## Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

## Lecture 6: Unconstrained, smooth minimization III

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

#### EE-556 (Fall 2015)





## License Information for Mathematics of Data Slides

- This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
  - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
  - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.
- Share Alike
  - The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

lions@epfl



## Outline

- This lecture
  - 1. The quadratic case and conjugate gradient
  - 2. Other optimization methods
- Next lecture
  - 1. Motivation for non-smooth models
  - 2. Subgradient descent



## **Recommended reading**

- Chapters 2, 3, 5, 6 in Nocedal, Jorge, and Wright, Stephen J., Numerical Optimization, Springer, 2006.
- Chapter 9 in Boyd, Stephen, and Vandenberghe, Lieven, Convex optimization, Cambridge university press, 2009.
- Chapter 1 in Bertsekas, Dimitris, Nonlinear Programming, Athena Scientific, 1999.
- Chapters 1, 2 and 4 in Nesterov, Yurii, Introductory Lectures on Convex Optimization: A Basic Course, Vol. 87, Springer, 2004.



## Motivation

### Motivation

This lecture covers some more advanced numerical methods for *unconstrained* and *smooth* convex minimization.





## Recall: convex, unconstrained, smooth minimization



$$F^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) := f(\mathbf{x}) \right\}$$

(1)

where f is proper, closed, convex and twice differentiable. Note that (1) is unconstrained.

How de we design efficient optimization algorithms with accuracy-computation tradeoffs for this class of functions?



## Linear systems

#### Problem (Solving a linear system)

Which is the best method for solving the linear system

$$Ax = b$$
?

Solving a linear system via optimization

To find a solution to the linear system, we can also solve the optimization problem

$$\min_{\mathbf{x}} f_{\mathbf{A},\mathbf{b}}(\mathbf{x}) := \frac{1}{2} \langle \mathbf{A}\mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle$$

which is seen to have a solution satisfying Ax = b by solving  $\nabla_x f_{A,b}(x) = 0$ .

- $f_{\mathbf{A},\mathbf{b}}$  is a quadratic function with Lipschitz-gradient  $(L = ||\mathbf{A}||)$ .
- If **A** is a  $p \times p$  symmetric positive definite matrix, (i.e.,  $\mathbf{A} = \mathbf{A}^T \succ 0$ ),  $f_{\mathbf{A}}$  is also strongly convex ( $\mu = \lambda_1(\mathbf{A})$ , the smallest eigenvalue of **A**).
- ▶ if A is not symmetric, but full column rank, we can consider the system

$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$$

which can be seen as:  $\Phi {\bf x} = {\bf y}$  where  $\Phi$  is symmetric and positive definite.



## Linear systems

## Remark

If  $\Phi$  is diagonal and positive definite, given a starting point  $\mathbf{x}^0 \in \text{dom}(f)$ , successive minimization of  $f_{\Phi,\mathbf{y}}(\mathbf{x})$  along the coordinate axes yield  $\mathbf{x}^{\star}$  is at most p steps.





## How can we adapt to the geometry of $\Phi$ ?

Conjugate gradients method -  $\Phi$  symmetric and positive definite Generate a set of *conjugate* directions  $\{\mathbf{p}^0, \mathbf{p}^1, \dots, \mathbf{p}^{p-1}\}$  such that

 $\langle \mathbf{p}^i, \mathbf{\Phi} \mathbf{p}^j \rangle = 0$  for all  $i \neq j$  (which also implies linear independence).

Successively minimize  $f_{\Phi,\mathbf{y}}$  along the individual conjugate directions. Let

$$\mathbf{r}^k = \mathbf{\Phi} \mathbf{x}^k - \mathbf{y} \quad \text{and} \quad \mathbf{x}^{k+1} = \mathbf{x}^k + \alpha_k \mathbf{p}^k \;,$$

where  $\alpha_k$  is the minimizer of  $f_{{\bf \Phi},{\bf y}}({\bf x})$  along  ${\bf x}^k+\alpha {\bf p}^k$ , i.e.,

$$\alpha_k = -\frac{\langle \mathbf{r}^k, \mathbf{p}^k \rangle}{\langle \mathbf{p}^k, \mathbf{\Phi} \mathbf{p}^k \rangle}$$

#### Theorem

For any  $\mathbf{x}^0 \in \mathbb{R}^p$  the sequence  $\{\mathbf{x}^k\}$  generated by the conjugate directions algorithm converges to the solution  $\mathbf{x}^*$  of the linear system in **at most** p steps.

#### Intuition

The conjugate directions adapt to the geometry of the problem, taking the role of the canonical directions when  $\Phi$  is a generic symmetric positive definite matrix.

lions@epfl



Slide 9/ 40



### Intuition

lions@epfl

The conjugate directions adapt to the geometry of the problem, taking the role of the canonical directions when  $\Phi$  is a generic symmetric positive definite matrix.

#### Back to diagonal

For a generic symmetric positive definite  $\Phi,$  let us consider the variable  $\bar{\mathbf{x}}:=\mathbf{S}^{-1}\mathbf{x},$  with

$$\mathbf{S} = \left[\mathbf{p}^0, \dots, \mathbf{p}^{p-1}\right]$$

where  $\{\mathbf{p}^k\}$  are the conjugate directions with respect to  $\mathbf{\Phi}.~f_{\mathbf{\Phi},\mathbf{y}}(\mathbf{x})$  now becomes

$$ar{f}_{\mathbf{\Phi},\mathbf{y}}(ar{\mathbf{x}}) := f_{\mathbf{\Phi},\mathbf{y}}(\mathbf{S}ar{\mathbf{x}}) = rac{1}{2} \langle ar{\mathbf{x}}, (\mathbf{S}^T \mathbf{\Phi} \mathbf{S}) ar{\mathbf{x}} 
angle - \langle \mathbf{S}^T \mathbf{y}, ar{\mathbf{x}} 
angle.$$

By the conjugacy property,  $\langle \mathbf{p}^i, \mathbf{\Phi}\mathbf{p}^j \rangle = 0$ ,  $\forall i \neq j$ , the matrix  $\mathbf{S}^T \mathbf{\Phi} \mathbf{S}$  is diagonal. Therefore, we can find the minimum of  $\bar{f}(\bar{\mathbf{x}})$  in at most p steps along the canonical directions in  $\bar{\mathbf{x}}$  space, which are the  $\{\mathbf{p}^k\}$  directions in  $\mathbf{x}$  space.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 40



## Conjugate directions naturally adapt to the linear operator







#### Theorem

For any  $\mathbf{x}^0 \in \mathbb{R}^p$  the sequence  $\{\mathbf{x}^k\}$  generated by the conjugate directions algorithm converges to the solution  $\mathbf{x}^{\natural}$  of the linear system in at most p steps.

#### Proof.

lions@epfl

Since  $\{\mathbf{p}^k\}$  are linearly independent, they span  $\mathbb{R}^p$ . Therefore, we can write

$$\mathbf{x}^{\star} - \mathbf{x}^0 = a_0 \mathbf{p}^0 + a_1 \mathbf{p}^1 + \dots + a_{p-1} \mathbf{p}^{p-1}$$

for some values of the coefficients  $a_k$ . By multiplying on the left by  $(\mathbf{p}^k)^T \mathbf{\Phi}$  and using the conjugacy property, we obtain

$$a_k = \frac{\langle \mathbf{p}^k, \mathbf{\Phi}(\mathbf{x}^\star - \mathbf{x}^0) \rangle}{\langle \mathbf{p}^k, \mathbf{\Phi} \mathbf{p}^k \rangle}.$$

Since  $\mathbf{x}^k = \mathbf{x}^{k-1} + \alpha_{k-1}\mathbf{p}^{k-1}$ , we have  $\mathbf{x}^k = \mathbf{x}^0 + \alpha_0\mathbf{p}^0 + \alpha_1\mathbf{p}^1 + \dots + \alpha_{k-1}\mathbf{p}^{k-1}$ . By premultiplying by  $(\mathbf{p}^k)^T \mathbf{\Phi}$  and using the conjugacy property, we obtain  $\langle \mathbf{p}^k, \mathbf{\Phi}(\mathbf{x}^k - \mathbf{x}^0) \rangle = 0$  which implies

$$\langle \mathbf{p}^k, \mathbf{\Phi}(\mathbf{x}^{\star} - \mathbf{x}^0) \rangle = \langle \mathbf{p}^k, \mathbf{\Phi}(\mathbf{x}^{\star} - \mathbf{x}^k) \rangle = \langle \mathbf{p}^k, \mathbf{y} - \mathbf{\Phi}\mathbf{x}^0) \rangle = -\langle \mathbf{p}^k, \mathbf{r}^k \rangle$$

so that  $a_k = -\frac{\langle \mathbf{p}^k, \mathbf{r}^k \rangle}{\langle \mathbf{p}^k, \mathbf{p}_k \rangle} = \alpha_k.$ 

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch



## How can we efficiently generate a set of conjugate directions?

Iteratively generate the new descent direction  $\mathbf{p}^k$  from the previous one:

$$\mathbf{p}^k = -\mathbf{r}^k + \beta_k \mathbf{p}^{k-1}$$

For ensuring conjugacy  $\langle {\bf p}^k, {\bf \Phi} {\bf p}^{k-1} \rangle = 0$  , we need to choose  $\beta_k$  as

$$\beta_k = \frac{\langle \mathbf{r}^k, \mathbf{\Phi} \mathbf{p}^{k-1} \rangle}{\langle \mathbf{p}^{k-1}, \mathbf{\Phi} \mathbf{p}^{k-1} \rangle}$$

#### Lemma

The directions  $\{\mathbf{p}^0, \mathbf{p}^1, \dots, \mathbf{p}^p\}$  form a conjugate directions set.







#### Theorem

Since the directions  $\{\mathbf{p}^0, \mathbf{p}^1, \dots, \mathbf{p}^k\}$  are conjugate, CG converges in at most p steps.

Slide 14/ 40





# Other properties of the conjugate gradient method

#### Theorem

If  $\Phi$  has only r distinct eigenvalues, then the CG iterations will terminate at the solution in at most r iterations.

#### Theorem

If  $oldsymbol{\Phi}$  has eigenvalues  $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_p$ , we have that

$$\|\mathbf{x}^{k+1} - \mathbf{x}^{\star}\|_{\mathbf{\Phi}} \le \left(\frac{\lambda_{p-k} - \lambda_1}{\lambda_{p-k} + \lambda_1}\right) \|\mathbf{x}^0 - \mathbf{x}^{\star}\|_{\mathbf{\Phi}},$$

where the local norm is given by  $\|\mathbf{x}\|_{\mathbf{\Phi}} = \sqrt{\mathbf{x}^T \mathbf{\Phi} \mathbf{x}}.$ 

#### Theorem

Conjugate gradients algorithm satisfy the following iteration invariant for the solution of  $\Phi x = y$ 

$$\|\mathbf{x}^{k+1} - \mathbf{x}^{\star}\|_{\mathbf{\Phi}} \le 2\left(\frac{\sqrt{\kappa(\mathbf{\Phi})} - 1}{\sqrt{\kappa(\mathbf{\Phi})} + 1}\right)^{k} \|\mathbf{x}^{0} - \mathbf{x}^{\star}\|_{\mathbf{\Phi}},$$

where the condition number of  $\Phi$  is defined as  $\kappa(\Phi) := \|\Phi\| \|\Phi^{-1}\| = \frac{\lambda_p}{\lambda_1}$ .





## GD and AGD for the quadratic case: choice of the step size

## Gradient Descent

$$\alpha_k = \frac{2}{L+\mu} \quad \text{with} \ L = \lambda_p({\bf \Phi}) \ \text{and} \ \mu = \lambda_1({\bf \Phi})$$

## Steepest descent

Choose  $\alpha_k$  so as to minimize  $f(\mathbf{x}^{k+1})$ .

$$\alpha_k = \frac{\|\nabla f(\mathbf{x}^k)\|^2}{\langle \nabla f(\mathbf{x}^k), \mathbf{\Phi} \nabla f(\mathbf{x}^k) \rangle}$$
(1)

## Barzilai-Borwein

$$\alpha_k = \frac{\|\nabla f(\mathbf{x}^{k-1})\|^2}{\langle \nabla f(\mathbf{x}^{k-1}), \mathbf{\Phi} \nabla f(\mathbf{x}^{k-1}) \rangle}$$
(2)





## The quadratic case - convergence rates summary

## Convergence rates

Gradient descent 
$$\left(\alpha_k = \frac{2}{L+\mu}\right)$$
 :

Steepest descent:

Barzilai-Borwein (
$$\lambda_p < 2\lambda_1$$
) :

AGD- $\mu$ L:

Conjugate gradient method:

$$\begin{split} \|\mathbf{x}^{k} - \mathbf{x}^{\star}\|_{2} &\leq \left(\frac{\lambda_{p} - \lambda_{1}}{\lambda_{p}}\right)^{k} \|\mathbf{x}^{0} - \mathbf{x}^{\star}\|_{2} \\ \|\mathbf{x}^{k+1} - \mathbf{x}^{\star}\|_{\mathbf{\Phi}} &\leq \left(\frac{\lambda_{p} - \lambda_{1}}{\lambda_{p} + \lambda_{1}}\right)^{k} \|\mathbf{x}^{0} - \mathbf{x}^{\star}\|_{\mathbf{\Phi}} \\ \|\mathbf{x}^{k+1} - \mathbf{x}^{\star}\|_{2} &\leq \left(\frac{\lambda_{p} - \lambda_{1}}{\lambda_{1}}\right)^{k} \|\mathbf{x}^{0} - \mathbf{x}^{\star}\|_{2} \\ \|\mathbf{x}^{k} - \mathbf{x}^{\star}\|_{2} &\leq \left(\frac{\sqrt{\lambda_{p}} - \sqrt{\lambda_{1}}}{\sqrt{\lambda_{p}}}\right)^{\frac{k}{2}} \|\mathbf{x}^{0} - \mathbf{x}^{\star}\|_{2} \\ \|\mathbf{x}^{k+1} - \mathbf{x}^{\star}\|_{\mathbf{\Phi}} &\leq \left(\frac{\sqrt{\lambda_{p}} - \sqrt{\lambda_{1}}}{\sqrt{\lambda_{p}} + \sqrt{\lambda_{1}}}\right)^{k} \|\mathbf{x}^{0} - \mathbf{x}^{\star}\|_{\mathbf{\Phi}} \end{split}$$

lions@epfl







10

10<sup>2</sup>

### How can we better adapt to the local geometry?



lions@epfl



### How can we better adapt to the local geometry?







#### How can we better adapt to the local geometry?



lions@epfl



### Variable metric gradient descent algorithm

Variable metric gradient descent algorithm 1. Choose  $\mathbf{x}^0 \in \mathbb{R}^p$  as a starting point and  $\mathbf{H}_0 \succ 0$ . 2. For  $k = 0, 1, \cdots$ , perform:  $\begin{cases} \mathbf{d}^k & := -\mathbf{H}_k^{-1} \nabla f(\mathbf{x}^k), \\ \mathbf{x}^{k+1} & := \mathbf{x}^k + \alpha_k \mathbf{d}^k, \end{cases}$ where  $\alpha_k \in (0, 1]$  is a given step size. 3. Update  $\mathbf{H}_{k+1} \succ 0$  if necessary.





## Variable metric gradient descent algorithm

Variable metric gradient descent algorithm **1**. Choose  $\mathbf{x}^0 \in \mathbb{R}^p$  as a starting point and  $\mathbf{H}_0 \succ 0$ . **2**. For  $k = 0, 1, \cdots$ , perform:  $\begin{cases} \mathbf{d}^k & := -\mathbf{H}_k^{-1} \nabla f(\mathbf{x}^k), \\ \mathbf{x}^{k+1} & := \mathbf{x}^k + \alpha_k \mathbf{d}^k, \end{cases}$ where  $\alpha_k \in (0, 1]$  is a given step size. **3**. Update  $\mathbf{H}_{k+1} \succ 0$  if necessary.

## Common choices of the variable metric $\mathbf{H}_{k}$

- $\mathbf{H}_{k} := \lambda_{k} \mathbf{I}$
- $\mathbf{H}_k := \mathbf{D}_k$  (a positive diagonal matrix)  $\implies$  scaled gradient descent method.
- $\mathbf{H}_{k} := \nabla^{2} f(\mathbf{x}^{k})$
- $\mathbf{H}_k \approx \nabla^2 f(\mathbf{x}^k)$

- gradient descent method.
- $\implies$  Newton method.
- $\implies$  guasi-Newton method.



- Fast (local) convergence but expensive per iteration cost
- Useful when warm-started near a solution





- Fast (local) convergence but expensive per iteration cost
- Useful when warm-started near a solution

### Local quadratic approximation using the Hessian

$$f(\mathbf{x}^{k} + \mathbf{p}) \approx f(\mathbf{x}^{k}) + \langle \mathbf{p}, \nabla f(\mathbf{x}^{k}) \rangle + \frac{1}{2} \langle \mathbf{p}, \nabla^{2} f(\mathbf{x}^{k}) \mathbf{p} \rangle$$





- Fast (local) convergence but expensive per iteration cost
- Useful when warm-started near a solution

### Local quadratic approximation using the Hessian

 ${}^{\blacktriangleright}$  Obtain a local quadratic approximation using the second-order Taylor series approximation to  $f(\mathbf{x}^k+\mathbf{p})$ :

$$f(\mathbf{x}^{k} + \mathbf{p}) \approx f(\mathbf{x}^{k}) + \langle \mathbf{p}, \nabla f(\mathbf{x}^{k}) \rangle + \frac{1}{2} \langle \mathbf{p}, \nabla^{2} f(\mathbf{x}^{k}) \mathbf{p} \rangle$$

> The Newton direction is the vector  $\mathbf{p}^k$  that minimizes  $f(\mathbf{x}^k + \mathbf{p})$ ; assuming the Hessian  $\nabla^2 f_k$  to be **positive definite**, :

$$\nabla^2 f(\mathbf{x}^k) \mathbf{p}^k = -\nabla f(\mathbf{x}^k) \quad \Leftrightarrow \quad \mathbf{p}^k = -\left(\nabla^2 f(\mathbf{x}^k)\right)^{-1} \nabla f(\mathbf{x}^k)$$





- Fast (local) convergence but expensive per iteration cost
- Useful when warm-started near a solution

## Local quadratic approximation using the Hessian

 ${}^{\blacktriangleright}$  Obtain a local quadratic approximation using the second-order Taylor series approximation to  $f(\mathbf{x}^k+\mathbf{p})$ :

$$f(\mathbf{x}^{k} + \mathbf{p}) \approx f(\mathbf{x}^{k}) + \langle \mathbf{p}, \nabla f(\mathbf{x}^{k}) \rangle + \frac{1}{2} \langle \mathbf{p}, \nabla^{2} f(\mathbf{x}^{k}) \mathbf{p} \rangle$$

> The Newton direction is the vector  $\mathbf{p}^k$  that minimizes  $f(\mathbf{x}^k + \mathbf{p})$ ; assuming the Hessian  $\nabla^2 f_k$  to be **positive definite**, :

$$\nabla^2 f(\mathbf{x}^k) \mathbf{p}^k = -\nabla f(\mathbf{x}^k) \quad \Leftrightarrow \quad \mathbf{p}^k = -\left(\nabla^2 f(\mathbf{x}^k)\right)^{-1} \nabla f(\mathbf{x}^k)$$

• A unit step-size  $\alpha_k = 1$  can be chosen near convergence:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \left(\nabla^2 f(\mathbf{x}^k)\right)^{-1} \nabla f(\mathbf{x}^k) \,.$$

lions@epfl



- Fast (local) convergence but expensive per iteration cost
- Useful when warm-started near a solution

#### Local quadratic approximation using the Hessian

> Obtain a local quadratic approximation using the second-order Taylor series approximation to  $f(\mathbf{x}^k + \mathbf{p})$ :

$$f(\mathbf{x}^{k} + \mathbf{p}) \approx f(\mathbf{x}^{k}) + \langle \mathbf{p}, \nabla f(\mathbf{x}^{k}) \rangle + \frac{1}{2} \langle \mathbf{p}, \nabla^{2} f(\mathbf{x}^{k}) \mathbf{p} \rangle$$

> The Newton direction is the vector  $\mathbf{p}^k$  that minimizes  $f(\mathbf{x}^k + \mathbf{p})$ ; assuming the Hessian  $\nabla^2 f_k$  to be **positive definite**, :

$$\nabla^2 f(\mathbf{x}^k) \mathbf{p}^k = -\nabla f(\mathbf{x}^k) \quad \Leftrightarrow \quad \mathbf{p}^k = -\left(\nabla^2 f(\mathbf{x}^k)\right)^{-1} \nabla f(\mathbf{x}^k)$$

• A unit step-size  $\alpha_k = 1$  can be chosen near convergence:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \left(\nabla^2 f(\mathbf{x}^k)\right)^{-1} \nabla f(\mathbf{x}^k) \,.$$

## Remark

▶ For  $f \in \mathcal{F}_{L}^{2,1}$  but  $f \notin \mathcal{F}_{L,\mu}^{2,1}$ , the Hessian may not always be positive definite.





# (Local) Convergence of Newton method

#### Lemma

Assume f is a twice differentiable convex function with minimum at  $x^*$  such that:

• 
$$\nabla^2 f(\mathbf{x}^{\star}) \succeq \mu \mathbf{I}$$
 for some  $\mu > 0$ ,

•  $\|\nabla^2 f(\mathbf{x}) - \nabla^2 f(\mathbf{y})\|_{2 \to 2} \le M \|\mathbf{x} - \mathbf{y}\|_2$  for some constant M > 0 and all  $\mathbf{x}, \mathbf{y} \in dom(f)$ .

Moreover, assume the starting point  $\mathbf{x}^0 \in dom(f)$  is such that  $\|\mathbf{x}^0 - \mathbf{x}^{\star}\|_2 < \frac{2\mu}{3M}$ . Then, the Newton method iterates converge quadratically:

$$\|\mathbf{x}^{k+1} - \mathbf{x}^{\star}\| \leq rac{M \|\mathbf{x}^k - \mathbf{x}^{\star}\|_2^2}{2\left(\mu - M \|\mathbf{x}^k - \mathbf{x}^{\star}\|_2
ight)}.$$

#### Remark

This is the fastest convergence rate we have seen so far, but it requires to solve a  $p \times p$  linear system at each iteration,  $\nabla^2 f(\mathbf{x}^k)\mathbf{p}^k = -\nabla f(\mathbf{x}^k)!$ 

lions@epfl



## Locally quadratic convergence of the Newton method-I

Newton's method local quadratic convergence - Proof [2] Since  $\nabla f(\mathbf{x}^*) = 0$  we have

$$\begin{aligned} \mathbf{x}^{k+1} - \mathbf{x}^{\star} &= \mathbf{x}^k - \mathbf{x}^{\star} - (\nabla^2 f(\mathbf{x}^k))^{-1} \nabla f(\mathbf{x}^k) \\ &= (\nabla^2 f(\mathbf{x}^k))^{-1} \left( \nabla^2 f(\mathbf{x}^k) (\mathbf{x}^k - \mathbf{x}^{\star}) - (\nabla f(\mathbf{x}^k) - \nabla f(\mathbf{x}^{\star})) \right) \end{aligned}$$

By Taylor's theorem, we also have

$$\nabla f(\mathbf{x}^k) - \nabla f(\mathbf{x}^\star) = \int_0^1 \nabla^2 f(\mathbf{x}^k + t(\mathbf{x}^\star - \mathbf{x}^k))(\mathbf{x}^k - \mathbf{x}^\star) dt$$

Combining the two above, we obtain

$$\begin{split} \|\nabla^2 f(\mathbf{x}^k)(\mathbf{x}^k - \mathbf{x}^\star) - (\nabla f(\mathbf{x}^k) - \nabla f(\mathbf{x}^\star))\| \\ &= \left\| \int_0^1 \left( \nabla^2 f(\mathbf{x}^k) - \nabla^2 f(\mathbf{x}^k + t(\mathbf{x}^\star - \mathbf{x}^k)) \right) (\mathbf{x}^k - \mathbf{x}^\star) dt \right\| \\ &\leq \int_0^1 \left\| \nabla^2 f(\mathbf{x}^k) - \nabla^2 f(\mathbf{x}^k + t(\mathbf{x}^\star - \mathbf{x}^k)) \right\| \|\mathbf{x}^k - \mathbf{x}^\star\| dt \\ &\leq M \|\mathbf{x}^k - \mathbf{x}^\star\|^2 \int_0^1 t dt = \frac{1}{2} M \|\mathbf{x}^k - \mathbf{x}^\star\|^2 \end{split}$$

lions@epfl

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch



## Locally quadratic convergence of the Newton method-II

Newton's method local quadratic convergence - Proof [2].

Recall

$$\begin{split} \mathbf{x}^{k+1} - \mathbf{x}^{\star} &= (\nabla^2 f(\mathbf{x}^k))^{-1} \left( \nabla^2 f(\mathbf{x}^k) (\mathbf{x}^k - \mathbf{x}^{\star}) - (\nabla f(\mathbf{x}^k) - \nabla f(\mathbf{x}^{\star})) \right) \\ \| \nabla^2 f(\mathbf{x}^k) (\mathbf{x}^k - \mathbf{x}^{\star}) - (\nabla f(\mathbf{x}^k) - \nabla f(\mathbf{x}^{\star})) \| \leq \frac{1}{2} M \| \mathbf{x}^k - \mathbf{x}^{\star} \|^2 \end{split}$$

- Since  $\nabla^2 f(\mathbf{x}^{\star})$  is nonsingular, there must exist a radius r such that  $\|(\nabla^2 f(\mathbf{x}^k))^{-1}\| \leq 2\|(\nabla^2 f(\mathbf{x}^{\star}))^{-1}\|$  for all  $\mathbf{x}^k$  with  $\|\mathbf{x}^k \mathbf{x}^{\star}\| \leq r$ .
- Substituting, we obtain

$$\|\mathbf{x}^{k+1} - \mathbf{x}^{\star}\| \leq M \| (\nabla^2 f(\mathbf{x}^{\star}))^{-1} \| \|\mathbf{x}^k - \mathbf{x}^{\star}\|^2 = \widetilde{M} \|\mathbf{x}^k - \mathbf{x}^{\star}\|^2,$$

where  $\widetilde{M} = M \| (\nabla^2 f(\mathbf{x}^{\star}))^{-1} \|.$ 

• If we choose  $\|\mathbf{x}^0 - \mathbf{x}^{\star}\| \leq \min(r, 1/(2\widetilde{M}))$ , we obtain by induction that the iterates  $\mathbf{x}^k$  converge quadratically to  $\mathbf{x}^{\star}$ .





## Example: Logistic regression

## Problem (Logistic regression)

Given  $\mathbf{A} \in \{0,1\}^{n \times p}$  and  $\mathbf{b} \in \{-1,+1\}^n$ , solve:

$$f^{\star} := \min_{\mathbf{x},\beta} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{j=1}^{n} \log \left( 1 + \exp \left( -\mathbf{b}_{j} (\mathbf{a}_{j}^{T} \mathbf{x} + \beta) \right) \right) \right\}$$

### **Real data**

- Real data: w5a with n = 9888 data points, p = 300 features
- Available at

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.



### Example: Logistic regression - numerical results



### **Parameters**

- Newton's method: maximum number of iterations 200, tolerance  $10^{-6}$ .
- $\blacktriangleright$  For accelerated gradient method: maximum number of iterations 20000, tolerance  $10^{-6}.$
- Ground truth: Get a high accuracy approximation of  $\mathbf{x}^*$  and  $f^*$  by applying Newton's method for 200 iterations.

Slide 28/ 40





Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.



Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.

• Useful for 
$$f(\mathbf{x}) := \sum_{i=1}^{n} f_i(\mathbf{x})$$
 with  $n \gg p$ .



Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.

• Useful for  $f(\mathbf{x}) := \sum_{i=1}^{n} f_i(\mathbf{x})$  with  $n \gg p$ .

### Main ingredients

Quasi-Newton direction:

$$\mathbf{p}^{k} = -\mathbf{H}_{k}^{-1}\nabla f(\mathbf{x}^{k}) = -\mathbf{B}_{k}\nabla f(\mathbf{x}^{k}).$$





Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.

• Useful for  $f(\mathbf{x}) := \sum_{i=1}^{n} f_i(\mathbf{x})$  with  $n \gg p$ .

Main ingredients

Quasi-Newton direction:

$$\mathbf{p}^k = -\mathbf{H}_k^{-1} \nabla f(\mathbf{x}^k) = -\mathbf{B}_k \nabla f(\mathbf{x}^k).$$

- Matrix  $\mathbf{H}_k$ , or its inverse  $\mathbf{B}_k$ , undergoes low-rank updates:
  - Rank 1 or 2 updates: famous Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
  - Limited memory BFGS (L-BFGS).





Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.

• Useful for  $f(\mathbf{x}) := \sum_{i=1}^{n} f_i(\mathbf{x})$  with  $n \gg p$ .

Main ingredients

Quasi-Newton direction:

$$\mathbf{p}^{k} = -\mathbf{H}_{k}^{-1} \nabla f(\mathbf{x}^{k}) = -\mathbf{B}_{k} \nabla f(\mathbf{x}^{k}).$$

- Matrix H<sub>k</sub>, or its inverse B<sub>k</sub>, undergoes low-rank updates:
  - Rank 1 or 2 updates: famous Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
  - Limited memory BFGS (L-BFGS).
- Line-search: The step-size  $\alpha_k$  is chosen to satisfy the Wolfe conditions:

$$\begin{aligned} f(\mathbf{x}^{k} + \alpha_{k}\mathbf{p}^{k}) &\leq f(\mathbf{x}^{k}) + c_{1}\alpha_{k}\langle\nabla f(\mathbf{x}^{k}), \mathbf{p}^{k}\rangle \qquad \qquad \text{(sufficient decrease)}\\ \langle\nabla f(\mathbf{x}^{k} + \alpha_{k}\mathbf{p}^{k}), \mathbf{p}^{k}\rangle &\geq c_{2}\langle\nabla f(\mathbf{x}^{k}), \mathbf{p}^{k}\rangle \qquad \qquad \text{(curvature condition)} \end{aligned}$$

with  $0 < c_1 < c_2 < 1$ . For quasi-Newton methods, we usually use  $c_1 = 0.1$ .



Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.

• Useful for  $f(\mathbf{x}) := \sum_{i=1}^{n} f_i(\mathbf{x})$  with  $n \gg p$ .

Main ingredients

Quasi-Newton direction:

$$\mathbf{p}^{k} = -\mathbf{H}_{k}^{-1} \nabla f(\mathbf{x}^{k}) = -\mathbf{B}_{k} \nabla f(\mathbf{x}^{k}).$$

- Matrix  $\mathbf{H}_k$ , or its inverse  $\mathbf{B}_k$ , undergoes low-rank updates:
  - Rank 1 or 2 updates: famous Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
  - Limited memory BFGS (L-BFGS).
- Line-search: The step-size  $\alpha_k$  is chosen to satisfy the Wolfe conditions:

$$\begin{split} f(\mathbf{x}^k + \alpha_k \mathbf{p}^k) &\leq f(\mathbf{x}^k) + c_1 \alpha_k \langle \nabla f(\mathbf{x}^k), \mathbf{p}^k \rangle \qquad \qquad \text{(sufficient decrease)} \\ \langle \nabla f(\mathbf{x}^k + \alpha_k \mathbf{p}^k), \mathbf{p}^k \rangle &\geq c_2 \langle \nabla f(\mathbf{x}^k), \mathbf{p}^k \rangle \qquad \qquad \qquad \text{(curvature condition)} \end{split}$$

with  $0 < c_1 < c_2 < 1$ . For quasi-Newton methods, we usually use  $c_1 = 0.1$ .

• Convergence is guaranteed under the Dennis & Moré condition [1].



Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.

• Useful for  $f(\mathbf{x}) := \sum_{i=1}^{n} f_i(\mathbf{x})$  with  $n \gg p$ .

Main ingredients

Quasi-Newton direction:

$$\mathbf{p}^{k} = -\mathbf{H}_{k}^{-1} \nabla f(\mathbf{x}^{k}) = -\mathbf{B}_{k} \nabla f(\mathbf{x}^{k}).$$

- Matrix  $H_k$ , or its inverse  $B_k$ , undergoes low-rank updates:
  - Rank 1 or 2 updates: famous Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
  - Limited memory BFGS (L-BFGS).
- Line-search: The step-size  $\alpha_k$  is chosen to satisfy the Wolfe conditions:

$$\begin{split} f(\mathbf{x}^k + \alpha_k \mathbf{p}^k) &\leq f(\mathbf{x}^k) + c_1 \alpha_k \langle \nabla f(\mathbf{x}^k), \mathbf{p}^k \rangle \qquad \qquad \text{(sufficient decrease)} \\ \langle \nabla f(\mathbf{x}^k + \alpha_k \mathbf{p}^k), \mathbf{p}^k \rangle &\geq c_2 \langle \nabla f(\mathbf{x}^k), \mathbf{p}^k \rangle \qquad \qquad \qquad \text{(curvature condition)} \end{split}$$

with  $0 < c_1 < c_2 < 1$ . For quasi-Newton methods, we usually use  $c_1 = 0.1$ .

- ▶ Convergence is guaranteed under the Dennis & Moré condition [1].
- ▶ For more details on quasi-Newton methods, see Nocedal&Wright's book [2].



## How do we update $\mathbf{B}_{k+1}$ ?

Suppose we have (note the coordinate change from  ${\bf p}$  to  $\bar{{\bf p}})$ 

$$m_{k+1}(\bar{\mathbf{p}}) := f(\mathbf{x}^{k+1}) + \langle \nabla f(\mathbf{x}^{k+1}), \bar{\mathbf{p}} - \mathbf{x}^{k+1} \rangle + \frac{1}{2} \left\langle \mathbf{B}_{k+1}(\bar{\mathbf{p}} - \mathbf{x}^{k+1}), (\bar{\mathbf{p}} - \mathbf{x}^{k+1}) \right\rangle \right\rangle.$$

We require the gradient of  $m_{k+1}$  to match the gradient of f at  $\mathbf{x}^k$  and  $\mathbf{x}^{k+1}$ .

- $\nabla m_{k+1}(\mathbf{x}^{k+1}) = \nabla f(\mathbf{x}^{k+1})$  as desired;
- For  $\mathbf{x}^k$ , we have

$$\nabla m_{k+1}(\mathbf{x}^k) = \nabla f(\mathbf{x}^{k+1}) + \mathbf{B}_{k+1}(\mathbf{x}^k - \mathbf{x}^{k+1})$$

which must be equal to  $\nabla f(\mathbf{x}^k)$ .

• Rearranging, we have that  $\mathbf{B}_{k+1}$  must satisfy the secant equation

$$\mathbf{B}_{k+1}\mathbf{s}^k = \mathbf{y}^k$$

where  $\mathbf{s}^k = \mathbf{x}^{k+1} - \mathbf{x}^k$  and  $\mathbf{y}^k = \nabla f(\mathbf{x}^{k+1}) - \nabla f(\mathbf{x}^k).$ 

▶ The secant equation can be satisfied with a positive definite matrix  $\mathbf{B}_{k+1}$  only if  $\langle \mathbf{s}^k, \mathbf{y}^k \rangle > 0$ , which is guaranteed to hold if the step-size  $\alpha_k$  satisfies the Wolfe conditions.





BFGS method [2] (from Broyden, Fletcher, Goldfarb & Shanno) The BFGS method arises from directly updating  $\mathbf{H}_k = \mathbf{B}_k^{-1}$ . The update on the

The BFGS method arises from directly updating  $\mathbf{H}_k = \mathbf{B}_k^{-1}$ . The update on th inverse  $\mathbf{B}$  is found by solving

$$\min_{\mathbf{H}} \|\mathbf{H} - \mathbf{H}_k\|_{\mathbf{W}} \quad \text{subject to } \mathbf{H} = \mathbf{H}^T \text{ and } \mathbf{H}\mathbf{y}^k = \mathbf{s}^k \tag{3}$$

The solution is a rank-2 update of the matrix  $H_k$ :

$$\mathbf{H}_{k+1} = \mathbf{V}_k^T \mathbf{H}_k \mathbf{V}_k + \eta_k \mathbf{s}^k (\mathbf{s}^k)^T ,$$

where  $\mathbf{V}_k = \mathbf{I} - \eta_k \mathbf{s}^k (\mathbf{y}^k)^T$ .

• Initialization of  $\mathbf{H}_0$  is an art. We can choose to set it to be an approximation of  $\nabla^2 f(\mathbf{x}^0)$  obtained by finite differences or just a multiple of the identity matrix.

lions@epfl



## BFGS method [2] (from Broyden, Fletcher, Goldfarb & Shanno)

The BFGS method arises from directly updating  $\mathbf{H}_k = \mathbf{B}_k^{-1}$ . The update on the inverse  $\mathbf{B}$  is found by solving

$$\min_{\mathbf{H}} \|\mathbf{H} - \mathbf{H}_k\|_{\mathbf{W}} \text{ subject to } \mathbf{H} = \mathbf{H}^T \text{ and } \mathbf{H}\mathbf{y}^k = \mathbf{s}^k$$
(3)

The solution is a rank-2 update of the matrix  $\mathbf{H}_k$ :

$$\mathbf{H}_{k+1} = \mathbf{V}_k^T \mathbf{H}_k \mathbf{V}_k + \eta_k \mathbf{s}^k (\mathbf{s}^k)^T ,$$

where  $\mathbf{V}_k = \mathbf{I} - \eta_k \mathbf{s}^k (\mathbf{y}^k)^T$ .

## Theorem (Convergence of BFGS)

Let  $f \in C^2$ . Assume that the BFGS sequence  $\{\mathbf{x}^k\}$  converges to a point  $\mathbf{x}^*$  and  $\sum_{k=1}^{\infty} \|\mathbf{x}^k - \mathbf{x}^*\| \le \infty$ . Assume also that  $\nabla^2 f(\mathbf{x})$  is Lipschitz continuous at  $\mathbf{x}^*$ . Then  $\mathbf{x}^k$  converges to  $\mathbf{x}^*$  at a superlinear rate.

#### Remarks

The proof shows that given the assumptions, the BFGS updates for  ${\bf B}_k$  satisfy the Dennis & Moré condition, which in turn implies superlinear convergence.





# \*L-BFGS

## Challenges for BFGS

- BFGS approach stores and applies a dense  $p \times p$  matrix  $\mathbf{H}_k$ .
- When p is very large,  $\mathbf{H}_k$  can prohibitively expensive to store and apply.

# L(imited memory)-BFGS

- Do not of store  $\mathbf{H}_k$ , but keep only the m most recent pairs  $\{(\mathbf{s}^i, \mathbf{y}^i)\}$ .
- Compute  $\mathbf{H}_k 
  abla f(\mathbf{x}_k)$  by performing a sequence of operations with  $\mathbf{s}^i$  and  $\mathbf{y}^i$ :
  - Choose a temporary initial approximation H<sup>0</sup><sub>k</sub>.
  - ► Recursively apply  $\mathbf{H}_{k+1} = \mathbf{V}_k^T \mathbf{H}_k \mathbf{V}_k + \eta_k \mathbf{s}^k (\mathbf{s}^k)^T$ , *m* times starting from  $\mathbf{H}_k^0$ :

$$\begin{aligned} \mathbf{H}_{k} &= \left(\mathbf{V}_{k-1}^{T}\cdots\mathbf{V}_{k-m}^{T}\right)\mathbf{H}_{k}^{0}\left(\mathbf{V}_{k-m}\cdots\mathbf{V}_{k-1}\right) \\ &+ \eta_{k-m}\left(\mathbf{V}_{k-1}^{T}\cdots\mathbf{V}_{k-m+1}^{T}\right)\mathbf{s}^{k-m}(\mathbf{s}^{k-m})^{T}\left(\mathbf{V}_{k-m+1}\cdots\mathbf{V}_{k-1}\right) \\ &+ \cdots \\ &+ \eta_{k-1}\mathbf{s}^{k-1}(\mathbf{s}^{k-1})^{T} \end{aligned}$$

- From the previous expression, we can compute  $\mathbf{H}_k \nabla f(\mathbf{x}^k)$  recursively.
- Replace the oldest element in  $\{\mathbf{s}^i, \mathbf{y}^i\}$  with  $(\mathbf{s}^k, \mathbf{y}^k)$ .
- From practical experience,  $m \in (3, 50)$  does the trick.



## L-BFGS: A quasi-Newton method

 Procedure for computing  $\mathbf{H}_k \nabla f(\mathbf{x}^k)$  

 0. Recall  $\eta_k = 1/\langle \mathbf{y}^k, \mathbf{s}^k \rangle$ .

 1.  $\mathbf{q} = \nabla f(\mathbf{x}^k)$ .

 2. For  $i = k - 1, \dots, k - m$ 
 $\alpha_i = \eta_i \langle \mathbf{s}^i, \mathbf{q} \rangle$ 
 $\mathbf{q} = \mathbf{q} - \alpha_i \mathbf{y}^i$ .

 3.  $\mathbf{r} = \mathbf{H}_k^0 \mathbf{q}$ .

 4. For  $i = k - m, \dots, k - 1$ 
 $\beta = \eta_i \langle \mathbf{y}^i, \mathbf{r} \rangle$ 
 $\mathbf{r} = \mathbf{r} + (\alpha_i - \beta) \mathbf{s}^i$ .

 5.  $\mathbf{H}_k \nabla f(\mathbf{x}^k) = \mathbf{r}$ .

## Remarks

- Apart from the step  $\mathbf{r} = \mathbf{H}_k^0 \mathbf{q}$ , the algorithm requires only 4mp multiplications.
- If H<sup>0</sup><sub>k</sub> is chosen to be diagonal, another p multiplications are needed.
- An effective initial choice is  $\mathbf{H}_k^0 = \gamma_k \mathbf{I}$ , where

$$\gamma_k = \frac{\langle \mathbf{s}^{k-1}, \mathbf{y}^{k-1} \rangle}{\langle \mathbf{y}^{k-1}, \mathbf{y}^{k-1} \rangle}$$

lions@epfl



## L-BFGS: A quasi-Newton method



## Warning

L-BFGS updates does not guarantee positive semidefiniteness of the variable metric  $\mathbf{H}_k$  in contrast to BFGS.



## Example: Logistic regression - numerical results



#### Parameters

- ▶ For BFGS, L-BFGS and Newton's method: maximum number of iterations 200, tolerance  $10^{-6}$ . L-BFGS memory m = 50.
- $\blacktriangleright$  For accelerated gradient method: maximum number of iterations 20000, tolerance  $10^{-6}.$
- $\blacktriangleright$  Ground truth: Get a high accuracy approximation of  $\mathbf{x}^{\star}$  and  $f^{\star}$  by applying Newton's method for 200 iterations.





## Time-to-reach $\epsilon$

time-to-reach  $\epsilon$  = number of iterations to reach  $\epsilon$   $\times$  per iteration time

The speed of numerical solutions depends on two factors:

- **Convergence rate** determines the number of iterations needed to obtain an  $\epsilon$ -optimal solution.
- Per-iteration time depends on the information oracles, implementation, and the computational platform.

In general, convergence rate and per-iteration time are inversely proportional. Finding the fastest algorithm is tricky! A non-exhaustive illustration:

| Assumptions on f                                                        | Algorithm        | Convergence rate              | Iteration complexity            |
|-------------------------------------------------------------------------|------------------|-------------------------------|---------------------------------|
| Lipschitz-gradient $f \in \mathcal{F}_{L}^{2,1}(\mathbb{R}^{p})$        | Gradient descent | Sublinear $(1/k)$             | One gradient                    |
|                                                                         | Accelerated GD   | Sublinear $(1/k^2)$           | One gradient                    |
|                                                                         | Quasi-Newton     | Superlinear                   | One gradient, rank-2 update     |
|                                                                         | Newton method    | Sublinear $(1/k)$ , Quadratic | One gradient, one linear system |
| Strongly convex, smooth $f \in \mathcal{F}_{L,\mu}^{2,1}(\mathbb{R}^p)$ | Gradient descent | Linear $(e^{-k})$             | One gradient                    |
|                                                                         | Accelerated GD   | Linear $(e^{-k})$             | One gradient                    |
|                                                                         | Quasi-Newton     | Superlinear                   | One gradient, rank-2 update     |
|                                                                         | Newton method    | Linear $(e^{-k})$ , Quadratic | One gradient, one linear system |





A non-exhaustive comparison:

| Assumptions on f                                                        | Algorithm        | Convergence rate              | Iteration complexity            |
|-------------------------------------------------------------------------|------------------|-------------------------------|---------------------------------|
| Lipschitz-gradient $f \in \mathcal{F}_{L}^{2,1}(\mathbb{R}^{p})$        | Gradient descent | Sublinear $(1/k)$             | One gradient                    |
|                                                                         | Accelerated GD   | Sublinear $(1/k^2)$           | One gradient                    |
|                                                                         | Quasi-Newton     | Superlinear                   | One gradient, rank-2 update     |
|                                                                         | Newton method    | Sublinear $(1/k)$ , Quadratic | One gradient, one linear system |
| Strongly convex, smooth $f \in \mathcal{F}_{L,\mu}^{2,1}(\mathbb{R}^p)$ | Gradient descent | Linear $(e^{-k})$             | One gradient                    |
|                                                                         | Accelerated GD   | Linear $(e^{-k})$             | One gradient                    |
|                                                                         | Quasi-Newton     | Superlinear                   | One gradient, rank-2 update     |
|                                                                         | Newton method    | Linear $(e^{-k})$ , Quadratic | One gradient, one linear system |

Accelerated gradient descent:

$$\begin{aligned} \mathbf{x}^{k+1} &= \mathbf{y}^k - \alpha \nabla f(\mathbf{y}^k) \\ \mathbf{y}^{k+1} &= \mathbf{x}^{k+1} + \gamma_{k+1}(\mathbf{x}^{k+1} - \mathbf{x}^k). \end{aligned}$$

for some proper choice of  $\alpha$  and  $\gamma_{k+1}$ .



A non-exhaustive comparison:

| Assumptions on f                                                        | Algorithm        | Convergence rate              | Iteration complexity            |
|-------------------------------------------------------------------------|------------------|-------------------------------|---------------------------------|
| Lipschitz-gradient $f \in \mathcal{F}_{L}^{2,1}(\mathbb{R}^{p})$        | Gradient descent | Sublinear $(1/k)$             | One gradient                    |
|                                                                         | Accelerated GD   | Sublinear $(1/k^2)$           | One gradient                    |
|                                                                         | Quasi-Newton     | Superlinear                   | One gradient, rank-2 update     |
|                                                                         | Newton method    | Sublinear $(1/k)$ , Quadratic | One gradient, one linear system |
| Strongly convex, smooth $f \in \mathcal{F}_{L,\mu}^{2,1}(\mathbb{R}^p)$ | Gradient descent | Linear $(e^{-k})$             | One gradient                    |
|                                                                         | Accelerated GD   | Linear $(e^{-k})$             | One gradient                    |
|                                                                         | Quasi-Newton     | Superlinear                   | One gradient, rank-2 update     |
|                                                                         | Newton method    | Linear $(e^{-k})$ , Quadratic | One gradient, one linear system |

Main computations of the Quasi-Newton method, which we will discuss in the sequel

$$\mathbf{p}^k = -\mathbf{B}_k^{-1} \nabla f(\mathbf{x}^k) \; ,$$

where  $\mathbf{B}_k^{-1}$  is updated at each iteration by adding a rank-2 matrix.





#### A non-exhaustive comparison:

| Assumptions on f                                                        | Algorithm        | Convergence rate              | Iteration complexity            |
|-------------------------------------------------------------------------|------------------|-------------------------------|---------------------------------|
| Lipschitz-gradient $f \in \mathcal{F}_L^{2,1}(\mathbb{R}^p)$            | Gradient descent | Sublinear $(1/k)$             | One gradient                    |
|                                                                         | Accelerated GD   | Sublinear $(1/k^2)$           | One gradient                    |
|                                                                         | Quasi-Newton     | Superlinear                   | One gradient, rank-2 update     |
|                                                                         | Newton method    | Sublinear $(1/k)$ , Quadratic | One gradient, one linear system |
| Strongly convex, smooth $f \in \mathcal{F}_{L,\mu}^{2,1}(\mathbb{R}^p)$ | Gradient descent | Linear $(e^{-k})$             | One gradient                    |
|                                                                         | Accelerated GD   | Linear $(e^{-k})$             | One gradient                    |
|                                                                         | Quasi-Newton     | Superlinear                   | One gradient, rank-2 update     |
|                                                                         | Newton method    | Linear $(e^{-k})$ , Quadratic | One gradient, one linear system |

The main computation of the Newton method requires the solution of the linear system

$$\nabla^2 f(\mathbf{x}^k) \mathbf{p}^k = -\nabla f(\mathbf{x}^k) \; .$$

lions@epfl



## References |

#### [1] JE Dennis and Jorge J Moré.

A characterization of superlinear convergence and its application to quasi-newton methods.

Mathematics of Computation, 28(126):549-560, 1974.

[2] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, 2006.



