuition behind the ℓ_0/ℓ_1 equivalence

Recall the theorem statement.

Theorem $(\ell_0/\ell_1 \text{ equivalence [7]})$

The following two statements are equivalent.

- 1. \mathcal{P} has 2p vertices and is *s*-neighborly.
- 2. For every s-sparse $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$, $\hat{\mathbf{x}}_{BPDN}$ is uniquely defined and $\hat{\mathbf{x}}_{BPDN} = \mathbf{x}^{\natural}$.

The conclusion in the previous slide is in fact both necessary and sufficient.

Lemma ([7])

 $\mathcal{P} := \mathbf{A}\mathcal{C}$ has 2p vertices and is *s*-neighborly if and only if for all $0 \le \ell \le s - 1$, $\mathbf{A}\mathcal{F} \in \mathcal{F}_{\ell}(\mathbf{A}\mathcal{C})$.

Conclusion

 $\hat{\mathbf{x}}_{\text{BPDN}} = \mathbf{x}^{\natural}$ for all \mathbf{x}^{\natural} being *s*-sparse, if and only if all ℓ -faces of C, $0 \leq \ell \leq s - 1$, survive after being transformed by \mathbf{A} .

Face counting

Consider the ratio

$$\gamma_{\ell} := \frac{|\mathcal{F}_{\ell}(\mathbf{A}\mathcal{C})|}{|\mathcal{F}_{\ell}(\mathcal{C})|}.$$

If $\gamma_{\ell} = 1$ for all $1 \leq \ell \leq s - 1$, then $\hat{\mathbf{x}}_{\text{BPDN}} = \mathbf{x}^{\natural}$ for all s-sparse \mathbf{x}^{\natural} .

Theorem ([6, 10])

Let $\mathbf{A} \in \mathbb{R}^{n \times p}$ be a matrix of *i.i.d.* standard Gaussian random variables. Consider the triple (n, p, s) with $n = \delta p$ and $s = \rho n$, $0 < \delta, \rho < 1$. Then there exists a function $\rho(\delta)$ such that

$$\lim_{p \to \infty} \gamma_s = \begin{cases} 1 & \rho < \rho(\delta), \\ 0 & \rho > \rho(\delta). \end{cases}$$

Outline

Today

- 1. Source separation problem
- 2. Incoherence and uncertainty principle
- 3. General recipe for source separation
- 4. Phase transition via statistical dimension
- 5. Phase transition via convex polytopes
- 6. Selection of the parameter
- 7. Nonsmooth convex minimization by smoothing
- Next week
 - 1. Constrained convex minimization

Caveat Emptor

The theories presented are based on the equivalence relation between

$$(\hat{\mathbf{x}}(\rho), \hat{\mathbf{y}}(\rho)) \in \arg\min_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_{\mathcal{A}_{\mathbf{x}}} + \rho \, \|\mathbf{y}\|_{\mathcal{A}_{\mathbf{y}}} : \mathbf{z} = \mathbf{x} + \mathbf{y} \right\}$$

and

$$(\hat{\mathbf{x}}', \hat{\mathbf{y}}') \in \arg\min_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^p} \left\{ \left\| \mathbf{x} \right\|_{\mathcal{A}_{\mathbf{x}}} : \left\| \mathbf{y} \right\|_{\mathcal{A}_{\mathbf{y}}} \leq \left\| \mathbf{y}^{\natural} \right\|_{\mathcal{A}_{\mathbf{y}}}, \mathbf{z} = \mathbf{x} + \mathbf{y} \right\}.$$

Caveat Emptor

We select ρ such that $(\hat{\mathbf{x}}(\rho), \hat{\mathbf{y}}(\rho)) = (\hat{\mathbf{x}}', \hat{\mathbf{y}}')$. That is, the selection of ρ requires the information of \mathbf{y}^{\natural} , which is *intractable*.

We show a *semi-practical* approach for a slightly different problem setting.

Problem setting

Corrupted compressive sensing [14]

Let $\mathcal{A}_{\mathbf{x}} \subset \mathbb{R}^p$ and $\mathcal{A}_{\mathbf{y}} \subset \mathbb{R}^n$ be two atomic sets, and $\mathbf{x}^{\natural} \in \mathbb{R}^p$ and $\mathbf{y}^{\natural} \in \mathbb{R}^n$ be simple with respect to $\mathcal{A}_{\mathbf{x}}$ and $\mathcal{A}_{\mathbf{y}}$ respectively. Let $\mathbf{A} \in \mathbb{R}^{n \times p}$, n < p, be a random matrix with i.i.d. Gaussian random variables $\sim \mathcal{N}(0, 1/n)$. Let $\mathbf{z} := \mathbf{A}\mathbf{x}^{\natural} + \mathbf{y}^{\natural} + \mathbf{w}$, where \mathbf{w} denotes some unknown noise.

Define the estimator

$$(\hat{\mathbf{x}}(\rho), \hat{\mathbf{y}}(\rho)) \in \arg\min_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_{\mathcal{A}_{\mathbf{x}}} + \rho \, \|\mathbf{y}\|_{\mathcal{A}_{\mathbf{y}}} : \|\mathbf{z} - (\mathbf{A}\mathbf{x} + \mathbf{y})\|_2 \le \kappa \right\}.$$

How good is the estimation performance of $(\hat{\mathbf{x}}(\rho), \hat{\mathbf{y}}(\rho))$?

A general bound for arbitrary ρ

and o

Theorem (* Recovery error bound [14]) For any $t_{\mathbf{x}}, t_{\mathbf{y}} > 0$ such that $\rho = t_{\mathbf{x}}/t_{\mathbf{y}}$,

$$\sqrt{\left\|\hat{\mathbf{x}}(\rho) - \mathbf{x}^{\natural}\right\|^{2} + \left\|\hat{\mathbf{y}}(\rho) - \mathbf{y}^{\natural}\right\|^{2}} \leq \frac{2\kappa}{\epsilon}$$

with probability at least $1 - \exp\left[-(1/2)\left(a_n - \tau - \epsilon\sqrt{n}\right)^2\right]$ given that $a_n - \epsilon\sqrt{n} > \tau$, where

$$\tau := 2\eta \left(t_{\mathbf{x}} \partial \left\| \mathbf{x}^{\natural} \right\|_{\mathcal{A}_{\mathbf{x}}} \right) + \eta \left(t_{\mathbf{y}} \partial \left\| \mathbf{y}^{\natural} \right\|_{\mathcal{A}_{\mathbf{y}}} \right) + 3\sqrt{2}\pi + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2\pi}}$$
$$u_{n} := \mathbb{E} \left[\left\| \mathbf{g} \right\|_{2} \right] \approx \sqrt{n}, \ \mathbf{g} \in \mathbb{R}^{n} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

The function η is called the *Gaussian distance*, which characterizes how large a set is.

Definition (Gaussian distance [14]) Let $C \subset \mathbb{R}^n$ and $\mathbf{g} \in \mathbb{R}^n \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. The Gaussian distance of C is given by

$$\eta(\mathcal{C}) := \sqrt{\mathbb{E}\left[\inf_{\mathbf{x}\in\mathcal{C}} \|\mathbf{g}-\mathbf{x}\|_{2}^{2}\right]}.$$
Some known upper bounds on the Gaussian distance

Example (ℓ_1 -norm)

Let
$$\mathbf{x} \in \mathbb{R}^p$$
 be s-sparse. Then $\eta^2(t \partial \|\mathbf{x}\|_1) \le 2s \log(p/s) + (3/2)s$ when $t := \sqrt{2 \log(p/s)}$.

The following alternative bound is tighter when s/p is large.

Example (
$$\ell_1$$
-norm)
Let $\mathbf{x} \in \mathbb{R}^p$ be *s*-sparse. Then $\eta^2(t \partial \|\mathbf{x}\|_1) \le p \left[1 - \frac{2}{\pi} \left(1 - \frac{s}{p}\right)^2\right]$ when
 $t := \sqrt{\frac{2}{\pi}} \left(1 - \frac{s}{p}\right).$

Example (Nuclear norm)

Let
$$\mathbf{X} \in \mathbb{R}^{p \times p}$$
 be rank- r . Then $\eta^2(t \partial \|\mathbf{X}\|_*) \le p^2 \left[1 - \left(\frac{4}{27}\right)^2 \left(1 - \frac{r}{p}\right)^3\right]$ when $t := \frac{4}{27}(p-r)\frac{\sqrt{p-r}}{p}$.

Semi-practical approach

Recall that t_x and t_y are only involved in the definition of τ in the recovery error bound, which establishes a lower bound on the *minimum number of samples n*.

Semi-practical approach [14] Choose $\rho := \frac{t_{\mathbf{x}}}{t_{\mathbf{y}}}$ to achieve the sharpest theoretical upper bounds on $\eta \left(t_{\mathbf{x}} \partial \left\| \mathbf{x}^{\natural} \right\|_{\mathcal{A}_{\mathbf{x}}} \right)$ and $\eta \left(t_{\mathbf{y}} \partial \left\| \mathbf{y}^{\natural} \right\|_{\mathcal{A}_{\mathbf{y}}} \right)$ (cf. the previous slide).

Warning!

Some knowledge on \mathbf{x}^{\natural} and \mathbf{y}^{\natural} is still required. For example, $s := \left\| \mathbf{x}^{\natural} \right\|_{0}$ is required for $\left\| \cdot \right\|_{\mathcal{A}_{\mathbf{x}}}$ being the ℓ_{1} -norm, and $r := \operatorname{rank} \left(\mathbf{X}^{\natural} \right)$ is required for $\left\| \cdot \right\|_{\mathcal{A}_{\mathbf{x}}}$ being the nuclear norm.

Outline

Today

- 1. Source separation problem
- 2. Incoherence and uncertainty principle
- 3. General recipe for source separation
- 4. Phase transition via statistical dimension
- 5. Phase transition via convex polytopes
- 6. Selection of the parameter
- 7. Nonsmooth convex minimization by smoothing
- Next week
 - 1. Constrained convex minimization

Composite convex minimization formulation

Problem (Source separation)

Let $\mathcal{A}_{\mathbf{x}}$ and $\mathcal{A}_{\mathbf{y}}$ be two atomic sets in \mathbb{R}^p and $\mathbf{x}^{\natural} \in \mathbb{R}^p$ and $\mathbf{y}^{\natural} \in \mathbb{R}^p$ are simple with respect to $\mathcal{A}_{\mathbf{x}}$ and $\mathcal{A}_{\mathbf{y}}$ respectively. Let $\mathbf{z} := \mathbf{x}^{\natural} + \mathbf{y}^{\natural}$. We consider the estimator

$$(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \arg\min_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_{\mathcal{A}_{\mathbf{x}}} + \rho \|\mathbf{y}\|_{\mathcal{A}_{\mathbf{y}}} : \mathbf{z} = \mathbf{x} + \mathbf{y} \right\}.$$

Equivalent composite convex minimization formulation

$$\begin{cases} \hat{\mathbf{x}} \in \arg\min_{\mathbf{x}\in\mathbb{R}^{p}} \left\{ \|\mathbf{x}\|_{\mathcal{A}_{\mathbf{x}}} + \rho \|\mathbf{z} - \mathbf{x}\|_{\mathcal{A}_{\mathbf{y}}} \right\} \\ \hat{\mathbf{y}} := \mathbf{z} - \hat{\mathbf{x}} \text{ (trivial)} \end{cases}$$

- $\blacktriangleright \mbox{ If } \|\cdot\|_{\mathcal{A}_{\mathbf{x}}} \mbox{ or } \|\cdot\|_{\mathcal{A}_{\mathbf{y}}} \mbox{ is smooth, we can apply algorithms such as ISTA or FISTA.}$
- What can we do if both $\|\cdot\|_{\mathcal{A}_{\mathbf{X}}}$ and $\|\cdot\|_{\mathcal{A}_{\mathbf{Y}}}$ are *nonsmooth*?

Smoothing for nonsmooth composite convex minimization

Now we consider the general nonsmooth convex minimization problem.

Problem (Nonsmooth composite convex minimization)

$$F^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$
(1)

where f and g are both proper, closed, convex and nonsmooth.

Smoothing approach

Approximate f by a *smooth* function \tilde{f} . Then, use the following approximation

$$\tilde{F}^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \tilde{F}(\mathbf{x}) := \tilde{f}(\mathbf{x}) + g(\mathbf{x}) \right\}$$

and obtain a numerical solution by the composite minimization algorithms, such as ISTA or FISTA.

Terminology

 \tilde{f} is called a *smoother* of f.

Illustration of the smoothing idea

Example (Multidimensional case)

$$\begin{split} f_{\gamma}(\mathbf{x}) &:= \gamma \sum_{i=1}^{n} \log \left[\exp((\mathbf{A}\mathbf{x} - \mathbf{b})_{i} / \gamma) + \exp(-(\mathbf{A}\mathbf{x} - \mathbf{b})_{i} / \gamma) \right] \text{ is a smoother of } \\ f(\mathbf{x}) &:= \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{1}. \end{split}$$

Smoothable functions

Definition (Smoothable function)

 $f\in \mathcal{F}(\mathbb{R}^p)$ is called smoothable over a convex set $\mathcal X$ if:

1. There exists $(\gamma, D_{\mathcal{X}}, L) \in \mathbb{R}^3_{++}$ and $f_{\gamma} \in \mathcal{F}^{1,1}_L(\mathcal{X})$ such that

$$f_{\gamma}(\mathbf{x}) - \gamma D_{\mathcal{X}} \le f(\mathbf{x}) \le f_{\gamma}(\mathbf{x}) + \gamma D_{\mathcal{X}}, \quad \forall \mathbf{x} \in \mathcal{X},$$
(2)

2. f_{γ} is convex and its gradient is Lipschitz continuous with constant L_{γ} over \mathcal{X} , i.e.:

$$\|\nabla f_{\gamma}(\mathbf{x}) - \nabla f(\hat{\mathbf{x}})\|^* \le L_{\gamma} \|\mathbf{x} - \hat{\mathbf{x}}\|, \ \mathbf{x}, \hat{\mathbf{x}} \in \mathcal{X}.$$

Smoothable functions

One strategy

- Smooth f by $f_{\gamma} \in \mathcal{F}_{L}^{1,1}(\mathbb{R}^{p})$.
- Solve the smoothed problem

$$F_{\gamma}^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F_{\gamma}(\mathbf{x}) := f_{\gamma}(\mathbf{x}) + g(\mathbf{x}) \right\}.$$
(3)

by **FISTA** to obtain a solution $\mathbf{x}^{\star}_{\gamma}$.

• Characterize how $\mathbf{x}^{\star}_{\gamma}$ approximates a true solution \mathbf{x}^{\star} of (1).

Then using [fast] gradient algorithms for the smoothed problem.³

³When $f \in \mathcal{F}_{L}^{1,1}(\mathbb{R}^p)$ and g is smoothable, one can smooth g and simply apply the fast gradient method in Lecture 3

Example 1: ℓ_1 -norm

Smoothed function f_{γ} of the ℓ_1 -norm $f(\mathbf{x}) := \|\mathbf{x}\|_1$

$$f_{\gamma}(\mathbf{x}) := \gamma \sum_{i=1}^{p} \log(e^{x_i/\gamma} + e^{-x_i/\gamma}).$$

• f_{γ} is smooth and ∇f_{γ} is Lipschitz continuous with $L_{f_{\gamma}} := 1/\gamma$.

• $f_{\gamma}(\mathbf{x}) - \gamma p \ln(2) \leq f(\mathbf{x}) \leq f_{\gamma}(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^p$.

Example 1: ℓ_1 -norm

Smoothed function f_{γ} of the ℓ_1 -norm $f(\mathbf{x}) := \|\mathbf{x}\|_1$

$$f_{\gamma}(\mathbf{x}) := \gamma \sum_{i=1}^{p} \log(e^{x_i/\gamma} + e^{-x_i/\gamma}).$$

• f_{γ} is smooth and ∇f_{γ} is Lipschitz continuous with $L_{f_{\gamma}} := 1/\gamma$.

•
$$f_{\gamma}(\mathbf{x}) - \gamma p \ln(2) \leq f(\mathbf{x}) \leq f_{\gamma}(\mathbf{x})$$
 for all $\mathbf{x} \in \mathbb{R}^p$.

1-dimensional function 0.25 $f(\mathbf{x}) = |\mathbf{x}|$ fo.05 0.2 f0.01 0.15 0.1 0.05 -0.25 -0.05 0.05 0.15 -0.2 -0.15 -0.1 0 0.1 0.2 0.25

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation

Example 2: Spectral norm $\lambda_1(\mathbf{X})$

Smoothed function of the spectral norm $f(\mathbf{X}) := \lambda_1(\mathbf{X})$

• The spectral function $f(\mathbf{X}) := \lambda_1(\mathbf{X})$ is the maximum eigenvalue of a symmetric matrix $\mathbf{X} \in \mathbb{S}^{p \times p}$.

• Multinomial logistic smoother $f_{\gamma}(\mathbf{X})$:

$$f_{\gamma}(\mathbf{X}) := \gamma \ln \bigg(\sum_{i=1}^{p} e^{\lambda_i(\mathbf{X})/\gamma} \bigg).$$

- f_{γ} is smooth and ∇f_{γ} is Lipschitz continuous with $L_{f_{\gamma}} = \gamma^{-1}$.
- $f_{\gamma}(\mathbf{x}) \gamma \ln(p) \leq f(\mathbf{x}) \leq f_{\gamma}(\mathbf{x})$ for all $\mathbf{X} \in \mathbb{S}^p$.

2-dimensional example

The spectral function $f:\mathbb{S}^2\to\mathbb{R}$ defined as

$$f(\mathbf{X}) \equiv f\left(\begin{bmatrix} \mathbf{X}_{11} & \mathbf{X}_{12} \\ \mathbf{X}_{12} & \mathbf{X}_{22} \end{bmatrix}\right) := \frac{(\mathbf{X}_{11} + \mathbf{X}_{22})}{2} + \sqrt{\frac{(\mathbf{X}_{11} + \mathbf{X}_{22})^2}{4}} - (\mathbf{X}_{11}\mathbf{X}_{22} - \mathbf{X}_{12}^2).$$

Proximity functions

Definition (Proximity functions)

A μ_b -strongly convex and continuous function $b_{\mathcal{X}}$ is called a **proximity function** (or prox-function) of a convex set \mathcal{X} if $\mathcal{X} \subseteq \text{dom}(b_{\mathcal{X}})$.

Proximity functions

Definition (Proximity functions)

A μ_b -strongly convex and continuous function $b_{\mathcal{X}}$ is called a **proximity function** (or prox-function) of a convex set \mathcal{X} if $\mathcal{X} \subseteq \text{dom}(b_{\mathcal{X}})$.

Example (Well-known prox-functions)

- $b_{\mathcal{X}}(\mathbf{x}) := \frac{1}{2} \|\mathbf{x}\|_2^2$ is a prox-function of $\mathcal{X} \equiv \mathbb{R}^p$ (simplest one, $\mu_b = 1$).
- $b_{\mathcal{X}}(\mathbf{x}) := p + \sum_{i=1}^{p} \mathbf{x}_i \log(\mathbf{x}_i)$ is a prox-function of the standard simplex

$$\mathcal{X} := \{ \mathbf{x} \in \mathbb{R}^p_+ : \sum_{i=1}^p \mathbf{x}_i = 1 \},$$

where $\mu_b = 1$ measured in ℓ_1 -norm (entropy prox-function).

Prox-center and prox-diameter

Definition (Prox-center and prox-diameter)

A point x_c defined as

$$\mathbf{x}_c := \operatorname*{argmin}_{\mathbf{x} \in \mathcal{X}} b_{\mathcal{X}}(\mathbf{x})$$

is called the prox-center of \mathcal{X} w.r.t. $b_{\mathcal{X}}$.

The quantity

$$D^b_{\mathcal{X}} := \sup_{\mathbf{x}\in\mathcal{X}} b_{\mathcal{X}}(\mathbf{x})$$

is called the prox-diameter of \mathcal{X} w.r.t. $b_{\mathcal{X}}$.

Note:

- The point x_c always exists.
- Convention: $b_{\mathcal{X}}(\mathbf{x}_c) = 0$.
- If \mathcal{X} is bounded, then $0 \leq D_{\mathcal{X}}^b < +\infty$.

Example

Example (Entropy function)

• The center point of the entropy prox-function $b_{\mathcal{X}}(\mathbf{x}) := p + \sum_{i=1}^p x_i \log(x_i)$ is

 $\mathbf{x}_c := (1/p, 1/p, \cdots, 1/p)^T \in \mathbb{R}^p.$

• The prox-diameter of $b_{\mathcal{X}}(\mathbf{x}) := p + \sum_{i=1}^{p} x_i \log(x_i)$ is

 $D^b_{\mathcal{X}} := 1 - 1/p.$

Nesterov's smoothing technique

Problem (Max-structure function)

Given $\mathbf{A} \in \mathbb{R}^{p \times q}$, a convex function $f^* \in \mathcal{F}(\mathbb{R}^q)$ and a nonempty, closed convex set $\mathcal{U} \in \mathbb{R}^q$. Is the following function smoothable?

$$f(\mathbf{x}) := \max_{\mathbf{u} \in \mathcal{U}} \{ \mathbf{u}^T \mathbf{A} \mathbf{x} - f^*(\mathbf{u}) \}, \quad \forall \mathbf{x} \in \mathbb{R}^p.$$
(4)

Nesterov's smoothing technique

Problem (Max-structure function)

Given $\mathbf{A} \in \mathbb{R}^{p \times q}$, a convex function $f^* \in \mathcal{F}(\mathbb{R}^q)$ and a nonempty, closed convex set $\mathcal{U} \in \mathbb{R}^q$. Is the following function smoothable?

$$f(\mathbf{x}) := \max_{\mathbf{u} \in \mathcal{U}} \{ \mathbf{u}^T \mathbf{A} \mathbf{x} - f^*(\mathbf{u}) \}, \quad \forall \mathbf{x} \in \mathbb{R}^p.$$
(4)

Definition (Nesterov's smoother)

For f given by (4), the function:

$$f_{\gamma}(\mathbf{x}) := \max_{\mathbf{u} \in \mathcal{U}} \{ \mathbf{u}^T \mathbf{A} \mathbf{x} - f^*(\mathbf{u}) - \gamma b_{\mathcal{U}}(\mathbf{u}) \}$$
(5)

is a smoother of f, where $b_{\mathcal{U}}$ is a prox-function of \mathcal{U} and $\gamma > 0$ is a smoothness parameter.

Key estimates

Proposition (Nesterov's lemma [20])

- The function f defined by (4) is a smoothable function by f_{γ} defined by (5).
- ▶ Parameters: $(\gamma, D_{\mathcal{U}}^b, L_{f_{\gamma}})$, where $D_{\mathcal{U}}^b$ is the prox-diameter of \mathcal{U} and $L_{f_{\gamma}} := \frac{\|\mathbf{A}\|^2}{\mu_h}$.
- Approximate bound:

$$f_{\gamma}(\mathbf{x}) \le f(\mathbf{x}) \le f_{\gamma}(\mathbf{x}) + \gamma D_{\mathcal{U}}^{b}, \quad \forall \mathbf{x} \in \mathbb{R}^{p}.$$
 (6)

Example 1: ℓ_1 -norm

Problem (ℓ_1 -norm)

Is $f(\mathbf{x}) := \|\mathbf{x}\|_1$ a smoothable function? (in Nesterov's sense).

Smoother for f

$$f_{\gamma}(\mathbf{x}) := \max_{\mathbf{u} \in \mathbb{R}^p} \{ \mathbf{x}^T \mathbf{u} - (\gamma/2) \| \mathbf{u} \|_2^2 : \| \mathbf{u} \|_{\infty} \le 1 \}.$$

- f_{γ} is smooth and ∇f_{γ} is Lipschitz continuous with $L_{f_{\gamma}} = \gamma^{-1}$.
- $f_{\gamma}(\mathbf{x}) \leq f(\mathbf{x}) \leq f_{\gamma}(\mathbf{x}) + \gamma \sqrt{n}$ for all $\mathbf{x} \in \mathbb{R}^p$.

Example 2: Nuclear norm

Is the nuclear norm smoothable?

Problem: $f(\mathbf{X}) := \|\mathbf{X}\|_{\star}$ - the nuclear norm of matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$.

Example 2: Nuclear norm

Is the nuclear norm smoothable?

Problem: $f(\mathbf{X}) := \|\mathbf{X}\|_{\star}$ - the nuclear norm of matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$.

Prox-smoother

$$f_{\gamma}(\mathbf{X}) := \max_{\mathbf{U} \in \mathbb{R}^{n \times p}} \{ \operatorname{tr}(\mathbf{X}\mathbf{U}) - (\gamma/2) \|\mathbf{U}\|_{F}^{2} : \sigma_{1}(\mathbf{U}) \leq 1 \}.$$

- f_{γ} is smooth and ∇f_{γ} is Lipschitz continuous with $L_{f_{\gamma}} = \gamma^{-1}$.
- $f_{\gamma}(\mathbf{X}) \leq f(\mathbf{X}) \leq f_{\gamma}(\mathbf{X}) + \gamma \sqrt{mn}$ for all $\mathbf{X} \in \mathbb{R}^{n \times p}$.

Smoothing to nonsmooth minimization

Problem (Nonsmooth composite formulation)

$$F^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}.$$
(7)

Smoothing to nonsmooth minimization

Problem (Nonsmooth composite formulation)

$$F^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}.$$
(7)

Assumption A.3

 $f \in \mathcal{F}(\mathbb{R}^p)$ is smoothable and $g \in \mathcal{F}_{prox}(\mathbb{R}^p)$.

Smoothing to nonsmooth minimization

Problem (Nonsmooth composite formulation)

$$F^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}.$$
(7)

Assumption A.3

 $f \in \mathcal{F}(\mathbb{R}^p)$ is smoothable and $g \in \mathcal{F}_{prox}(\mathbb{R}^p)$.

Two-step strategy

1. Smooth f by f_{γ} to obtain the smoothed problem:

$$F_{\gamma}^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F_{\gamma}(\mathbf{x}) := f_{\gamma}(\mathbf{x}) + g(\mathbf{x}) \right\}.$$
(8)

2. Apply FISTA to solve the smoothed problem (8).

Smoothing fast proximal-gradient

 $\begin{array}{c} \hline \textbf{Smoothing fast proximal-gradient} \\ \hline \textbf{1. Give an accuracy } \varepsilon > 0. Choose <math>\mathbf{x}^0 \in \mathbb{R}^p$ as a starting point. Set $\gamma := \frac{\varepsilon}{D_{UL}^p}$. **2.** Set $\mathbf{y}^0 := \mathbf{x}^0$ and $t_0 := 1$. **3.** For $k = 0, 1, \cdots$, perform: $\left\{ \begin{array}{c} \mathbf{x}^{k+1} & := \operatorname{prox}_{\lambda g} \left(\mathbf{y}^k - \lambda \nabla f_{\gamma}(\mathbf{y}^k) \right), \quad \lambda := 1/L_f, \\ t_{k+1} & := 0.5(1 + \sqrt{4t_k^2 + 1}), \\ \eta_{k+1} & := (t_k - 1)/t_{k+1}, \\ \mathbf{y}^{k+1} & := \mathbf{x}^{k+1} + \eta_{k+1}(\mathbf{x}^{k+1} - \mathbf{x}^k). \end{array} \right.$ (9)

Smoothing fast proximal-gradient

 $\begin{array}{c} \hline \textbf{Smoothing fast proximal-gradient} \\ \hline \textbf{1. Give an accuracy } \varepsilon > 0. Choose <math>\mathbf{x}^0 \in \mathbb{R}^p$ as a starting point. Set $\gamma := \frac{\varepsilon}{D_{U}^p}$. **2.** Set $\mathbf{y}^0 := \mathbf{x}^0$ and $t_0 := 1$. **3.** For $k = 0, 1, \cdots$, perform: $\begin{cases} \mathbf{x}^{k+1} & := \operatorname{prox}_{\lambda g} \left(\mathbf{y}^k - \lambda \nabla f_{\gamma}(\mathbf{y}^k) \right), & \lambda := 1/L_f, \\ t_{k+1} & := 0.5(1 + \sqrt{4t_k^2 + 1}), & (9) \\ \eta_{k+1} & := (t_k - 1)/t_{k+1}, \\ \mathbf{y}^{k+1} & := \mathbf{x}^{k+1} + \eta_{k+1}(\mathbf{x}^{k+1} - \mathbf{x}^k). \end{cases}$

Complexity per iteration

- One gradient $\nabla f_{\gamma}(\mathbf{y}^k)$
- One prox-operator of g
- ▶ 8 arithmetic operations for t_{k+1} and η_{k+1} ;
- \blacktriangleright 2 more vector additions and 1 scalar-vector multiplication.

The cost per iteration is almost the same as in proximal-gradient scheme.

Global complexity

Theorem (Global complexity [20]) The worst-case complexity to reach $F(\mathbf{x}^{k}) - F^{\star} \leq \varepsilon$ is $\mathcal{O}\left(2\sqrt{2}\|\mathbf{A}\|_{2}\frac{\sqrt{D_{\mathcal{U}}^{p}}R_{0}}{\sqrt{\mu_{p}\varepsilon}}\right),$ (10) where $R_{0} := \max_{\mathbf{x}^{\star} \in S^{\star}} \|\mathbf{x}^{0} - \mathbf{x}^{\star}\|_{2}.$

Proof of Global complexity

Sketch of proof.

By using FISTA to (8) and the convergence theorem of FISTA, we have

$$F_{\gamma}(\mathbf{x}^{k}) - F_{\gamma}(\mathbf{x}) \leq \frac{2L_{f_{\gamma}}}{(k+2)^{2}} \|\mathbf{x}^{0} - \mathbf{x}\|_{2}^{2}, \ \forall \mathbf{x} \in \mathbb{R}^{n}.$$

Using (6), we have $F(\mathbf{x}^k) - F(\mathbf{x}^\star) \le F_{\gamma}(\mathbf{x}^k) - F_{\gamma}(\mathbf{x}^\star) + \gamma D_{\mathcal{U}}^p$. Hence

$$F(\mathbf{x}^{k}) - F(\mathbf{x}^{\star}) \le \frac{2\|\mathbf{A}\|_{2}^{2}}{\gamma(k+2)^{2}} R_{0}^{2} + \gamma D_{\mathcal{U}}^{p} = \varepsilon.$$

Minimizing the right-hand side $s(\gamma) := \frac{2\|\mathbf{A}\|_2^2}{\gamma(k+2)^2} R_0^2 + \gamma D_{\mathcal{U}}^p$ w.r.t. γ , we have

$$\begin{split} \gamma &= \frac{\sqrt{2} \|\mathbf{A}\|_{2} R_{0}}{(k+2) \sqrt{D_{\mathcal{U}}^{p}}}.\\ \text{Using this } \gamma \text{ and the fact } s(\gamma) &= \varepsilon \text{, we } \gamma = \frac{\varepsilon}{D_{\mathcal{U}}^{p}} \text{ and } \end{split}$$

$$k+2 \ge 2\sqrt{2} \|\mathbf{A}\|_2 \frac{\sqrt{D_{\mathcal{U}}^p} R_0}{\sqrt{\mu_p} \varepsilon},$$

which leads to (10).

Example: Robust PCA

Problem (**RPCA problem**)

$$F^{\star} := \min_{\mathbf{L} \in \mathbb{R}^{n \times p}} \left\{ F(\mathbf{L}) := \underbrace{\| \operatorname{vec}(\mathbf{M} - \mathbf{L}) \|_1}_{f(\mathbf{L})} + \underbrace{\lambda \| \mathbf{L} \|_*}_{g(\mathbf{L})} \right\}.$$

Example: Robust PCA

Problem (RPCA problem)

$$F^{\star} := \min_{\mathbf{L} \in \mathbb{R}^{n \times p}} \left\{ F(\mathbf{L}) := \underbrace{\| \operatorname{vec}(\mathbf{M} - \mathbf{L}) \|_{1}}_{f(\mathbf{L})} + \underbrace{\lambda \| \mathbf{L} \|_{*}}_{g(\mathbf{L})} \right\}.$$

Strategy

• Case 1: Smooth $f(\mathbf{L}) := \|\operatorname{vec}(\mathbf{M} - \mathbf{L})\|_1$ by

$$f_{\gamma}(\mathbf{L}) := \gamma \sum_{i,j} \log(e^{(\mathbf{M}_{ij} - \mathbf{L}_{ij})/\gamma} + e^{-(\mathbf{M}_{ij} - \mathbf{L}_{ij})/\gamma}).$$

- Case 2: Smooth $g(\mathbf{L}) := \|\mathbf{L}\|_*$ by

$$g_{\gamma}(\mathbf{L}) := \max_{\mathbf{U}} \left\{ \operatorname{tr}(\mathbf{L}^{T}\mathbf{U}) - (\gamma/2) \|\mathbf{U}\|_{F}^{2} \mid \lambda_{1}(\mathbf{U}) \leq 1 \right\}.$$

A self-concordant barrier analogue of the smoothing approach

Problem (Max-structure function)

Given $\mathbf{A} \in \mathbb{R}^{p \times q}$, a convex function $f^* \in \mathcal{F}(\mathbb{R}^q)$ and a nonempty, closed convex set $\mathcal{U} \in \mathbb{R}^q$. Is the following function smoothable?

$$f(\mathbf{x}) := \max_{\mathbf{u} \in \mathcal{U}} \{ \mathbf{u}^T \mathbf{A} \mathbf{x} - f^*(\mathbf{u}) \}, \quad \forall \mathbf{x} \in \mathbb{R}^p.$$

Definition (Nesterov's smoother)

$$f_{\gamma}(\mathbf{x}) := \max_{\mathbf{u} \in \mathcal{U}} \{ \mathbf{u}^{T} \mathbf{A} \mathbf{x} - f^{*}(\mathbf{u}) - \gamma p_{\mathcal{U}}(\mathbf{u}) \}$$

is a smoother of f, where $p_{\mathcal{U}}$ is a prox-function of $\mathcal U$ and $\gamma>0$ is a smoothness parameter.

A self-concordant barrier analogue of the smoothing approach

Problem (Max-structure function)

Given $\mathbf{A} \in \mathbb{R}^{p \times q}$, a convex function $f^* \in \mathcal{F}(\mathbb{R}^q)$ and a nonempty, closed convex set $\mathcal{U} \in \mathbb{R}^q$. Is the following function smoothable?

$$f(\mathbf{x}) := \max_{\mathbf{u} \in \mathcal{U}} \{ \mathbf{u}^T \mathbf{A} \mathbf{x} - f^*(\mathbf{u}) \}, \quad \forall \mathbf{x} \in \mathbb{R}^p.$$

Definition (Self-concordant barrier smoother [21])

$$f_{\sigma}(\mathbf{x}) := \max_{\mathbf{u} \in \mathcal{U}} \{\mathbf{u}^T \mathbf{A} \mathbf{x} - f^*(\mathbf{u}) - \sigma b_{\mathcal{U}}(\mathbf{u})\}$$

is a smoother of f, where $b_{\mathcal{U}}$ is a self-concordant barrier of \mathcal{U} and $\gamma > 0$ is a smoothness parameter.

Recall: Self-concordant barrier

Definition (Self-concordant function)

A convex function $f : \operatorname{dom}(f) \subset \mathbb{R}^n \to \mathbb{R}$ with an open domain is said to be self-concordant with parameter $M \ge 0$, if $|\phi'''(t)| \le M [\phi''(t)]^{3/2}$, where $\phi(t) := f(\mathbf{x} + t\mathbf{v})$ for all $t \in \mathbb{R}$, $\mathbf{x} \in \operatorname{dom}(f)$ and \mathbf{v} such that $\mathbf{x} + t\mathbf{v} \in \operatorname{dom}(f)$.

When M = 2, the function f is said to be standard self-concordant.

Definition (Self-concordant barrier)

A standard self-concordant function f is a $\nu\text{-self-concordant}$ barrier of the set $\mathrm{dom}(f)$ with parameter $\nu>0$ if

$$\sup_{\mathbf{u}\in\mathbb{R}^p}\left\{2\mathbf{u}^T\nabla f(\mathbf{x})-\mathbf{u}\nabla^2 f(\mathbf{x})\mathbf{u}\right\}\leq\nu,\quad\forall\mathbf{x}\in\mathrm{dom}(f).$$

Example

- $f(\mathbf{x}) := -\sum_{i=1}^{p} \ln(x_i)$ is a *p*-self-concordant barrier of \mathbb{R}^p_{++} .
- $f(\mathbf{X}) := -\ln \det(\mathbf{X})$ is a *p*-self-concordant barrier of \mathbb{S}_{++}^p .

Key estimates

Definition (Analytic center)

Let $b_{\mathcal{U}}$ be a self-concordant barrier of a convex set \mathcal{U} . The analytic center is defined as

$$\mathbf{u}_c := \arg\min_{\mathbf{u}\in \operatorname{int}(\mathcal{U})} b_{\mathcal{U}}(\mathbf{u}).$$

Convention: $b_{\mathcal{U}}(\mathbf{u}_c) = 0$; otherwise shift the original $b_{\mathcal{U}}$ by the constant $-b_{\mathcal{U}}(\mathbf{u}_c)$.

Theorem ([21]) Define $f_c(\mathbf{x}) = \mathbf{u}_c^T \mathbf{A} \mathbf{x} - f^*(\mathbf{u})$. For any $\sigma > 0$, f_σ is convex and

$$f_{\sigma}(\mathbf{x}) \leq f(\mathbf{x}) \leq f_{\sigma}(\mathbf{x}) + \sigma \nu \left\{ 1 + \left[\ln \left(\frac{f(\mathbf{x}) - f_c(\mathbf{x})}{\sigma \nu} \right) \right]_+ \right\},$$

where $[a]_+ := \max\{0, a\}.$

Observation: If $f(\mathbf{x}) - f_c(\mathbf{x}) \leq \sigma \nu \exp(\rho)$, $|f(\mathbf{x}) - f_\sigma(\mathbf{x})| \leq (1 + \rho)\sigma \nu \to 0$ as $\sigma \downarrow 0$ with any $\rho \in \mathbb{R}$.

* Differentiability

Theorem ([21])

The smoother f_{σ} is differentiable in $int(dom(f_{\sigma}))$ and $\nabla f_{\sigma}(\mathbf{x}) = \mathbf{A}^T \mathbf{u}^{\star}(\mathbf{x})$.

For any $\mathbf{x}, \mathbf{y} \in int(dom(f_{\sigma}))$,

$$\left\|\nabla f_{\sigma}(\mathbf{y}) - \nabla f_{\sigma}(\mathbf{x})\right\|_{2} \leq \sigma^{-1} c_{\mathbf{A}}(\mathbf{y}) \left[c_{\mathbf{A}}(\mathbf{y}) + \left\|\nabla f_{\sigma}(\mathbf{y}) - \nabla f_{\sigma}(\mathbf{x})\right\|\right] \left\|\mathbf{y} - \mathbf{x}\right\|_{2},$$

where

$$\begin{split} c_{\mathbf{A}}(\mathbf{y}) &:= \left\| \mathbf{A}^T \nabla^2 b_{\mathcal{U}}(\mathbf{u}^*(\mathbf{x})) \mathbf{A} \right\|_2^{1/2}, \\ \mathbf{u}^*(\mathbf{x}) &:= \arg \max_{\mathbf{u} \in \mathcal{U}} \left\{ \mathbf{u}^T \mathbf{A} \mathbf{x} - f^*(\mathbf{u}) - \sigma b_{\mathcal{U}}(\mathbf{u}) \right\}. \end{split}$$

Observation: ∇f_{σ} is Lipschitz-like.

A gradient method for self-concordant barrier smoothing

 Barrier smoothing with the gradient method

 1. Give the smoothness parameter $\sigma > 0$ and an accuracy $\varepsilon > 0$. Choose $\mathbf{x}^0 \in \mathbb{R}^p$ as a starting point.

 2. For $k = 0, 1, \cdots$, perform:

 1. Calculate $\nabla f_{\sigma}(\mathbf{x}^k) := \mathbf{A}^T \mathbf{u}^*(\mathbf{x}^k)$.

 2. Compute $r_k := \left\| \nabla f_{\sigma}(\mathbf{x}^k) \right\|_2$ and $c_{\mathbf{A}}^k := c_{\mathbf{A}}(\mathbf{x}^k)$.

 3. If $r_k \le \varepsilon$, terminate.

 4. Otherwise, update $\mathbf{x}^{k+1} := \mathbf{x}^k - \alpha_k \nabla f_{\sigma}(\mathbf{x}^k)$, where $\alpha_k := \sigma \left[c_{\mathbf{A}}^k \left(c_{\mathbf{A}}^k + r_k \right) \right]^{-1}$.

Observation: The step size α_k adapts to the local structure of f_{σ} .

Theorem (cf. [21] for details)

$$f_{\sigma}(\mathbf{x}^{k}) - f_{\sigma}^{\star} \leq \frac{4\overline{c_{\mathbf{A}}}^{2} \left\| \mathbf{x}^{0} - \mathbf{x}_{\sigma}^{\star} \right\|_{2}^{2}}{\sigma k},$$

where $\mathbf{x}_{\sigma}^{\star} := \arg \min_{\mathbf{x}} f(\mathbf{x}), f_{\sigma}^{\star} := f_{\sigma}(\mathbf{x}_{\sigma}^{\star})$, and $\overline{c_{\mathbf{A}}}$ is any upper bound of $c_{\mathbf{A}}(\mathbf{x})$ on $\operatorname{dom}(f_{\sigma})$.
Advantages of self-concordant barrier smoothing

Advantage 1: Faster convergence

The step size α_k adapts to the local structure of the smoother, and thus the algorithm can *converge fast*.

Recall: $\alpha_k \equiv 1/L_{f_{\gamma}}$ for Nesterov smoothing.

Advantage 2: Easier subproblems

The domain dom($b_{\mathcal{U}}$) is the interior of \mathcal{U} , meaning that solving for $\mathbf{u}^{\star}(\mathbf{x}^k)$ is equivalent to solving the *unconstrained optimization problem*

$$\mathbf{u}^{\star}(\mathbf{x}^{k}) := \arg \max_{\mathbf{u}} \left\{ \mathbf{u}^{T} \mathbf{A} \mathbf{x} - f^{*}(\mathbf{u}) - \sigma b_{\mathcal{U}}(\mathbf{u}) \right\}.$$

Recall: For Nesterov smoothing we have

$$\mathbf{u}^{\star}(\mathbf{x}^{k}) := \arg \max_{\mathbf{u} \in \mathcal{U}} \left\{ \mathbf{u}^{T} \mathbf{A} \mathbf{x} - f^{*}(\mathbf{u}) - \sigma p_{\mathcal{U}}(\mathbf{u}) \right\}.$$

Example: Quadratically constrained quadratic programming

Quadratically constrained quadratic programming (QCQP)

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{Q} \in \mathbb{R}^{m \times m}$ be positive semidefinite, $\mathbf{B} \in \mathbb{R}^{m \times m}$ be Hermitian positive definite, and $\mathbf{b} \in \mathbb{R}^m$. A QCQP problem takes the following form.

$$g^{\star} := \min_{\mathbf{y} \in \mathbb{R}^{m}} \left\{ \mathbf{y}^{T} \mathbf{Q} \mathbf{y} + \mathbf{b}^{T} \mathbf{y} : \mathbf{y}^{T} \mathbf{B} \mathbf{y} \leq 1, \mathbf{A}^{T} \mathbf{y} = 0 \right\}.$$

The equivalent dual form of QCQP is the following.

$$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^n} \left\{ f(\mathbf{x}) := \max_{\mathbf{u}} \left\{ \mathbf{u}^T (\mathbf{A}\mathbf{x} - \mathbf{b}) - \frac{1}{2} \mathbf{u}^T \mathbf{Q} \mathbf{u} : \mathbf{u} \in \mathcal{U} \right\} \right\},$$

where $\mathcal{U} := \left\{ \mathbf{u} : \mathbf{u}^T \mathbf{B} \mathbf{u} \leq 1, \mathbf{u} \in \mathbb{R}^m \right\}.$

Observation: When \mathbf{Q} is singular, f is nonsmooth.

Two approaches to solve the dual form of QCQP

- 1. Nesterov smoothing: Choose the prox-function $p_{\mathcal{U}}(\mathbf{u}) := \frac{1}{2} \mathbf{u}^T \mathbf{B} \mathbf{u}$.
- 2. Barrier smoothing: Choose the self-concordant barrier $b_{\mathcal{U}}(\mathbf{u}) := -\ln \left(1 \mathbf{u}^T \mathbf{B} \mathbf{u}\right).$

Numerical result

Orange: Nesterov smoothing with line search; Red: Barrier smoothing

[1] Dennis Amelunxen, Martin Lotz, Michael B. McCoy, and Joel A. Tropp.

Living on the edge: Phase transitions in convex programs with random data. 2014. arXiv:1303.6672v2 [cs.IT].

- [2] T. W. Anderson, I. Olkin, and L. G. Underhill. Generation of random orthogonal matrices. *SIAM J. Sci. Stat. Comput.*, 8(4):625–629, 1987.
- [3] Emmanuel Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component analysis? *J. ACM*, 58(3), may 2011.
- [4] Venkat Chandrasekaran and Michael I. Jordan.
 Computational and statistical tradeoffs via convex relaxation.
 Proc. Natl. Acad. Sci., 110(13):E1181–E1190, 2013.
- [5] Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, and Alan S. Willsky. The convex geometry of linear inverse problems. *Found. Comput. Math.*, 12:805–849, 2012.

[6] David Donoho and Jared Tanner.

Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing.

Phil. Trans. R. Soc. A, 367:4273-4293, 2009.

[7] David L. Donoho.

Neighborly polytopes and sparse solution of underdetermined linear equations. Technical report, Stanford University, 2004.

- [8] David L. Donoho and Xiaoming Huo.
 Uncertainty principles and ideal atomic decomposition.
 IEEE Trans. Inf. Theory, 47(7):2845–2862, November 2001.
- [9] David L. Donoho and Philip B. Stark.

Uncertainty principles and signal recovery.

SIAM J. Appl. Math., 49(3):906-931, June 1989.

[10] David L. Donoho and Jared Tanner.

Counting faces of randomly projected polytopes when the projection radically lowers dimension.

J. Amer. Math. Soc., 22(1):1-53, January 2009.

[11] M. Elad, J.-L. Starck, P. Querre, and D. L. Donoho.

Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA).

Appl. Comput. Harmon. Anal., 19:340-358, 2005.

[12] Michael Elad and Alfred M. Bruckstein.

A generalized uncertainty principle and sparse representation in pairs of bases.

IEEE Trans. Inf. Theory, 48(9):2558-2567, September 2002.

[13] Simon Foucart and Holger Rauhut.

A Mathematical Introduction to Compressive Sensing. Birkhäuser, Basel, 2013.

Binkinduser, Buser, 2015.

[14] Rina Foygel and Lester Mackey.

Corrupted sensing: Novel guarantees for separating structured signals. 2014.

arXiv:1305.2524v2 [cs.IT].

[15] Daniel A. Klain and Gian-Carlo Rota.

Introduction to Geometric Probability.

Cambridge Univ. Press, Cambridge, UK, 1997.

[16] Michael B. McCoy.

A geometric analysis of convex demixing. PhD thesis, California Institute of Technology, 2013.

[17] Michael B. McCoy, Volkan Cevher, Quoc Tran-Dinh, Afsaneh Asaei, and Luca Baldassarre. Convexity in source separation: Models, geometry, and algorithms. *IEEE Signal Process. Mag.*, 31(3):87–95, May 2014.

[18] Michael B. McCoy and Joel A. Tropp.

Sharp recovery bounds for convex demixing, with applications. *Found. Comput. Math.*, 14:503–567, 2014.

[19] Vitali D. Milman and Gideon Schechtman. Asymptotic Theory of Finite Dimensional Normed Spaces. Springer-Verl., second edition, 2001.

[20] Yu. Nesterov.

Smooth minimization of non-smooth functions.

Math. Program., Ser. A, 103:127-152, 2005.

[21] Tran-Dinh Quoc, Yen-Huan Li, and Volkan Cevher.

Barrier smoothing for nonsmooth convex minimization.

In 2014 IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), pages 1503–1507, 2014.

[22] Ghristoph Studer, Patrick Kuppinger, Graeme Pope, and Helmut Bölcskei. Recovery of sparsely corrupted signals.

IEEE Trans. Inf. Theory, 58(5):3115-3130, May 2012.

[23] L. R. Welch.

Lower bounds on the maximum cross correlation of signals. *IEEE Trans. Inf. Theory*, IT-20(3):397–399, May 1974.

[24] Hermann Weyl.

The Theory of Groups and Quantum Mechanics. Dover, 1950.