Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 6: Unconstrained, smooth minimization Il]

Laboratory for Information and Inference Systems (LIONS)
Ecole Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2017)

~ ICPH

lions@epfl £



License Information for Mathematics of Data Slides

> This work is released under a Creative Commons License with the following terms:
> Attribution

> The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees must give the original authors credit.

> Non-Commercial

> The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees may not use the work for commercial purposes — unless they get the licensor’s
permission.

> Share Alike

> The licensor permits others to distribute derivative works only under a license identical
to the one that governs the licensor's work.

> Full Text of the License

. V
ILGHEI{]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 2/ 40 -ﬂ ﬂ.


http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/legalcode

Outline

» This lecture

1. The quadratic case and conjugate gradient
2. Other optimization methods

> Next lecture

1. Stochastic gradient methods
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Recommended reading

» Chapters 2, 3, 5, 6 in Nocedal, Jorge, and Wright, Stephen J., Numerical
Optimization, Springer, 2006.

» Chapter 9 in Boyd, Stephen, and Vandenberghe, Lieven, Convex optimization,
Cambridge university press, 2009.

> Chapter 1 in Bertsekas, Dimitris, Nonlinear Programming, Athena Scientific,
1999.

> Chapters 1, 2 and 4 in Nesterov, Yurii, Introductory Lectures on Convex
Optimization: A Basic Course, Vol. 87, Springer, 2004.
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Motivation

Motivation

This lecture covers some more advanced numerical methods for unconstrained and
smooth convex minimization.

D/
Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 40 .(I ﬂ.

lions@ep



Recall: convex, unconstrained, smooth minimization

Problem (Mathematical formulation)

F* := min {F(x) := f(x)} (1)
xXERP

where f is proper, closed, convex and twice differentiable.
Note that (1) is unconstrained.

How de we design efficient optimization algorithms with accuracy-computation
tradeoffs for this class of functions?
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Linear systems

Problem (Solving a linear system)

Which is the best method for solving the linear system

Ax=b?

Solving a linear system via optimization

To find a solution to the linear system, we can also solve the optimization problem
X 1
min fA,b(X) = §<AX7X> - <b7 X)
X

which is seen to have a solution satisfying Ax = b by solving Vx fa 1(x) = 0.
> fa,b is a quadratic function with Lipschitz-gradient (L = [|A]|).

> If A is a p X p symmetric positive definite matrix, (i.e., A = AT >~ 0),
fA is also strongly convex (1 = A1(A), the smallest eigenvalue of A).
> if A is not symmetric, but full column rank, we can consider the system

ATAx =ATb
which can be seen as: &x =y where ® is symmetric and positive definite.

L]
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Linear systems
Remark

If ® is diagonal and positive definite, given a starting point x° € dom(f), successive
minimization of fg ,(x) along the coordinate axes yield x* is at most p steps.

Diagonal ® Non-diagonal ®
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How can we adapt to the geometry of ®?

Conjugate gradients method - ® symmetric and positive definite

Generate a set of conjugate directions {p°, p',...,pP~1} such that
<pi7 tI>pj) =0 for all ¢ # j (which also implies linear independence).
Successively minimize fg , along the individual conjugate directions. Let
rf = ®dxF — y and xFHl = xk 4 ozkplc ,

where ay, is the minimizer of fg y(x) along xk + ap”, ie.,
(r*, p*)

ap = ————
P T (pF, ®pF)

Theorem

For any x° € RP the sequence {xk} generated by the conjugate directions algorithm
converges to the solution x* of the linear system in at most p steps.

Intuition
The conjugate directions adapt to the geometry of the problem, taking the role of the
canonical directions when ® is a generic symmetric positive definite matrix.

-
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Conjugate gradients method

Intuition

The conjugate directions adapt to the geometry of the problem, taking the role of the
canonical directions when @ is a generic symmetric positive definite matrix.

Back to diagonal
For a generic symmetric positive definite ®, let us consider the variable x := S~1x,
with

S=[p"....p"""]

where {p”} are the conjugate directions with respect to ®. fa y(x) now becomes
_ _ 1 _ B
foy(%) = fo,y(SX) = S (%, (ST @8)x) — (ST, %).

By the conjugacy property, (p?, ®p’) = 0, Vi # j, the matrix ST ®S is diagonal.

Therefore, we can find the minimum of f(X) in at most p steps along the canonical
directions in X space, which are the {pk} directions in x space.

L]
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Conjugate directions naturally adapt to the linear operator

Diagonal ¢ Non-diagonal ®
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Conjugate gradients method

Theorem

For any x° € RP the sequence {x*} generated by the conjugate directions algorithm
converges to the solution x* of the linear system in at most p steps.

Proof.

Since {p*} are linearly independent, they span R”. Therefore, we can write

x* —x% = aop® + a1p* + - +ap_1pPt
for some values of the coefficients ay. By multiplying on the left by (p*)7® and
using the conjugacy property, we obtain

(p*, &(x* — x%)

T T ok, ®pF)

Since x* = xF=1 4+ a1 p* !, we have x* = x° + app® + aup! + -+ - + ap_1pF L.

By premultiplying by (p*)T@® and using the conjugacy property, we obtain
(p*, ®(x* — x0)) = 0 which implies

(p" ®(x* —x)) = (p*, ®(x* —x")) = (p¥,y — ®x*)) = —(p*,r")

k _k
(p~,r") = ay. o

so that aj = ~pEBpFy =
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Conjugate gradients method

How can we efficiently generate a set of conjugate directions?

Iteratively generate the new descent direction p* from the previous one:

pF = —r* 4 gpF!

For ensuring conjugacy (pk, <I>pk*1) = 0, we need to choose B as
= (rf, @p* 1)
(pF—1, ®ph-1)
Lemma
The directions {p°, p*,...,pP} form a conjugate directions set.
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Conjugate gradients method

Conjugate gradients (CG) method

1 Initialization:
1.a Choose x° € dom(f) arbitrarily as a starting point.
1.bSetr® =®x? —y, p® = -0 k=0.

2. While r* # 0, generate a sequence {x*};>¢ as:

— __kphy
Ok T T IpF epk)
xFH1 = xk 4 o, pk
rk+1 — @xlﬂ»l -y
_ (F eph)
ﬂ:ﬂ <pkk"fpk> k
pFtt = -—r*tl 48, 1p
k =k+1
Theorem
Since the directions {p°, pt,..., p’“} are conjugate, CG converges in at most p steps.
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Other properties of the conjugate gradient method

Theorem

If ® has only r distinct eigenvalues, then the CG iterations will terminate at the
solution in at most r iterations.

Theorem
If & has eigenvalues A\1 < Ao < --- < Ap, we have that

Ap—k — A1
[x* ! — x*||lg < ()\p s )\1> %% — x*||s,
o

where the local norm is given by ||x||le = VxT ®x.

Theorem
Conjugate gradients algorithm satisfy the following iteration invariant for the solution
of bx =y
k
\ E(®)—1
[+ —x*le < 2 VB L Ix° —x*|le,

\VE(®)+1

where the condition number of ® is defined as k(®) := || ®||||® 1| = i‘\—‘l’
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GD and AGD for the quadratic case: choice of the step size

Gradient Descent

2
= — ith L = A\p(P dpu=X (P
o= W »(®) and 1 = Ay (®)

Steepest descent

Choose oy, so as to minimize f(x*+1).

V)
= (), BV () ()

Barzilai-Borwein

VY
%k = T, & f(F 1)) @
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The quadratic case - convergence rates summary

Convergence rates

2

Gradient descent (ak = —) g

L+p

Steepest descent:
Barzilai-Borwein (A, < 2A1) :
AGD-pL:

Conjugate gradient method:

lions@epfl
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k
Ap—A
I =l < (252 ) 0 =

k
IxF+1 —x*lle < (322 ) [1x0 —x*||
X X"l < NI X X" ||e

k
Ap—A
lxEHL — x*||o < (13\711) %9 — x*||2

Hxhx*ﬂﬁ(ﬁjﬁf)%u —x*z
< () o1

[ — x*|
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Example: Quadratic function
Case 1: n = p = 1000, k(A) = 100 Case 2: n = p = 1000, x(

>

) = 1000
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How can we better adapt to the local geometry?

f(x)

Global quadratic upper bound
Qux,x")

< o x40 = arginin { 1)+ (95 x) + Ll - 3

IVF(@) = Vil < Llly — | zzT

F0) < FO) 4 VAT x—x8) 2 e x¥ 2
L is a global worst-case constant
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How can we better adapt to the local geometry?

f(x)

Local quadratic upper bound

Qr(x,x")

758 o x' ! = arg mxin {f(x") + (V") x —x*) + %Hx — kaé}

IV/() = Viw)l < Ly -2 160/ 07+ 916503 18

L is a global worst-case constant (\} . applies only locally
(x)
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How can we better adapt to the local geometry?

f(x)

£ |
f(x) < f(x* \—T/\x"',\/\;xfx"\—Efox"‘Hil‘ﬂ
e

1

3 |
e ail  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 21/ 40 (L]




Variable metric gradient descent algorithm

Variable metric gradient descent algorithm

1. Choose xU € RP as a starting point and Hy > 0.

2. For k=0,1,---, perform:
d* = —H 'V f(xF),
xktL = xk 4 adF,

where ay, € (0,1] is a given step size.
3. Update Hy | > O if necessary.

.
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Variable metric gradient descent algorithm

Variable metric gradient descent algorithm
1. Choose xU € RP as a starting point and Hy > 0.

2. For k=0,1,---, perform:
d* = —H 'V f(xF),
xktL = xk 4 adF,

where ay, € (0,1] is a given step size.
3. Update Hy | > O if necessary.

Common choices of the variable metric Hy,

» Hj := A1 — gradient descent method.

» Hj := Dy (a positive diagonal matrix) = scaled gradient descent method.
> Hy, = V2f(xF) — Newton method.

> Hy =~ V2f(x*) —> quasi-Newton method.
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Newton method

» Fast (local) convergence but expensive per iteration cost
» Useful when warm-started near a solution
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Newton method

» Fast (local) convergence but expensive per iteration cost
» Useful when warm-started near a solution

Local quadratic approximation using the Hessian

> Obtain a local quadratic approximation using the second-order Taylor series
approximation to f(x* + p):

FO*E+p) = FF) + (P, V(M) + %<p, V2 f(x*)p)

. V
ICLGHEI{]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 23/ 40 -ﬂ ﬂ-




Newton method

» Fast (local) convergence but expensive per iteration cost
» Useful when warm-started near a solution

Local quadratic approximation using the Hessian

> Obtain a local quadratic approximation using the second-order Taylor series
approximation to f(x* + p):

FO*E+p) = FF) + (P, V(M) + %<p, V2 f(x*)p)

> The Newton direction is the vector p* that minimizes f(x* + p); assuming the
Hessian V2 f;, to be positive definite, :

VIaMph = -V e pF=—(VEeN) T Vi)
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Newton method

» Fast (local) convergence but expensive per iteration cost
» Useful when warm-started near a solution

Local quadratic approximation using the Hessian

> Obtain a local quadratic approximation using the second-order Taylor series
approximation to f(x* + p):

FO*E+p) = FF) + (P, V(M) + %<p, V2 f(x*)p)

> The Newton direction is the vector p* that minimizes f(x* + p); assuming the
Hessian V2 f;, to be positive definite, :

V2f)pk = Vi) & pf= (V)T Vi)
> A unit step-size a, = 1 can be chosen near convergence:

xFtl = xk _ (VQf(xk))_1 Vi(xF).
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Newton method

» Fast (local) convergence but expensive per iteration cost
» Useful when warm-started near a solution

Local quadratic approximation using the Hessian

> Obtain a local quadratic approximation using the second-order Taylor series
approximation to f(x* + p):

FO*E+p) = FF) + (P, V(M) + %<p, V2 f(x*)p)

> The Newton direction is the vector p* that minimizes f(x* + p); assuming the
Hessian V2 f;, to be positive definite, :

V2f)pk = Vi) & pf= (V)T Vi)
> A unit step-size a, = 1 can be chosen near convergence:

xFtl = xk _ (VQf(xk))_1 Vi(xF).

Remark

> For f € Fi’l but f ¢ }'E’L, the Hessian may not always be positive definite.
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(Local) Convergence of Newton method

Lemma
Assume f is a twice differentiable convex function with minimum at X* such that:
> V2f(x*) = pl for some pu > 0,

> [|[V2£(x) = V2f(y)|l2m2 < M||x — y||2 for some constant M > 0 and all
x,y € dom(f).

Moreover, assume the starting point x0 € dom(f) is such that ||x° — x*||2 <
Then, the Newton method iterates converge quadratically:

24
3M -

/ k 2
|ka+1 —X*” < J\/IHX _X*II2
2 (n— Mjx* —x*||2)

Remark

This is the fastest convergence rate we have seen so far, but it requires to solve a
p X p linear system at each iteration, V2 f(x*)pF = —V f(x*)!
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Locally quadratic convergence of the Newton method-I

Newton's method local quadratic convergence - Proof [2]
Since V f(x*) = 0 we have

XL xr = xF (V2 () TV (xF)

= (V2F(=) ™ (V2 )k — x*) — (V1 (xH) = V1 (x*))

By Taylor's theorem, we also have

1
VixF) — Vix*) = / V2f(x* +t(x* — xF))(x" — x*)dt
0

Combining the two above, we obtain

IV2 £ () (x" = x*) = (VF(x*) = Vf(x)|

H/ (V2F(F) = V2 (P + 1(x* = xF))) (xF — x*)dt

7/ || V2 £ () = V2 (8 + £ = xF)) || [k — x*|dt
0

1
1
< M|x* - x*||2/ tdt = o M|[x* —x*||?
0

ILGHEI{]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 25/ 40

-



Locally quadratic convergence of the Newton method-lI

Newton's method local quadratic convergence - Proof [2].

> Recall
XKFFL st = (V2 F(xR)) 7L (V2F(xF)(xF — x*) — (VF(xP) — VF(x)))

V25 () (" = x*) = (Vf(x*) = V(=) < %Mllch - x*|?

> Since V2 f(x*) is nonsingular, there must exist a radius 7 such that
(V2 £(*)7HE < 2[(V2f () 71| for all x* with [|x* —x*|| < 7.
> Substituting, we obtain
k41 2 —1|||5k 2 _ 7l 2
[l — (| < MI(V2F) TR — x| = Ml — x*|]?,

where M = M||(V2f(x*))~L].

> If we choose [|x° — x*|| < min(r, 1/(2]\7[)) we obtain by induction that the
iterates x¥ converge quadratically to x*.
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Example: Logistic regression

Problem (Logistic regression)
Given A € {0,1}"*P and b € {—1,+1}", solve:

= 1;[(171[? f(x) = % Z log (1 + exp (—bj (aJTx + B)))
Jj=1
Real data

> Real data: wba with n = 9888 data points, p = 300 features

> Available at
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.
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Example: Logistic regression - numerical results

108 10° T T T
——Newton —Newton
) - - Line Search AGD with adaptive restart 5 Accelerated gradient method
10 Accelerated gradient method 10 - - Line Search AGD with adaptive restart
10"}
.. ¥
. s
&
\ |
D N
\ %
. s
6 o -6
10 10
10° 10' 107 10° 10* 107 107! 10° 10! 10?
Number of iterations Time (s)
Parameters

> Newton's method: maximum number of iterations 200, tolerance 10~ 6.

> For accelerated gradient method: maximum number of iterations 20000,
tolerance 1076.

> Ground truth: Get a high accuracy approximation of x* and f* by applying
Newton’s method for 200 iterations.

D/
Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 28/ 40 .(I H

lions@ep




Quasi-Newton methods

Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.
> Useful for f(x) := Z?:l fi(x) with n. > p.

Main ingredients
Quasi-Newton direction:
p" = —H 'Vf(x*) = -ByVf(x").

> Matrix Hy, or its inverse By, undergoes low-rank updates:

> Rank 1 or 2 updates: famous Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm.
> Limited memory BFGS (L-BFGS).

> Line-search: The step-size a is chosen to satisfy the Wolfe conditions:
F&F + app®) < F(XF) + cron (VF(xF), p*) (sufficient decrease)
(VI 4+ arp®), p*) > c2(VF(x"), p*) (curvature condition)
with 0 < ¢; < c2 < 1. For quasi-Newton methods, we usually use ¢; = 0.1.

» Convergence is guaranteed under the Dennis & Moré condition [1].

> For more details on quasi-Newton methods, see Nocedal&Wright's book [2].
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*Quasi-Newton methods

How do we update Bj17

Suppose we have (note the coordinate change from p to p)

_ _ 1 _ _
my11(p) i= fFT) (VA p—xF 1) + ) (Bry1(p — x), (B — x*T1))).
We require the gradient of my; to match the gradient of f at xF and xk+1,
> Vmpyq (xFt1) = VF(xFt1) as desired;

> For x¥

, we have
mG+1(xk) = Vf(Xk+1) ar Bk+1(xk — Xk+1)

which must be equal to Vf(xF).

v

Rearranging, we have that By must satisfy the secant equation

k k
Biti1s® =y

where sF = xF+1 — x* and y* = Vf(xFt1) — Vf(xF).

> The secant equation can be satisfied with a positive definite matrix By only if
(s®,y*) > 0, which is guaranteed to hold if the step-size oy, satisfies the Wolfe
conditions.
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*Quasi-Newton methods

BFGS method [2] (from Broyden, Fletcher, Goldfarb & Shanno)

The BFGS method arises from directly updating Hy = B;l. The update on the
inverse B is found by solving

rnHin |H — Hy|lw subject to H=H” and Hy"” = s* 3)
The solution is a rank-2 update of the matrix Hy:
Hj 1 = VIHL V) + npsh(s9)7
where Vi, =T — n,y*(s®)T.

> Initialization of Hg is an art. We can choose to set it to be an approximation of
V2 f(x") obtained by finite differences or just a multiple of the identity matrix.
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*Quasi-Newton methods

BFGS method [2] (from Broyden, Fletcher, Goldfarb & Shanno)

The BFGS method arises from directly updating Hy = B;l. The update on the
inverse B is found by solving

mHin |IH — Hy|lw subject to H=H” and Hy"” = s* 3)
The solution is a rank-2 update of the matrix Hy:
Hyp1 = VIHV + s (s5)T
where V, =T — 5, y*(s®)T.

Theorem (Convergence of BFGS)

Let f € C2. Assume that the BFGS sequence {x*} converges to a point x* and
D ney IIxF —x*|| < co. Assume also that V2 f(x) is Lipschitz continuous at x*.
Then x* converges to x* at a superlinear rate.

Remarks
The proof shows that given the assumptions, the BFGS updates for By, satisfy the

Dennis & Moré condition, which in turn implies superlinear convergence.
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L-BFGS
Challenges for BFGS

> BFGS approach stores and applies a dense p X p matrix Hy,.

> When p is very large, Hy can prohibitively expensive to store and apply.

L(imited memory)-BFGS

> Do not store Hy, but keep only the m most recent pairs {(s?,y?)}.
> Compute H V f(x}) by performing a sequence of operations with s’ and y*:

> Choose a temporary initial approximation Hg.
> Recursively apply Hy 1 = VngV;C + nksk(sk)T, m times starting from Hg:

Hy = (Vi ViL ) B (Vi - Vi)
H le—m (Vf—l o 'V;Z-F—m+1) s TP T (Viemma1 -+ Vo)
dooo
+mp_1stT(sFTHT
> From the previous expression, we can compute Hka(xk) recursively.
> Replace the oldest element in {s?,y*} with (Sk7yk).

> From practical experience, m € (3,50) does the trick.
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L-BFGS: A quasi-Newton method

Procedure for computing H;,V f(xF)
Recall n, = 1/(y",sF)

1. q = Vf(x%).

2. Fori=k—1,...,k—m

@  =mni{s’,q)
a =q-ay"
3.r:ng.

4. Fori=k—m,...,k—1
B =mnily',r) ,
r =r+ (o —p)s*
5 H,Vf(xF)=r.
Remarks

> Apart from the step r = ng, the algorithm requires only 4mp multiplications

- If Hg is chosen to be diagonal, another p multiplications are needed.
» An effective initial choice is Hg = vxI, where

o= LYY

(yk=1,yk=1)
lions@epfl
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L-BFGS: A quasi-Newton method

L-BFGS

1. Choose starting point x° and m > 0.
2. Fork=0,1,...
2.a Choose Hg
2.b Compute p¥ = —H, V f(x*) using the previous algorithm.
2.c Set xF+1 = x* 4 o, p*, where o, satisfies the Wolfe conditions.
if k > m, discard the pair {s*~™ pF—™} from storage.
2.d Compute and store s¥ = x*+1 —x* yk = Vf(xFt1) — V£(xF).

Warning

L-BFGS updates does not guarantee positive semidefiniteness of the variable metric
H;. in contrast to BFGS.
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Example: Logistic regression - numerical results

10° 10°
—Newton —Newton
) ~-=-Quasi-Newton with BFGS 5 uasi-Newton with BEGS
107 Quasi-Newton with L-BFGS 10 «e-Quasi-Newton with L-BFGS
Accelerated gradient method Accelerated gradient method
10! - - Line Search AGD with adaptive restar( 10! - - Line Search AGD with adaptive restart|

= 10"
10! 107 10° 10* 10 107" 10° 10! ?
Number of iterations Time (s)

Parameters

» For BFGS, L-BFGS and Newton's method: maximum number of iterations 200,
tolerance 10=%. L-BFGS memory m = 50.

> For accelerated gradient method: maximum number of iterations 20000,
tolerance 10~6.

> Ground truth: Get a high accuracy approximation of x* and f* by applying
Newton's method for 200 iterations.

lions@ep Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 35/ 40

-




Performance of optimization algorithms

Time-to-reach €

time-to-reach € = number of iterations to reach ¢ X per iteration time

The speed of numerical solutions depends on two factors:

» Convergence rate determines the number of iterations needed to obtain an
e-optimal solution.

> Per-iteration time depends on the information oracles, implementation, and the
computational platform.

In general, convergence rate and per-iteration time are inversely proportional.
Finding the fastest algorithm is tricky! A non-exhaustive illustration:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient
Lipschitz-gradient Accelerated GD Sublinear (1/k2) One gradient
fe ]-_i’l(Rp) Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e F) One gradient
Strongly convex, smooth Accelerated GD Linear (eik) One gradient
fe fi’i (RP) Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Linear (efk), Quadratic One gradient, one linear system

3 |
e il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 36/ 40 (L]




Performance of optimization algorithms

A non-exhaustive comparison:

Convergence rate

Iteration complexity

Assumptions on f

Algorithm

One gradient

Lipschitz-gradient
e Frirp)

Gradient descent
Accelerated GD
Quasi-Newton
Newton method

Sublinear (1/k)
Sublinear (1/k2)
Superlinear
Sublinear (1/k), Quadratic

One gradient
One gradient, rank-2 update
One gradient, one linear system
One gradient

Strongly convex, smooth
2,1 iop
FeFyl @)

Gradient descent
Accelerated GD
Quasi-Newton

Newton method

Linear (e~ F)
Linear (e —F)
Superlinear
Linear (¢ ~*), Quadratic

One gradient
One gradient, rank-2 update

One gradient, one linear system

Accelerated gradient descent:
A = yb —av(yF)

for some proper choice of o and ~yj41.

lions@epfl
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Performance of optimization algorithms

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient
Lipschitz-gradient Accelerated GD Sublinear (1/k2) One gradient
fe }"z 1(RP) Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e_k) One gradient
Strongly convex, smooth Accelerated GD Linear (cfk) One gradient
fe ]-'121”2 (RP) Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Linear (e_k), Quadratic One gradient, one linear system

Main computations of the Quasi-Newton method, which we will discuss in the sequel
p"=-B_'Vf(x"),

where kal is updated at each iteration by adding a rank-2 matrix.
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Performance of optimization algorithms

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient
Lipschitz-gradient Accelerated GD Sublinear (1/k2) One gradient
fe ]:i’l(Rp) Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e —F) One gradient
Strongly convex, smooth Accelerated GD Linear (e~ ") One gradient
fe ]?i”i (RP) Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Linear (e_k), Quadratic One gradient, one linear system

The main computation of the Newton method requires the solution of the linear
system

V2f(xF)p* = -V ).
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