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Outline

I This lecture
1. The quadratic case and conjugate gradient
2. Other optimization methods

I Next lecture
1. Motivation for non-smooth models
2. Subgradient descent
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Recommended reading

I Chapters 2, 3, 5, 6 in Nocedal, Jorge, and Wright, Stephen J., Numerical
Optimization, Springer, 2006.

I Chapter 9 in Boyd, Stephen, and Vandenberghe, Lieven, Convex optimization,
Cambridge university press, 2009.

I Chapter 1 in Bertsekas, Dimitris, Nonlinear Programming, Athena Scientific,
1999.

I Chapters 1, 2 and 4 in Nesterov, Yurii, Introductory Lectures on Convex
Optimization: A Basic Course, Vol. 87, Springer, 2004.
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Motivation

Motivation
This lecture covers some more advanced numerical methods for unconstrained and
smooth convex minimization.
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Recall: convex, unconstrained, smooth minimization

Problem (Mathematical formulation)

F ? := min
x∈Rp

{F (x) := f(x)} (1)

where f is proper, closed, convex and twice differentiable.
Note that (1) is unconstrained.

How de we design efficient optimization algorithms with accuracy-computation
tradeoffs for this class of functions?
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Linear systems

Problem (Solving a linear system)
Which is the best method for solving the linear system

Ax = b ?

Solving a linear system via optimization
To find a solution to the linear system, we can also solve the optimization problem

min
x
fA,b(x) :=

1
2
〈Ax,x〉 − 〈b,x〉

which is seen to have a solution satisfying Ax = b by solving ∇xfA,b(x) = 0.
I fA,b is a quadratic function with Lipschitz-gradient (L = ‖A‖).
I If A is a p× p symmetric positive definite matrix, (i.e., A = AT � 0),
fA is also strongly convex (µ = λ1(A), the smallest eigenvalue of A).

I if A is not symmetric, but full column rank, we can consider the system

ATAx = ATb

which can be seen as: Φx = y where Φ is symmetric and positive definite.
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Linear systems

Remark
If Φ is diagonal and positive definite, given a starting point x0 ∈ dom(f), successive
minimization of fΦ,y(x) along the coordinate axes yield x? is at most p steps.

x0

x1

x?

x2

x3

x0 x1

x?

Diagonal Φ Non-diagonal Φ
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How can we adapt to the geometry of Φ?

Conjugate gradients method - Φ symmetric and positive definite
Generate a set of conjugate directions {p0,p1, . . . ,pp−1} such that

〈pi,Φpj〉 = 0 for all i , j (which also implies linear independence).

Successively minimize fΦ,y along the individual conjugate directions. Let

rk = Φxk − y and xk+1 = xk + αkpk ,

where αk is the minimizer of fΦ,y(x) along xk + αpk, i.e.,

αk = −
〈rk,pk〉
〈pk,Φpk〉

Theorem
For any x0 ∈ Rp the sequence {xk} generated by the conjugate directions algorithm
converges to the solution x? of the linear system in at most p steps.

Intuition
The conjugate directions adapt to the geometry of the problem, taking the role of the
canonical directions when Φ is a generic symmetric positive definite matrix.
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Conjugate gradients method

Intuition
The conjugate directions adapt to the geometry of the problem, taking the role of the
canonical directions when Φ is a generic symmetric positive definite matrix.

Back to diagonal
For a generic symmetric positive definite Φ, let us consider the variable x̄ := S−1x,
with

S =
[
p0, . . . ,pp−1

]
where {pk} are the conjugate directions with respect to Φ. fΦ,y(x) now becomes

f̄Φ,y(x̄) := fΦ,y(Sx̄) =
1
2
〈x̄, (STΦS)x̄〉 − 〈STy, x̄〉.

By the conjugacy property, 〈pi,Φpj〉 = 0, ∀ i , j, the matrix STΦS is diagonal.
Therefore, we can find the minimum of f̄(x̄) in at most p steps along the canonical
directions in x̄ space, which are the {pk} directions in x space.
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Conjugate directions naturally adapt to the linear operator

Non-diagonal Φ

x0

x1

x?

x0 x1

x?

Diagonal Φ
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Conjugate gradients method

Theorem
For any x0 ∈ Rp the sequence {xk} generated by the conjugate directions algorithm
converges to the solution x\ of the linear system in at most p steps.

Proof.
Since {pk} are linearly independent, they span Rp. Therefore, we can write

x? − x0 = a0p0 + a1p1 + · · ·+ ap−1pp−1

for some values of the coefficients ak. By multiplying on the left by (pk)TΦ and
using the conjugacy property, we obtain

ak =
〈pk,Φ(x? − x0)〉
〈pk,Φpk〉

.

Since xk = xk−1 + αk−1pk−1, we have xk = x0 + α0p0 + α1p1 + · · ·+ αk−1pk−1.
By premultiplying by (pk)TΦ and using the conjugacy property, we obtain
〈pk,Φ(xk − x0)〉 = 0 which implies

〈pk,Φ(x? − x0)〉 = 〈pk,Φ(x? − xk)〉 = 〈pk,y−Φx0)〉 = −〈pk, rk〉

so that ak = − 〈pk,rk〉
〈pk,Φpk〉 = αk. �
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Conjugate gradients method

How can we efficiently generate a set of conjugate directions?
Iteratively generate the new descent direction pk from the previous one:

pk = −rk + βkpk−1

For ensuring conjugacy 〈pk,Φpk−1〉 = 0, we need to choose βk as

βk =
〈rk,Φpk−1〉
〈pk−1,Φpk−1〉

.

Lemma
The directions {p0,p1, . . . ,pp} form a conjugate directions set.
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Conjugate gradients method

Conjugate gradients (CG) method

1 Initialization:
1.a Choose x0 ∈ dom(f) arbitrarily as a starting point.
1.b Set r0 = Φx0 − y, p0 = −r0, k = 0.

2. While rk , 0, generate a sequence {xk}k≥0 as:

αk = − 〈rk,pk〉
〈pk,Φpk〉

xk+1 = xk + αkpk
rk+1 = Φxk+1 − y
βk+1 = 〈rk+1,Φpk〉

〈pk,Φpk〉
pk+1 = −rk+1 + βk+1pk

k = k + 1

Theorem
Since the directions {p0,p1, . . . ,pk} are conjugate, CG converges in at most p steps.
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Other properties of the conjugate gradient method

Theorem
If Φ has only r distinct eigenvalues, then the CG iterations will terminate at the
solution in at most r iterations.

Theorem
If Φ has eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λp, we have that

‖xk+1 − x?‖Φ ≤
(
λp−k − λ1

λp−k + λ1

)
‖x0 − x?‖Φ,

where the local norm is given by ‖x‖Φ =
√

xTΦx.

Theorem
Conjugate gradients algorithm satisfy the following iteration invariant for the solution
of Φx = y

‖xk+1 − x?‖Φ ≤ 2

(√
κ(Φ)− 1√
κ(Φ) + 1

)k
‖x0 − x?‖Φ,

where the condition number of Φ is defined as κ(Φ) := ‖Φ‖‖Φ−1‖ = λp
λ1
.
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GD and AGD for the quadratic case: choice of the step size

Gradient Descent

αk =
2

L+ µ
with L = λp(Φ) and µ = λ1(Φ)

Steepest descent
Choose αk so as to minimize f(xk+1).

αk =
‖∇f(xk)‖2

〈∇f(xk),Φ∇f(xk)〉
(1)

Barzilai-Borwein

αk =
‖∇f(xk−1)‖2

〈∇f(xk−1),Φ∇f(xk−1)〉
(2)
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The quadratic case - convergence rates summary

Convergence rates

Gradient descent
(
αk = 2

L+µ

)
: ‖xk − x?‖2 ≤

(
λp−λ1
λp

)k
‖x0 − x?‖2

Steepest descent: ‖xk+1 − x?‖Φ ≤
(
λp−λ1
λp+λ1

)k
‖x0 − x?‖Φ

Barzilai-Borwein (λp < 2λ1) : ‖xk+1 − x?‖2 ≤
(
λp−λ1
λ1

)k
‖x0 − x?‖2

AGD-µL: ‖xk − x?‖2 ≤
( √

λp−
√
λ1√

λp

) k
2
‖x0 − x?‖2

Conjugate gradient method: ‖xk+1 − x?‖Φ ≤
( √

λp−
√
λ1√

λp+
√
λ1

)k
‖x0 − x?‖Φ
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Example: Quadratic function
Case 1: n = p = 1000, κ(A) = 100
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Case 2: n = p = 1000, κ(A) = 1000
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How can we better adapt to the local geometry?

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

L

2
kx � xkk2

2

�

f(xk)

QL(x,xk)

Global quadratic upper bound
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How can we better adapt to the local geometry?
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applies only locally
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2
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How can we better adapt to the local geometry?
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Variable metric gradient descent algorithm

Variable metric gradient descent algorithm
1. Choose x0 ∈ Rp as a starting point and H0 � 0.
2. For k = 0, 1, · · · , perform:{

dk := −H−1
k
∇f(xk),

xk+1 := xk + αkdk,

where αk ∈ (0, 1] is a given step size.
3. Update Hk+1 � 0 if necessary.

Common choices of the variable metric Hk

I Hk := λkI =⇒ gradient descent method.
I Hk := Dk (a positive diagonal matrix) =⇒ scaled gradient descent method.
I Hk := ∇2f(xk) =⇒ Newton method.
I Hk ≈ ∇2f(xk) =⇒ quasi-Newton method.
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Newton method
I Fast (local) convergence but expensive per iteration cost
I Useful when warm-started near a solution

Local quadratic approximation using the Hessian

I Obtain a local quadratic approximation using the second-order Taylor series
approximation to f(xk + p):

f(xk + p) ≈ f(xk) + 〈p,∇f(xk)〉+
1
2
〈p,∇2f(xk)p〉

I The Newton direction is the vector pk that minimizes f(xk + p); assuming the
Hessian ∇2fk to be positive definite, :

∇2f(xk)pk = −∇f(xk) ⇔ pk = −
(
∇2f(xk)

)−1
∇f(xk)

I A unit step-size αk = 1 can be chosen near convergence:

xk+1 = xk −
(
∇2f(xk)

)−1
∇f(xk) .

Remark
I For f ∈ F2,1

L but f < F2,1
L,µ, the Hessian may not always be positive definite.
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(Local) Convergence of Newton method

Lemma
Assume f is a twice differentiable convex function with minimum at x? such that:
I ∇2f(x?) � µI for some µ > 0,
I ‖∇2f(x)−∇2f(y)‖2→2 ≤M‖x− y‖2 for some constant M > 0 and all

x,y ∈ dom(f).
Moreover, assume the starting point x0 ∈ dom(f) is such that ‖x0 − x?‖2 <

2µ
3M .

Then, the Newton method iterates converge quadratically:

‖xk+1 − x?‖ ≤
M‖xk − x?‖2

2

2
(
µ−M‖xk − x?‖2

) .
Remark
This is the fastest convergence rate we have seen so far, but it requires to solve a
p× p linear system at each iteration, ∇2f(xk)pk = −∇f(xk)!
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Locally quadratic convergence of the Newton method–I

Newton’s method local quadratic convergence - Proof [2]
Since ∇f(x?) = 0 we have

xk+1 − x? = xk − x? − (∇2f(xk))−1∇f(xk)

= (∇2f(xk))−1
(
∇2f(xk)(xk − x?)− (∇f(xk)−∇f(x?))

)
By Taylor’s theorem, we also have

∇f(xk)−∇f(x?) =
∫ 1

0
∇2f(xk + t(x? − xk))(xk − x?)dt

Combining the two above, we obtain

‖∇2f(xk)(xk − x?)− (∇f(xk)−∇f(x?))‖

=

∥∥∥∥∫ 1

0

(
∇2f(xk)−∇2f(xk + t(x? − xk))

)
(xk − x?)dt

∥∥∥∥
≤
∫ 1

0

∥∥∇2f(xk)−∇2f(xk + t(x? − xk))
∥∥ ‖xk − x?‖dt

≤M‖xk − x?‖2
∫ 1

0
tdt =

1
2
M‖xk − x?‖2
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Locally quadratic convergence of the Newton method–II

Newton’s method local quadratic convergence - Proof [2].
I Recall

xk+1 − x? = (∇2f(xk))−1
(
∇2f(xk)(xk − x?)− (∇f(xk)−∇f(x?))

)
‖∇2f(xk)(xk − x?)− (∇f(xk)−∇f(x?))‖ ≤

1
2
M‖xk − x?‖2

I Since ∇2f(x?) is nonsingular, there must exist a radius r such that
‖(∇2f(xk))−1‖ ≤ 2‖(∇2f(x?))−1‖ for all xk with ‖xk − x∗‖ ≤ r.

I Substituting, we obtain

‖xk+1 − x?‖ ≤M‖(∇2f(x?))−1‖‖xk − x?‖2 = M̃‖xk − x?‖2,

where M̃ = M‖(∇2f(x?))−1‖.
I If we choose ‖x0 − x?‖ ≤ min(r, 1/(2M̃)), we obtain by induction that the
iterates xk converge quadratically to x?.

�
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Example: Logistic regression

Problem (Logistic regression)
Given A ∈ {0, 1}n×p and b ∈ {−1,+1}n, solve:

f? := min
x,β

{
f(x) :=

1
n

n∑
j=1

log
(
1 + exp

(
−bj(aTj x + β)

))}
.

Real data
I Real data: w5a with n = 9888 data points, p = 300 features
I Available at

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.
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Example: Logistic regression - numerical results
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Parameters
I Newton’s method: maximum number of iterations 200, tolerance 10−6.
I For accelerated gradient method: maximum number of iterations 20000,
tolerance 10−6.

I Ground truth: Get a high accuracy approximation of x? and f? by applying
Newton’s method for 200 iterations.
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Quasi-Newton methods

Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.

I Useful for f(x) :=
∑n

i=1 fi(x) with n� p.

Main ingredients
Quasi-Newton direction:

pk = −H−1
k
∇f(xk) = −Bk∇f(xk).

I Matrix Hk, or its inverse Bk, undergoes low-rank updates:
I Rank 1 or 2 updates: famous Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
I Limited memory BFGS (L-BFGS).

I Line-search: The step-size αk is chosen to satisfy the Wolfe conditions:

f(xk + αkpk) ≤ f(xk) + c1αk〈∇f(xk),pk〉 (sufficient decrease)

〈∇f(xk + αkpk),pk〉 ≥ c2〈∇f(xk),pk〉 (curvature condition)

with 0 < c1 < c2 < 1. For quasi-Newton methods, we usually use c1 = 0.1.
I Convergence is guaranteed under the Dennis & Moré condition [1].
I For more details on quasi-Newton methods, see Nocedal&Wright’s book [2].

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 40



Quasi-Newton methods

Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.
I Useful for f(x) :=

∑n

i=1 fi(x) with n� p.

Main ingredients
Quasi-Newton direction:

pk = −H−1
k
∇f(xk) = −Bk∇f(xk).

I Matrix Hk, or its inverse Bk, undergoes low-rank updates:
I Rank 1 or 2 updates: famous Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
I Limited memory BFGS (L-BFGS).

I Line-search: The step-size αk is chosen to satisfy the Wolfe conditions:

f(xk + αkpk) ≤ f(xk) + c1αk〈∇f(xk),pk〉 (sufficient decrease)

〈∇f(xk + αkpk),pk〉 ≥ c2〈∇f(xk),pk〉 (curvature condition)

with 0 < c1 < c2 < 1. For quasi-Newton methods, we usually use c1 = 0.1.
I Convergence is guaranteed under the Dennis & Moré condition [1].
I For more details on quasi-Newton methods, see Nocedal&Wright’s book [2].

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 40



Quasi-Newton methods

Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.
I Useful for f(x) :=

∑n

i=1 fi(x) with n� p.

Main ingredients
Quasi-Newton direction:

pk = −H−1
k
∇f(xk) = −Bk∇f(xk).

I Matrix Hk, or its inverse Bk, undergoes low-rank updates:
I Rank 1 or 2 updates: famous Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
I Limited memory BFGS (L-BFGS).

I Line-search: The step-size αk is chosen to satisfy the Wolfe conditions:

f(xk + αkpk) ≤ f(xk) + c1αk〈∇f(xk),pk〉 (sufficient decrease)

〈∇f(xk + αkpk),pk〉 ≥ c2〈∇f(xk),pk〉 (curvature condition)

with 0 < c1 < c2 < 1. For quasi-Newton methods, we usually use c1 = 0.1.
I Convergence is guaranteed under the Dennis & Moré condition [1].
I For more details on quasi-Newton methods, see Nocedal&Wright’s book [2].

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 40



Quasi-Newton methods

Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.
I Useful for f(x) :=

∑n

i=1 fi(x) with n� p.

Main ingredients
Quasi-Newton direction:

pk = −H−1
k
∇f(xk) = −Bk∇f(xk).

I Matrix Hk, or its inverse Bk, undergoes low-rank updates:
I Rank 1 or 2 updates: famous Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
I Limited memory BFGS (L-BFGS).

I Line-search: The step-size αk is chosen to satisfy the Wolfe conditions:

f(xk + αkpk) ≤ f(xk) + c1αk〈∇f(xk),pk〉 (sufficient decrease)

〈∇f(xk + αkpk),pk〉 ≥ c2〈∇f(xk),pk〉 (curvature condition)

with 0 < c1 < c2 < 1. For quasi-Newton methods, we usually use c1 = 0.1.
I Convergence is guaranteed under the Dennis & Moré condition [1].
I For more details on quasi-Newton methods, see Nocedal&Wright’s book [2].

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 40



Quasi-Newton methods

Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.
I Useful for f(x) :=

∑n

i=1 fi(x) with n� p.

Main ingredients
Quasi-Newton direction:

pk = −H−1
k
∇f(xk) = −Bk∇f(xk).

I Matrix Hk, or its inverse Bk, undergoes low-rank updates:
I Rank 1 or 2 updates: famous Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
I Limited memory BFGS (L-BFGS).

I Line-search: The step-size αk is chosen to satisfy the Wolfe conditions:

f(xk + αkpk) ≤ f(xk) + c1αk〈∇f(xk),pk〉 (sufficient decrease)

〈∇f(xk + αkpk),pk〉 ≥ c2〈∇f(xk),pk〉 (curvature condition)

with 0 < c1 < c2 < 1. For quasi-Newton methods, we usually use c1 = 0.1.

I Convergence is guaranteed under the Dennis & Moré condition [1].
I For more details on quasi-Newton methods, see Nocedal&Wright’s book [2].

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 40



Quasi-Newton methods

Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.
I Useful for f(x) :=

∑n

i=1 fi(x) with n� p.

Main ingredients
Quasi-Newton direction:

pk = −H−1
k
∇f(xk) = −Bk∇f(xk).

I Matrix Hk, or its inverse Bk, undergoes low-rank updates:
I Rank 1 or 2 updates: famous Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
I Limited memory BFGS (L-BFGS).

I Line-search: The step-size αk is chosen to satisfy the Wolfe conditions:

f(xk + αkpk) ≤ f(xk) + c1αk〈∇f(xk),pk〉 (sufficient decrease)

〈∇f(xk + αkpk),pk〉 ≥ c2〈∇f(xk),pk〉 (curvature condition)

with 0 < c1 < c2 < 1. For quasi-Newton methods, we usually use c1 = 0.1.
I Convergence is guaranteed under the Dennis & Moré condition [1].

I For more details on quasi-Newton methods, see Nocedal&Wright’s book [2].

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 40



Quasi-Newton methods

Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.
I Useful for f(x) :=

∑n

i=1 fi(x) with n� p.

Main ingredients
Quasi-Newton direction:

pk = −H−1
k
∇f(xk) = −Bk∇f(xk).

I Matrix Hk, or its inverse Bk, undergoes low-rank updates:
I Rank 1 or 2 updates: famous Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
I Limited memory BFGS (L-BFGS).

I Line-search: The step-size αk is chosen to satisfy the Wolfe conditions:

f(xk + αkpk) ≤ f(xk) + c1αk〈∇f(xk),pk〉 (sufficient decrease)

〈∇f(xk + αkpk),pk〉 ≥ c2〈∇f(xk),pk〉 (curvature condition)

with 0 < c1 < c2 < 1. For quasi-Newton methods, we usually use c1 = 0.1.
I Convergence is guaranteed under the Dennis & Moré condition [1].
I For more details on quasi-Newton methods, see Nocedal&Wright’s book [2].

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 40



?Quasi-Newton methods

How do we update Bk+1?
Suppose we have (note the coordinate change from p to p̄)

mk+1(p̄) := f(xk+1)+〈∇f(xk+1), p̄−xk+1〉+
1
2
〈
Bk+1(p̄− xk+1), (p̄− xk+1))

〉
.

We require the gradient of mk+1 to match the gradient of f at xk and xk+1.
I ∇mk+1(xk+1) = ∇f(xk+1) as desired;
I For xk, we have

∇mk+1(xk) = ∇f(xk+1) + Bk+1(xk − xk+1)

which must be equal to ∇f(xk).
I Rearranging, we have that Bk+1 must satisfy the secant equation

Bk+1sk = yk

where sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk).
I The secant equation can be satisfied with a positive definite matrix Bk+1 only if
〈sk,yk〉 > 0, which is guaranteed to hold if the step-size αk satisfies the Wolfe
conditions.
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?Quasi-Newton methods

BFGS method [2] (from Broyden, Fletcher, Goldfarb & Shanno)
The BFGS method arises from directly updating Hk = B−1

k
. The update on the

inverse B is found by solving

min
H
‖H−Hk‖W subject to H = HT and Hyk = sk (3)

The solution is a rank-2 update of the matrix Hk:

Hk+1 = VT
kHkVk + ηksk(sk)T ,

where Vk = I− ηksk(yk)T .
I Initialization of H0 is an art. We can choose to set it to be an approximation of
∇2f(x0) obtained by finite differences or just a multiple of the identity matrix.
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?Quasi-Newton methods

BFGS method [2] (from Broyden, Fletcher, Goldfarb & Shanno)
The BFGS method arises from directly updating Hk = B−1

k
. The update on the

inverse B is found by solving

min
H
‖H−Hk‖W subject to H = HT and Hyk = sk (3)

The solution is a rank-2 update of the matrix Hk:

Hk+1 = VT
kHkVk + ηksk(sk)T ,

where Vk = I− ηksk(yk)T .

Theorem (Convergence of BFGS)
Let f ∈ C2. Assume that the BFGS sequence {xk} converges to a point x? and∑∞

k=1 ‖x
k − x?‖ ≤ ∞. Assume also that ∇2f(x) is Lipschitz continuous at x?.

Then xk converges to x? at a superlinear rate.

Remarks
The proof shows that given the assumptions, the BFGS updates for Bk satisfy the
Dennis & Moré condition, which in turn implies superlinear convergence.
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?L-BFGS
Challenges for BFGS

I BFGS approach stores and applies a dense p× p matrix Hk.
I When p is very large, Hk can prohibitively expensive to store and apply.

L(imited memory)-BFGS

I Do not of store Hk, but keep only the m most recent pairs {(si,yi)}.
I Compute Hk∇f(xk) by performing a sequence of operations with si and yi:

I Choose a temporary initial approximation H0
k.

I Recursively apply Hk+1 = VT
k HkVk + ηksk(sk)T , m times starting from H0

k:

Hk =
(

VT
k−1 · · ·V

T
k−m

)
H0
k (Vk−m · · ·Vk−1)

+ ηk−m
(

VT
k−1 · · ·V

T
k−m+1

)
sk−m(sk−m)T (Vk−m+1 · · ·Vk−1)

+ · · ·

+ ηk−1sk−1(sk−1)T

I From the previous expression, we can compute Hk∇f(xk) recursively.
I Replace the oldest element in {si,yi} with (sk,yk).
I From practical experience, m ∈ (3, 50) does the trick.
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L-BFGS: A quasi-Newton method
Procedure for computing Hk∇f(xk)

0. Recall ηk = 1/〈yk, sk〉.
1. q = ∇f(xk).
2. For i = k − 1, . . . , k −m

αi = ηi〈si,q〉
q = q − αiyi.

3. r = H0
kq.

4. For i = k −m, . . . , k − 1
β = ηi〈yi, r〉
r = r + (αi − β)si.

5. Hk∇f(xk) = r.

Remarks
I Apart from the step r = H0

kq, the algorithm requires only 4mp multiplications.
I If H0

k is chosen to be diagonal, another p multiplications are needed.
I An effective initial choice is H0

k = γkI, where

γk =
〈sk−1,yk−1〉
〈yk−1,yk−1〉
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L-BFGS: A quasi-Newton method

L-BFGS

1. Choose starting point x0 and m > 0.
2. For k = 0, 1, . . .

2.a Choose H0
k.

2.b Compute pk = −Hk∇f(xk) using the previous algorithm.
2.c Set xk+1 = xk + αkpk, where αk satisfies the Wolfe conditions.

if k > m, discard the pair {sk−m,pk−m} from storage.
2.d Compute and store sk = xk+1−xk, yk = ∇f(xk+1)−∇f(xk).

Warning
L-BFGS updates does not guarantee positive semidefiniteness of the variable metric
Hk in contrast to BFGS.
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Example: Logistic regression - numerical results

Number of iterations
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Quasi-Newton with BFGS
Quasi-Newton with L-BFGS
Accelerated gradient method
Line Search AGD with adaptive restart

Parameters
I For BFGS, L-BFGS and Newton’s method: maximum number of iterations 200,
tolerance 10−6. L-BFGS memory m = 50.

I For accelerated gradient method: maximum number of iterations 20000,
tolerance 10−6.

I Ground truth: Get a high accuracy approximation of x? and f? by applying
Newton’s method for 200 iterations.
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Performance of optimization algorithms

Time-to-reach ε
time-to-reach ε = number of iterations to reach ε × per iteration time

The speed of numerical solutions depends on two factors:
I Convergence rate determines the number of iterations needed to obtain an
ε-optimal solution.

I Per-iteration time depends on the information oracles, implementation, and the
computational platform.

In general, convergence rate and per-iteration time are inversely proportional.
Finding the fastest algorithm is tricky! A non-exhaustive illustration:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

Lipschitz-gradient Accelerated GD Sublinear (1/k2) One gradient
f ∈ F2,1

L
(Rp) Quasi-Newton Superlinear One gradient, rank-2 update

Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k) One gradient

Strongly convex, smooth Accelerated GD Linear (e−k) One gradient
f ∈ F2,1

L,µ
(Rp) Quasi-Newton Superlinear One gradient, rank-2 update

Newton method Linear (e−k), Quadratic One gradient, one linear system
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Performance of optimization algorithms

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

Lipschitz-gradient Accelerated GD Sublinear (1/k2) One gradient
f ∈ F2,1

L
(Rp) Quasi-Newton Superlinear One gradient, rank-2 update

Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k) One gradient

Strongly convex, smooth Accelerated GD Linear (e−k) One gradient
f ∈ F2,1

L,µ
(Rp) Quasi-Newton Superlinear One gradient, rank-2 update

Newton method Linear (e−k), Quadratic One gradient, one linear system

Accelerated gradient descent:

xk+1 = yk − α∇f(yk)

yk+1 = xk+1 + γk+1(xk+1 − xk).

for some proper choice of α and γk+1.
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Performance of optimization algorithms

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

Lipschitz-gradient Accelerated GD Sublinear (1/k2) One gradient
f ∈ F2,1

L
(Rp) Quasi-Newton Superlinear One gradient, rank-2 update

Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k) One gradient

Strongly convex, smooth Accelerated GD Linear (e−k) One gradient
f ∈ F2,1

L,µ
(Rp) Quasi-Newton Superlinear One gradient, rank-2 update

Newton method Linear (e−k), Quadratic One gradient, one linear system

Main computations of the Quasi-Newton method, which we will discuss in the sequel

pk = −B−1
k
∇f(xk) ,

where B−1
k

is updated at each iteration by adding a rank-2 matrix.
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Performance of optimization algorithms

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

Lipschitz-gradient Accelerated GD Sublinear (1/k2) One gradient
f ∈ F2,1

L
(Rp) Quasi-Newton Superlinear One gradient, rank-2 update

Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k) One gradient

Strongly convex, smooth Accelerated GD Linear (e−k) One gradient
f ∈ F2,1

L,µ
(Rp) Quasi-Newton Superlinear One gradient, rank-2 update

Newton method Linear (e−k), Quadratic One gradient, one linear system

The main computation of the Newton method requires the solution of the linear
system

∇2f(xk)pk = −∇f(xk) .
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