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Lecture 07: Constrained Convex Minimization

Outline

I Today
1. Convex constrained optimization

I Problem setting, common structures and basis assumptions
I Solutions and approximate solutions
I Motivating examples

2. Optimality and duality
I Optimality condition
I Lagrange dualization
I Min-max formulation
I Equivalent interpretations of optimality condition.
I Dual decomposition ability

3. Classical solution methods
I Convex problem with equality constraints and null space method.
I Projected gradient method
I Frank-Wolfe method
I Quadratic penalty methods
I Augmented Lagrangian methods
I Alternating minimization algorithm (AMA)
I Alternating direction method of multipliers (ADMM)

4. Next week

1. Nonsmooth constrained optimization
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Reading material

1. S. Boyd and L. Vandenberghe, “Convex Optimization”, University Press,
Cambridge, 2004.
I Chapter 4 – Convex optimization problems
I Chapter 5 – Duality
I Section 10.1-Chapter 10 – Equality constrained minimization.

2. J. Nocedal and S. Wright, “Numerical Optimization”, Springer-Verlag, 1999.
I Chapter 17 – Penalty, Barrier and augmented Lagrangian methods, Section 17.4.

3. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
Optimization and Statistical Learning via the Alternating Direction Method of
Multipliers”, Foundations and Trends in Machine Learning, 3(1):1–122, 2011.
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Motivation

Motivation
I Unknown parameters in a model are constrained in practice.
I Constrained convex optimization formulations naturally encode these
constraints.

I Hence, this lecture develops numerical methods for constrained convex
optimization.
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Mathematical form of constrained convex optimization

General setting of constrained convex optimization problems

f ? :=

{ min
x∈Rp

f (x)

s.t. Ax = b,
x ∈ X .

(1)

I f ∈ F(Rp) is a convex function
I A ∈ Rn×p, b ∈ Rn

I X is a nonempty, closed convex set.

Problem sources
I Many real-world applications (e.g., linear inverse problems, matrix completion)
can be directly formulated as (1).

I Often times, computational considerations lead to (1) by reformulations of
existing unconstrained problems (e.g., composite convex minimization,
consensus optimization, and convex splitting).

I Many standard convex optimization formulations naturally fall under (1), such as
linear programming, convex quadratic programming, second order cone
programming, semidefinite programming and geometric programming.
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Structures of constrained convex optimization

Common structures
When designing a numerical solution method for solving problem (1), we must rely
on individual structures of f and X .
In this lecture, we mainly rely on the following two structures:
I Decomposability of f and X .
I Tractable proximity
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Decomposability illustration

f

xX1 X2 X3

X · · ·
f1 f2 f3

x3x2x1

XmXm�1

xm�1 xm

fmfm�1

Wednesday, July 23, 14

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 07: Constrained Convex Minimization

Decomposability and tractable proximity

Decomposable structure
The function f and the feasible set X have the following structure

f (x) :=
m∑

i=1

fi(xi), and X := X1 × · · · × Xm .

where m ≥ 1 is the number of components, xi is a sub-vector (component) of x,
fi : Rpi → R ∪ {+∞} is convex and

∑m
i=1 pi = p.

Tractable proximity

I Each component fi has a ‘tractable proximal operator” (i = 1, . . . ,m).
I The component feasible set Xi has simple projection (“tractable proximity” of
the indicator function of Xi).
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Solutions and solution set

Definition (Feasible set)
The set

D := {x ∈ Rp : x ∈ X , Ax = b} (2)

is called the feasible set of (1). Any point x ∈ D is called a feasible point.

Note: It is important to exclude the following trivial and pathalogical cases:
I D = ∅, which leads to no solution of (1).
I D = {x̂}, which leads to the unique solution x? = x̂ of (1).

Definition (Solution)
A feasible point x? ∈ D is called a globally optimal solution (or solution) of (1) if

f (x?) ≤ f (x), ∀x ∈ D.

All solutions of (1) forms the solution set S? of (1).

Note:
I The solution set S? is closed and convex.
I If x is not feasible, one may have f (x) ≤ f ? in the constrained setting case.
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Approximate solution

Solution certification
I Computing an exact solution x? ∈ S? is impracticable unless problem has a
closed form solution (which is very limited in reality).

I We can only compute a point x?ε that approximates x? up to a given accuracy ε
in a given sense by using numerical optimization algorithms.

There are several ways of certifying an approximate solution. We use the following
definition.

Definition (Approximate solution)
Given a tolerance ε ≥ 0, a point x?ε ∈ Rp is called an ε-solution of (1) if|f (x?ε )− f ?| ≤ ε (objective residual),

‖Ax?ε − b‖ ≤ ε (feasibility gap),
x?ε ∈ X (exact feasibility).

Very often, X is a “simple set.” Hence, checking x?ε ∈ X is acceptable in practice.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 07: Constrained Convex Minimization

Approximate solution

Solution certification
I Computing an exact solution x? ∈ S? is impracticable unless problem has a
closed form solution (which is very limited in reality).

I We can only compute a point x?ε that approximates x? up to a given accuracy ε
in a given sense by using numerical optimization algorithms.

There are several ways of certifying an approximate solution. We use the following
definition.

Definition (Approximate solution)
Given a tolerance ε ≥ 0, a point x?ε ∈ Rp is called an ε-solution of (1) if|f (x?ε )− f ?| ≤ ε (objective residual),

‖Ax?ε − b‖ ≤ ε (feasibility gap),
x?ε ∈ X (exact feasibility).

Very often, X is a “simple set.” Hence, checking x?ε ∈ X is acceptable in practice.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 07: Constrained Convex Minimization

Motivating example: Composite convex minimization

Composite convex minimization
With a slight change in notation, let us recall the composite convex minimization
problem in Lecture 5:

F? := min
u∈Rp

{F(u) := h(u) + g(u)} , (3)

where both g and h are closed and convex.

Optimization reformulation
By duplicating the variable v = u, we can reformulate (3) as

min
x:=[u,v]∈R2p

{f (x) := h(v) + g(u)}

s.t. u− v = 0.
(4)

This problem falls into the form (1) with separable objective function f and X = R2p.
The methods studied in this lecture can also be used to solve the composite convex
problem (3).
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Image denoising/debluring

Problem (Imaging denoising/deblurring)
Given an observed image b ∈ Rn×p, the aim is to recover the clean image u via
b = A(u) + w, where A is a linear operator and w is a Gaussian noise.

Optimization formulation

min
u∈Rn×p

{
(1/2)‖A(u)− b‖2

F + ρ‖Du‖1

}
(5)

where ρ > 0 is a regularization parameter and D is given matrix.
By reformulating (5) as

min
u∈Rn×p

{
(1/2)‖A(u)− b‖2

F + ρ‖v‖1

}
s.t. Du− v = 0.

(6)

This problem is of the form (1) with x := (uT ,vT )T , X = Rnp+nDp and
f (x) := (1/2)‖A(u)− b‖2

F + ρ‖v‖1.
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Group sparse recovery
Sparse recovery

I Let I := {1, . . . , p} be the set of indices. Let G := {G1, . . . ,Gm} be the set of m
groups Gi ⊆ I and I ⊆ ∪m

i=1Ui .
I For given group Gi , and a vector x ∈ Rp, we use xGi = {xj : j ∈ Gi}.
I For fixed group structure G, x ∈ Rp is called group sparse vector if the number of
groups in G is small.

I Given a linear operator A and an observed/measurement vector b ∈ Rn . We
want to recover the group sparse input vector x ∈ Rp such that b = Ax.

A natural generalization of sparsity

Group-structure:  a collection of groups of variables     

x1

x2

x3

x4

x5

x6

x7

x8

G1 = {1}
G2 = {2}
G3 = {1, 2, 3, 4, 5}
G4 = {4, 6}
G5 = {3, 5, 7}
G6 = {6, 7, 8}

sparse

◆(x)i =

⇢
1 if xi 6= 0
0 otherwise

support indicator vector:

0

0

1

0

1

0

1

0

◆(x)i =

⇢
1 if xi 6= 0
0 otherwise

x 2 RN

X

i

◆(x)i := K ⌧ N

1
variables

2 3 4 5 6 7 8

G1

groups
G2 G3 G4 G5 G6

Figure 1: Example of bipartite graph between variables and groups induced by the
group structure G1, see text for details.

G1

G2

G3

G4

G5

G6

{2} {3, 5} {7}

{1} {4} {6}

Figure 2: Bipartite group graph with loops induced by the group structure G1,
where on each edge we report the elements of the intersection.

function of the nonzero components of a vector in RN , i.e. ◆(x)i = 1 if xi 6= 0 and
◆(x)i = 0 otherwise. We let 1N to be the N -dimensional vector of all ones and IN

the N ⇥ N identity matrix. The support of x is defined by the set-valued function
supp(x) = {i 2 N : xi 6= 0}.

Definition 2.1. A group structure G = {G1, . . . , GM} is a collection of groups,
with Gj ✓ N and |Gj | = gj for 1  j  M and

S
G2G G = N .

We can represent a group structure G as a bipartite graph, where on one side we
have the N variables nodes and on the other the M group nodes. An edge connects
a variable node i to a group node j if i 2 Gj . Fig. 1 shows an example. The
incidence matrix AG 2 BN⇥M of the bipartite graph encodes the group structure,

AG
ij =

⇢
1 if i 2 Gj

0 otherwise
.

Another useful representation of a group structure is via a group graph (V, E)
where the nodes V are the groups G 2 G and the edge set E contains eij if Gi\Gj 6=
;, that is an edge connects two groups that overlap. We define a sequence of
connected nodes v1, v2, . . . , vn, such that v1 = vn, a loop.

In order to illustrate these concepts, consider the group structure G1 defined
by the following groups, G1 = {1}, G2 = {2}, G3 = {1, 2, 3, 4, 5}, G4 = {4, 6},
G5 = {3, 5, 7} and G6 = {6, 7, 8}. G1 can be represented by the variables-groups
bipartite graph of Fig. 1 or by the group graph of Fig. 2, which is bipartite and
contains loops.

3

x =

Thursday, July 10, 14
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Group sparse recovery
Sparse recovery

I Let I := {1, . . . , p} be the set of indices. Let G := {G1, . . . ,Gm} be the set of m
groups Gi ⊆ I and I ⊆ ∪m

i=1Ui .
I For given group Gi , and a vector x ∈ Rp, we use xGi = {xj : j ∈ Gi}.
I For fixed group structure G, x ∈ Rp is called group sparse vector if the number of
groups in G is small.

I Given a linear operator A and an observed/measurement vector b ∈ Rn . We
want to recover the group sparse input vector x ∈ Rp such that b = Ax.

Optimization formulation

min
x∈Rp

∑
Gi∈G

‖xGi‖2

s.t. Ax = b.
(7)

Here, f (x) :=
∑
Gi∈G

‖xGi‖2 and X := Rp. This problem possesses two common
structures: decomposability and tractable proximity.
When m = p and Gi = {i}, (7) reduces to the well-known linear sparse recovery
problem (basis pursuit):

min
x∈Rp

‖x‖1 s.t. Ax = b. (8)
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Robust principle component analysis

Robust principle component analysis (RPCA)
Assume that we are given a large-scale input matrix M ∈ Rm×n , which can be
decomposed as M = L0 + S0, where L0 has low-rank and S0 is sparse. We do not
know L0 and S0 and want to recover them given that they are low-rank and sparse,
respectively.
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Motivating example: Robust principle component analysis

Robust principle component analysis (RPCA)
Assume that we are given a large-scale input matrix M ∈ Rm×n , which can be
decomposed as M = L0 + S0, where L0 has low-rank and S0 is sparse. We do not
know L0 and S0 and want to recover them given that they are low-rank and sparse,
respectively.

Optimization formulation

min
L,S∈Rm×n

‖vec(S)‖1 + ρ‖L‖∗,

s.t. S + L = M.
(9)

Here ρ > 0 is a weighted parameter to trade-off between the sparse and low-rank
terms, vex is the vectorization operator and ‖ · ‖∗ is the nuclear norm.

By letting
I x = [x1,x2] := [vec(S), vec(L)]
I f (x) = f1(x1) + f2(x2) := ‖vec(S)‖1 + ρ‖L‖∗
I A = [I, I], b := vec(M) and
I X := Rmn .

Then, (9) can be transformed into (1).
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Motivating example: Robust principle component analysis (cont)

Example - RPCA for object separation from video
Let M be the matrix extracted from a video clip. Our aim is to separate objects (e.g.,
humans) and backgrounds by solving (9).

Result: One frame from the solution of (9)

One original image M The low-rank part L The sparse part S
presented in object separation context. We can see from this plot that the objects (humans) can be considered
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Figure 11: The results of four algorithms on the frame 25 of the video clip

as sparse representation and are separated from the background. As can be observed from the second column
in Figure 11, (1P2D) and ADMMs give a better low-rank image estimate as compared to TFOCS.

8.4.4 Square-root LASSO.

Since the (1P2D) variant of Algorithm 1 has similar cost-per-iteration as ADMM, we compare this algorithm
with the state-of-the-art solvers such as TFOCS, ADMM and PADMM.

For this purpose, we choose the square-root LASSO problem:

min
x2Rn

kAx�bk2+lkxk1, (75)

36
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Matrix completion
Matrix completion
Aim: Recover the unknown entries of a matrix M ∈ Cm×n , when we only observe a
few q < m × n entries at a given locations (i, j) ∈ Ω.
Low-rankness: Since this is an underdetermined problem, there exist many matrix X such that Xij = Mij for all
(i, j) ∈ Ω. We would like to recover a low-rank matrix X such that Xij = Mij for all (i, j) ∈ Ω.

Illustration

Mij

Xij ! Mij

Observed entries of MLow-rank recovery matrix X

Tuesday, July 1, 14

Convex relaxation of matrix completion

min
X∈Cm×n

‖X‖∗
s.t. Xij = Mij , ∀(i, j) ∈ Ω.

(10)
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Outline

I Today
1. Convex constrained optimization

I Problem setting, common structures and basis assumptions
I Solutions and approximate solutions
I Motivating examples

2. Optimality and duality
I Optimality condition
I Lagrange dualization
I Min-max formulation
I Equivalent interpretations of optimality condition.
I Dual decomposition ability

3. Classical solution methods
I Convex problem with equality constraints and null space method.
I Projected gradient method
I Frank-Wolfe method
I Quadratic penalty methods
I Augmented Lagrangian methods
I Alternating minimization algorithm (AMA)
I Alternating direction method of multipliers (ADMM)

4. Next week

1. Nonsmooth constrained optimization
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Optimality condition

Lagrange function

L(x, λ) := f (x) + λT (Ax− b).

Here, λ ∈ Rn is the vector of Lagrange multipliers (or dual variables) w.r.t. Ax = b.

Optimality condition
The optimality condition of (1) can be written as{

0 ∈ ATλ? + ∂f (x?) +NX (x?),
0 = Ax? − b.

(11)

Here:
I ∂f (x) := {z ∈ Rp : f (y) ≥ f (x) + zT (y− x), ∀y ∈ Rp} is the subdifferential of f at x (see

Lecture 2).
I NX is the normal cone of X at x defined as

NX (x) :=
{
{z ∈ Rp : zT (x− y) ≥ 0, ∀y ∈ X} if x ∈ X ,
∅, if x < X .

The condition (11) can be considered as the KKT (Karush-Kuhn-Tuchker) condition.
Any point (x?, λ?) satisfying (11) is called a KKT point. x? is called a stationary
point and λ? is the corresponding multipliers.
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Example: Illustration

I This figure illustrates the first condition 0 ∈ ATλ? + ∂f (x?) +NX (x?).

@f(x?)
+ + x? + NX (x?)

Origin 0

X
=

AT�?

AT�? + @f(x?) + NX (x?)

Thursday, July 10, 14
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Example: Basis pursuit

Example (Basis pursuit)

min
x∈Rp

‖x‖1 s.t. Ax = b.

Note:
I f (x) := ‖x‖1 is nonsmooth, for any v ∈ ∂f (x) we have vi = +1 if xi > 0,

vi = −1 if xi < 0 and vi ∈ (−1, 1) if xi = 0.
I Since X ≡ Rp, we have NX (x) = {0} for all x.

Optimality condition
The optimality condition of (11) becomes

{
0 ∈ ∂f (x?) + ATλ?

0 = Ax? − b.
⇔


(ATλ?)i = −1 if x?i > 0, 1 ≤ i ≤ p
(ATλ?)i = +1 if x?i < 0, 1 ≤ i ≤ p
(ATλ?)i ∈ (−1, 1) if x?i = 0, 1 ≤ i ≤ p
Ax? = b.
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Min-max formulation and dual problem
Dual function and Dual problem
I Dual function:

d(λ) := min
x∈X
{L(x, λ) := f (x) + λT (Ax− b)}. (12)

Let x?(λ) be a solution of (12) then d(λ) is finite if x?(λ) exists. d(·) is concave
and possibly nonsmooth.

I Dual problem: The following dual problem is convex

d? := max
x∈Rn

d(λ) (13)

Min-max formulation

d? = max
λ∈Rn

d(λ) = max
λ∈Rn

min
x∈X
{f (x) + λT (Ax− b)}

≤ min
x∈X

max
λ∈Rn

{f (x) + λT (Ax− b)} =

{
min
x∈X

f (x) if Ax = b,

+∞ otherwise
(14)

Here, the inequality is due to the max-min theorem [6].
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Example: Strictly convex quadratic programming
Strictly convex quadratic programming

min
x∈Rp

(1/2)xT Hx + hT x

s.t. Ax = b.

where H is symmetric positive definite.

Dual problem is also a strictly convex quadratic program

I Lagrange function L(x, λ) := (1/2)xT Hx + (ATλ+ h)T x− bTλ.
I Dual function:

d(λ) = min
x∈Rp
{(1/2)xT Hx + (ATλ+ h)T x− bTλ}

I Since x?(λ) = −H−1(ATλ+ h), we can obtain d(λ) explicitly as

d(λ) = −(1/2)λT (AH−1AT )λ− (b + AH−1h)Tλ.

I Dual problem (unconstrained):

d? := max
λ∈Rn

d(λ) ⇔ min
λ∈Rn

1
2
λT (AH−1AT )λ+ (b + AH−1h)Tλ.
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Example: Nonsmoothness of the dual function
Consider a constrained convex problem:

min
x∈R3

{f (x) := x2
1 + 2x2},

s.t. 2x3 − x1 − x2 = 1,
x ∈ X := [−2, 2]× [−2, 2]× [0, 2].

The dual function is defined as
d(λ) := min

x∈X
{x2

1 + 2x2 + λ(2x3 − x1 − x2 + 1)}

is concave and nonsmooth as illustrated in the figure below.
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(λ
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d(�) = min
x2X
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1 + 2x2 + �(2x3 � x1 � x2 + 1)

 

nonsmooth peak
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Saddle point

Definition (Saddle point)
A point (x?, λ?) ∈ X × Rn is called a saddle point of the Lagrange function L if

L(x?, λ) ≤ L(x?, λ?) ≤ L(x, λ?), ∀x ∈ X , λ ∈ Rn .

Recall the minmax form:

max
λ

min
x∈X
{L(x, λ) := f (x) + λT (Ax− b)}. ((12))

Illustration of saddle point: L(x, λ) := (1/2)x2 + λ(x − 1) in R2

Saddle point (x?,�?)

Tuesday, July 1, 14
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Lecture 07: Constrained Convex Minimization

Slater’s qualification condition

Slater’s qualification condition
Recall relint(X ) the relative interior of the feasible set X . The Slater condition
requires

relint(X ) ∩ {x : Ax = b} , ∅. (15)

Special cases

I If X is absent, then (15) ⇔ ∃x̄ : Ax̄ = b .

I If Ax = b is absent, then (15) ⇔ relint(X ) , ∅ .

I If Ax = b is absent and X := {x : h(x) ≤ 0}, where h is Rp → Rq is convex,
then

(15)⇔ ∃x̄ : h(x̄) < 0.
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Example: Slater’s condition

Example
Let us consider the feasible set Dα := X ∩Aα as

X := {x ∈ R2 : x2
1 + x2

2 ≤ 1} Aα := {x ∈ R2 : x1 + x2 = α},

where α ∈ R.

Slater’s condition holds and does not hold

x1

x2

0 1

1

1

2

1

2

x
1 +

x
2 = 1

2

x2
1 + x2

2  1

relative interior of D

x1

x2

0 1

1

x2
1 + x2

2  1

relative interior of D = ;

x
1 +

x
2 = p

2

Tuesday, July 1, 14

D1/2 satisfies Slater’s condition – D√2-does not satisfy Slater’s condition
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Necessary and sufficient condition

Theorem (Necessary and sufficient optimality condition)
Under Slater’s condition (15): relint(X ) ∩ {x : Ax = b} , ∅, the KKT condition
(11) {

0 ∈ ATλ? + ∂f (x?) +NX (x?),
0 = Ax? − b.

is necessary and sufficient for a point (x?, λ?) ∈ X × Rn being an optimal solution for
the primal problem (1) and dual problem (13):

f ? :=
{

min
x∈Rp

f (x)

s.t. Ax = b, x ∈ X ,
and d? := max

x∈Rn
d(λ).

Strong duality

I By definition of f ? and d?, we always have d? ≤ f ? (weak duality).

I Under Slater’s condition and X ? , ∅, we have d? = f ? (strong duality).
I Any solution (x?, λ?) of the KKT condition (11) is also a saddle point.
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What happens if Slater’s condition does not hold?

Without Slater’s condition, KKT condition is only sufficient but not necessary, i.e., if
(x?, λ?) satisfies the KKT condition, then x? is a global solution of (1) but not vice
versa.

Example (Violating Slater’s condition)
Consider the following constrained convex problem:

min
x∈R2

{x1 : x2 = 0, x2
1 − x2 ≤ 0}

In the setting (1), we have A := [0, 1], b = 0, X = {x ∈ R2 : x2
1 − x2 ≤ 0}. The

feasible set D := {x ∈ R2 : x2 = 0, x2
1 − x2 ≤ 0} = {(0, 0)T} contains only one

point, which is also the optimal solution of the problem, i.e., x? := (0, 0)T .
In this case, Slater’s condition is definitely violated. Let us check the KKT condition.
Since NX (x?) = {(0,−t)T : t ≥ 0}, we can write the KKT condition as[

1
0

]
+
[

0
1

]
λ+
[

0
−t

]
=
[

0
0

]
, λ ∈ R, t ∈ R+.

Since this linear system has no solution due to the first equation 1 = 0, the KKT
condition is inconsistent.
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Violating Slater’s condition

x

?
Ax = b , x2 = 0

X := {x 2 R2 : x

2
1 � x2  0}

x1

x2

NX (x?) := {(0,�t)T : t 2 R+}

f(x) = x1

f(x) #

Friday, July 18, 14
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Variational inequality (VI) formulation

Primal-dual mapping
For simplicity, we assume that f is smooth. We introduce z := (xT , λT )T ∈ Rp+n

and two mappings:

M(z) :=
[
∇f (x) + ATλ

Ax− b

]
and T (z) := NX (x)× {0n}. (16)

Then M : Rp+n → Rp+n is a single-valued mapping and T : Rp+n ⇒ Rp+n is a
set-valued mapping.

Inclusion and VI formulation
I The optimality condition (11) can be written as an inclusion:

0 ∈ R(z) := M(z) + T (z).

I (11) can also be expressed as a variational inequality:

M(z?)T (z− z?) ≥ 0, ∀z ∈ Z := X × Rn . (17)
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Dual decomposition ability

Roles of strong duality

I Strong duality is a key property in convex optimization, which creates a
connection between primal problem (1) and dual problem (13).

I Under Slater’s condition, strong duality holds, i.e., f ? = d?.
I Principally, by solving dual problem (13), we can recover a solution of primal
problem (1) and vice versa.

Decomposability is a key property for parallel algorithms

I Under the decomposable assumption, the dual function d can be decomposed as

d(λ) =
g∑

i=1

di(λ)− bTλ.

where
di(λ) = min

xi∈Xi

{
fi(xi) + λT Aixi

}
, i = 1, . . . , g.

I Evaluating function di(·) and its [sub]gradients can be computed in parallel
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Outline

I Today
1. Convex constrained optimization

I Problem setting, common structures and basis assumptions
I Solutions and approximate solutions
I Motivating examples

2. Optimality and duality
I Optimality condition
I Lagrange dualization
I Min-max formulation
I Equivalent interpretations of optimality condition.
I Dual decomposition ability

3. Classical solution methods
I Convex problem with equality constraints and null space method.
I Projected gradient method
I Frank-Wolfe method
I Quadratic penalty methods
I Augmented Lagrangian methods
I Alternating minimization algorithm (AMA)
I Alternating direction method of multipliers (ADMM)

4. Next week

1. Nonsmooth constrained optimization
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Null space method for convex programs with equality constraints

Convex problems with equality constraints
We consider the case X ≡ Rp. Then (1) reduces to

f ? :=
{

min
x∈Rp

f (x)

s.t. Ax = b.
(18)

Dimensional reduction
I Assume that rank(A) = m < p, then the dimension of the null space

dim(null(A)) = p − n.
I By eliminating the equality constraints Ax = b, we can reduce the problem
dimension from p to p − n.

I This elimination can be done via projection onto the null space null(A) of A,
(e.g., by QR factorization of A).

I Problem (18) can be transformed into an unconstrained problem with dimension
p − n.
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Null space method

Null space representation of the equality constraint Ax = b
I Any vector x ∈ Rp can be represented as

x = x̄ + xN = x̄ + Uz,

where xN ∈ null(A), U is a basis of null(A) and x̄ satisfies Ax̄ = b.
I For any feasible point x̄ (i.e., Ax̄ = b), the point x := x̄ + Uz is also feasible to

Ax = b, since

Ax = Ax̄ + AUz = Ax̄ = b, since AU = 0.

I U can be computed via the QR-factorization of AT , and x̄ can be obtained by
solving a triangular linear system.

Unconstrained formulation
By using the null space representation x = x̄ + Uz, (18) can be transformed into the
following unconstrained formulation:

min
z∈Rp−n

{
f̃ (z) := f (x̄ + Uz)

}
.
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Example of null space representation

Problem
Given s ∈ R3, we want to compute the projection of s onto an affine space as:

min
x∈R3

(1/2)‖x− s‖2
2 s.t.

[
1 1 1
1 1 −1

]
x =

[
2
1

]
, x ∈ R3. (19)

Null-space representation
I By computing the QR factorization of AT we obtain a 3× 3 orthonormal matrix

Z and a 1× 1 triangle matrix R.
I Since rank(A) = 2, dim(null(A)) = 3− 2 = 1, we take the last column of Z to

form a basis U of null(A), which is U :=

[
−
√

2/2√
2/2
0

]
.

I The two first columns of Z forms the basis of the range space of AT called V.
I By solving RT y = b we obtain y ≈ (−1.15470,−0.20412)T . Therefore

x̄ := Vy = (3/4, 3/4, 1/2)T .

I We finally obtain x = x̄ + Uz, where z ∈ R2 such that Ax = b.
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Lecture 07: Constrained Convex Minimization

From constrained to unconstrained formulation
The projection of s onto the affine space Ax = b
Problem (19) can be transformed into the unconstrained problem:

min
z∈R

(1/2)‖Uz + x̄− s‖2
2.

This problem has a closed form solution z? = (UT U)−1UT (s− x̄) = UT (s− x̄).

Illustration

x1 + x2 + x3 = 2

x1 + x2 � x3 = 1

A�ne space

(
x1 + x2 + x3 = 2

x1 + x2 � x3 = 1

s

z?

Wednesday, July 2, 14
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Lecture 07: Constrained Convex Minimization

Limitations of the null-space method

Limitations of the null space approach

I Require matrix factorization (e.g., QR factorization) to compute a basis U of the
null space of A and a feasible point x̄, which is computational demand in
high-dimension (O(n2p)).

I If matrix A is given implicitly (e.g., by linear operator), then computing U is
impractical.

I Null space method destroys the original structure of the objective function f due
to the affine transformation Uz + x̄. For instance, f (x) := ‖x‖1, which is
component-wise decomposable.
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Lecture 07: Constrained Convex Minimization

Convex problems with simple constraints

Convex problems with simple constraints
When Ax = b is absent, problem (1) reduces to:

f ? := min
x∈X

f (x) (20)

Assumption (Simplicity)
X is “simple” so that the projection πX of any point s ∈ Rp onto X can be computed
efficiently, i.e.:

πX (s) := arg min
x∈X
‖x− s‖2,

can be solved efficiently (e.g., closed form solution or polynomial time).

Note: Let ιX be the indicator function of X . Then

πX (s) = proxιX (s).

Examples can be found in Lectures 4 and 5.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 07: Constrained Convex Minimization

Convex problems with simple constraints

Convex problems with simple constraints
When Ax = b is absent, problem (1) reduces to:

f ? := min
x∈X

f (x) (20)

Assumption (Simplicity)
X is “simple” so that the projection πX of any point s ∈ Rp onto X can be computed
efficiently, i.e.:

πX (s) := arg min
x∈X
‖x− s‖2,

can be solved efficiently (e.g., closed form solution or polynomial time).

Note: Let ιX be the indicator function of X . Then

πX (s) = proxιX (s).

Examples can be found in Lectures 4 and 5.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 07: Constrained Convex Minimization

Projected-gradient method

Assumption A.1

I f ∈ F1,1
L (Rp)

I πX can be computed exactly.

Projected gradient method (ProjGA)
1. Choose x0 ∈ Rp.
2. For k = 0, 1, · · · , perform:

xk+1 := πX (xk − (1/Lf )∇f (xk)).

Properties

I ProjGA can be enhanced by performing a line-search for approximating Lf .
I Convergence: The convergence of ProjGA remains the same as in standard
gradient method, i.e.:

f (xk)− f ? ≤
Lf ‖x0 − x?‖2

2
2(k + 1)

, k ≥ 0.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 07: Constrained Convex Minimization

Projected-gradient method

Assumption A.1

I f ∈ F1,1
L (Rp)

I πX can be computed exactly.

Projected gradient method (ProjGA)
1. Choose x0 ∈ Rp.
2. For k = 0, 1, · · · , perform:

xk+1 := πX (xk − (1/Lf )∇f (xk)).

Properties

I ProjGA can be enhanced by performing a line-search for approximating Lf .
I Convergence: The convergence of ProjGA remains the same as in standard
gradient method, i.e.:

f (xk)− f ? ≤
Lf ‖x0 − x?‖2

2
2(k + 1)

, k ≥ 0.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 07: Constrained Convex Minimization

Projected-gradient method

Assumption A.1

I f ∈ F1,1
L (Rp)

I πX can be computed exactly.

Projected gradient method (ProjGA)
1. Choose x0 ∈ Rp.
2. For k = 0, 1, · · · , perform:

xk+1 := πX (xk − (1/Lf )∇f (xk)).

Properties

I ProjGA can be enhanced by performing a line-search for approximating Lf .
I Convergence: The convergence of ProjGA remains the same as in standard
gradient method, i.e.:

f (xk)− f ? ≤
Lf ‖x0 − x?‖2

2
2(k + 1)

, k ≥ 0.

Prof. Volkan Cevher volkan.cevher@epfl.ch Mathematics of Data: From Theory to Computation



Lecture 07: Constrained Convex Minimization

Illustration of the projected gradient method

�r
f(
x

0 )

�rf(x
1 )

�r
f(
x 2
)

x0

x1

x2

x3

x

0 � ↵0rf(x0)
x

1 � ↵1rf(x1)

x

2 � ↵2rf(x2)

X

Thursday, July 10, 14

Three iterations of the projected gradient method.
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Lecture 07: Constrained Convex Minimization

Fast projected-gradient method

Assumption
Under Assumption A.1., ProjGA can be accelerated by using Nesterov’s optimal
method.

Fast projected gradient method (FastProjGA)
1. Choose x0 ∈ Rp. Set y0 := x0 and t0 := 1
2. For k = 0, 1, · · · , perform:xk+1 := πX (yk − (1/Lf )∇f (yk)),

yk+1 := xk+1 + ((tk − 1)/tk+1)(xk+1 − xk),
tk+1 := (1 +

√
1 + 4t2

k )/2.

Convergence
The convergence of FastProjGA remains the same as in fast gradient method, i.e.:

f (xk)− f ? ≤
2Lf ‖x0 − x?‖2

2
(k + 1)2 , k ≥ 0.
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Lecture 07: Constrained Convex Minimization

Frank-Wolfe’s method

Problem setting and assumption

f ? := min
x∈X

f (x) (21)

Assumptions
I X is nonempty, convex, closed and bounded.
I f ∈ F1,1

L (Rp) (i.e., convex with Lipschitz gradient).
I For given c ∈ Rp, x̂ := arg minx∈X cT x can be solved efficiently.

Frank-Wolfe’s method [5]
Conditional gradient method (CGA)

1. Choose x0 ∈ X .
2. For k = 0, 1, · · · , perform:{

x̂k := arg min
x∈X
∇f (xk)T x,

xk+1 := (1− γk)xk + γk x̂k ,

where γk := 2
k+2 is a given relaxation parameter.
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Lecture 07: Constrained Convex Minimization

Geometric interpretation of Frank-Wolfe’s method
I Most straightforward way to generate a feasible descent direction: find x̂k that
satisfies ∇f (xk)T (x̂k − xk) < 0.

I We assume that the constraint set X is compact so that the direction finding
problem has a solution.

Function levels of equal cost

xk

xk+1
rf(xk+1)

rf(xk)

X

Friday, July 4, 14

Figure: Finding the feasible direction given current point xk . The new point xk+1 in the
constraint setX lies furthest along the negative gradient direction ∇f (xk).
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Lecture 07: Constrained Convex Minimization

Properties and convergence of Frank-Wolfe’s method

Properties

I Since X is bounded, x̂k is well-defined.
I CGA is a “norm-free” method
I x̂k attains at the boundary of X , which preserves sparsity.
I When X is a polytope, computing x̂k is equivalent to solving a linear program.
I Allows inexactness in computing x̂k

I γk can be estimated by a line-search procedure.

Theorem (Convergence [5])
Let {xk} be the sequence generated by CGA. Then

f (xk)− f ? ≤
2Lf

k + 1
D2
X ,

where DX := max
x,y∈X

‖x− y‖, the diameter of X w.r.t. ‖ · ‖.

The convergence rate of CGA is O(1/k) which is the same order as ProjGA. However,
the diameter DX is in general worse than ‖x0 − x?‖2 in ProjGA in the `2-norm.
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Lecture 07: Constrained Convex Minimization

Dual subgradient method

Dual problem (13) is in general nonsmooth and convex. Subgradient ascent method
can be applied to solve it.

Properties of dual function

I d is concave, but not necessary differentiable.
I Subgradient: Ax?(λ)− b ∈ ∂d(λ), where x?(λ) is a solution of (12).

Dual subgradient ascent method

Dual subgradient method (DSGM):
1. Choose λ0 ∈ Rp.
2. For k = 0, 1, · · · , perform:

2.a. Solve (12) to obtain x?(λ).
2.b. Compute the subgradient ∇d(λk) := Ax?(λk)− b.

2.c. Update λk+1 := λk +
R

√
k + 1

∇d(λk) , where R is a

given constant.
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Lecture 07: Constrained Convex Minimization

Convergence of DSGM

Well-definedness
I Problem (12) may not have solution x?(λ) for any λ. Then DSGM is not
well-defined except X is bounded.

I Impractical to evaluate R? := ‖λ0 − λ?‖2, use an upper bound R of R?.

Theorem (Convergence)
Assume that ‖Ax?(λk)− b‖ ≤ Md for all k ≥ 0. Then {λk} generated by DSGM
satisfies

d? − d(λk) ≤
MdR?√

k + 1
,∀k ≥ 0,

where R? := minλ? ‖λ0 − λ?‖2. Convergence rate of DSGM is O(1/
√

k).

Special cases

1. If both f is strongly convex, then d is smooth and its gradient is Lipschitz
continuous., d ∈ F1,1

L (Rp). Gradient and fast gradient methods in Lecture 3 can
be used to solve the dual problem.

2. Smoothing techniques in Lecture 5 can be used to smooth the dual function d.
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Lecture 07: Constrained Convex Minimization

Augmented Lagrangian method
Dual problem (13) is convex but generally nonsmooth. By augmenting L with
(κ/2)‖Ax− b‖2

2, we obtain augmented dual function dκ, which maintains basic
properties of d but smooth and Lipschitz gradient.

Augmented Lagrangian and augmented dual function
I Augmented Lagrangian: Lκ(x, λ) := L(x, λ) + (κ/2)‖Ax− b‖2

2, where ρ > 0 is
a penalty parameter.

I Augmented dual function:

dκ(λ) := min
x∈X

{
Lκ(x, λ) := f (x) + λT (Ax− b) + (κ/2)‖Ax− b‖2

2
}
. (22)

Key properties of dκ
I dκ is concave and smooth and

∇dκ(λ) = Ax?κ(λ)− b,

where x?κ(λ) is the solution of (22).
I ∇dκ is Lipschitz continuous with a Lipschitz constant Ld := κ−1, i.e.:

‖∇dκ(λ)−∇dκ(λ̂)‖ ≤ κ−1‖λ− λ̂‖, ∀λ, λ̂ ∈ Rn .
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Lecture 07: Constrained Convex Minimization

Example: Behavior of the augmented Lagrangian dual function
Consider a constrained convex problem:

min
x∈R3

{f (x) := x2
1 + x2

2},

s.t. 2x3 − x1 − x2 = 1,
x ∈ X := [−2, 2]× [−2, 2]× [0, 2].

The augmented Lagrangian dual function is defined as
dκ(λ) := min

x∈X
{x2

1 + x2
2 + λ(2x3 − x1 − x2 + 1) + (κ/2)‖2x3 − x1 − x2 − 1‖2

2}

is concave and nonsmooth as illustrated in the figure below.
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Lecture 07: Constrained Convex Minimization

Augmented dual problem

Augmented dual problem

d?κ := max
λ∈Rn

dκ(λ), κ > 0. (23)

Relation to the dual problem (13)
Under Slater’s condition and X ? , ∅, we have
I The dual solution set of (23) is coincided with the one of the dual problem (13).
I f ? = d? = d?κ for any κ > 0.

The augmented dual problem (23) is smooth and convex ⇒ Gradient and Fast
gradient methods can be applied to solve it.
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Lecture 07: Constrained Convex Minimization

Augmented Lagrangian method

Augmented Lagrangian method (ALM):
1. Choose λ0 ∈ Rp and κ > 0.
2. For k = 0, 1, · · · , perform:

2.a. Solve (22) to compute ∇dκ(λk) := Ax?κ(λk)− b.
2.b. Update λk+1 := λk + κ∇dκ(λk).

ALM can be accelerated by Nesterov’s optimal method.

Fast augmented Lagrangian method (FALM)
1. Choose λ0 ∈ Rp and κ > 0. Set λ̃0 := λ0 and t0 := 1
2. For k = 0, 1, · · · , perform:

2.a. Solve (22) to compute ∇dκ(λ̃k) := Ax?κ(λ̃k)− b.
2.b. Updateλ

k+1 := λ̃k + κ∇dκ(λ̃k),
λ̃k+1 := λk+1 + ((tk − 1)/tk+1)(λk+1 − λk),
tk+1 := (1 +

√
1 + 4t2

k )/2.
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Convergence of ALM and FALM

Theorem (Convergence)

I Let {λk} be the sequence generated by ALM. Then

d? − dκ(λk) ≤
‖λ0 − λ?‖2

2
2κ(k + 1)

, k ≥ 0.

I Let {λk} be the sequence generated by FALM. Then

d? − dκ(λk) ≤
2‖λ0 − λ?‖2

2
κ(k + 2)2 , k ≥ 0.

I The convergence rate of ALM is O(1/k) w.r.t. the augmented dual function dκ.
I The convergence rate of FALM is O(1/k2) w.r.t. the augmented dual function

dκ.
I Important observation: The right-hand side of both estimates depends on κ.
When κ is getting large, the right-hand side is decreasing.
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Drawbacks and enhancements

Drawbacks
1. Drawback 1: The quadratic term ‖Ax− b‖2

2 in (22) destroys the separability as
well as the tractable proximity of f .

2. Drawback 2: Solving (22) exactly is impractical.
3. Drawback 3: No theoretical guarantee for choosing appropriate values of κ.

Enhancements
1. Allow inexactness of solving (22), while guaranteeing the same convergence rate.
2. Update the penalty parameter κ

I Increasing ρ: Lead to the increase of ill-condition in (22).
I Adaptively update κ: Often heuristic

3. Process the quadratic term ‖Ax− b‖2
2 by linearization, alternating, etc.
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Lecture 07: Constrained Convex Minimization

Example: Group basis pursuit

Group basis pursuit
Given a linear operator A, a measurement vector b and a group structure
G := {G1, . . . ,Gg}. The aim is to solve:

min
x∈Rp

g∑
i=1

‖xGi‖2 s.t. Ax = b. (24)

Applying ALM and FALM
The main computation:
I Solving the subproblem (22), which is

x?κ(λ) := arg min
x∈X

{ g∑
i=1

‖xGi‖2 + λT (Ax− b) + (κ/2)‖Ax− b‖2
2

}
,

by applying, e.g., FISTA (Lecture 5).
I Updating κ by increasing it as κk+1 := ηκk for given η > 1.
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Numerical results

ALM FALM
Primal Obj. Value 47.145 47.187

Feas. Gap 0.99 ×10−6 0.23 ×10−2

Dual Obj. Value 33.196 33.165
Iterations 821 2000

CPU time (s) 2.656 6.513
Calls A/AT 9031/8210 22000/20000
Recovery error 0.04% 0.4%

I Parameters: κ = 0.5, η = 1
I Input: n = 341, p = 1024, g = 85, nzg = 11; min |Gi | = 5, max |Gi | = 23, mean|Gi | = 12.04
I Proximal operations (FISTA): max iterations 10, stop criteria 10−9 relative change, warm start
I Stopping criteria: ‖Axk − rk − b‖ ≤ 10−6‖b‖ and ‖(xk , rk)− (xk−1, rk−1)‖ ≤ 10−6‖(xk , rk)‖
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Numerical results

ALM FALM
Primal Obj. Value 47.1451 47.1452

Feas. Gap 0.99 ×10−6 0.99 ×10−6

Dual Obj. Value 33.196 33.196
Iterations 605 192

CPU time (s) 10.647 4.920
Calls A/AT 38348/37743 17420/17228
Recovery error 0.04% 0.04%

I Parameters: κ = 0.5, η = 1
I Input: n = 341, p = 1024, g = 85, nzg = 11; min |Gi | = 5, max |Gi | = 23, mean|Gi | = 12.04
I Proximal operations (FISTA): max iterations 100, stop criteria 10−9 relative change, warm start
I Stopping criteria: ‖Axk − rk − b‖ ≤ 10−6‖b‖ and ‖(xk , rk)− (xk−1, rk−1)‖ ≤ 10−6‖(xk , rk)‖
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Remarks

Remarks
I The FALM method is sensitive to the inexactness of the solution of (22)

x?κ(λ) := arg min
x∈X

{ g∑
i=1

‖xGi‖2 + λT (Ax− b) + (κ/2)‖Ax− b‖2
2

}
I "Fast" updates of the dual variable λk influence the primal updates

I warm-start strategy - at iteration k choose initial solution of (22) x?κ(λk−1)
I increase iterations number to achieve convergence of the primal (also tolerance)
I keep η small (FALM more sensitive to large values of η)

I Guarantes are given only for the dual problem, not for the primal
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Alternating idea to overcome the non-separability
I Problem: Given two nonempty, closed and convex sets X1 and X2. Find a point

x? ∈ X1 ∩ X2 .
I Strategy: Start from x0 and iterate alternatively:{

yk+1 := πX1 (xk)
xk+1 := πX2 (yk+1)

where πX is the projection on the convex set X .

x

0

x

3 X1X2

y1 := ⇡X1
(x0)

x1 := ⇡X2
(y1)

x1

x2
y2

y3

x?

Thursday, July 10, 14
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Alternating minimization algorithm (AMA)

Assumptions

I Problem (1) has a separable structure with p = 2, i.e.:

f ? :=
{

min
x∈Rp

{
f (x) := f1(x1) + f2(x2)

}
,

s.t. A1x1 + A2x2 = b, x1 ∈ X1,x2 ∈ X2.
(25)

I f1 is strongly convex with parameter µ1 > 0.

The idea of AMA [7]
I Alternating between variables x1 and x2 in:

min
x1∈X1,x2∈X2

{
f1(x1)+f2(x2)+λT A1x1+λT A2x2+(κ/2)‖A1x1+A2x2−b‖2

2

}
.

I Since f1 is convex, neglects the augmented term. Then, this step becomesxk+1
1 := arg min

x1∈X1

{
f1(x1) + (λk)T A1x1

}
,

xk+1
2 := arg min

x2∈X2

{
f2(x2) + (λk)T A2x2 +

κ

2
‖A1xk+1

1 + A2x2 − b‖2
2

}
.
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AMA: Alternating minimization algorithm

Alternating minimization algorithm (AMA):
1. Choose λ0 ∈ Rp and κ > 0.
2. For k = 0, 1, · · · , perform:

xk+1
1 := arg min

x1∈X1

{
f1(x1) + (λk)T A1x1

}
xk+1

2 := arg min
x2∈X2

{
f2(x2) + (λk)T A2x2 +

κ

2
‖A1xk+1

1 + A2x2 − b‖2
2

}
λk+1 := λk + κ(A1xk+1

1 + A2xk+1
2 − b).

Implementation remarks

I Main computation: Solving two subproblems to compute xk+1
1 and xk+1

2 .
I A2 prevents the tractable proximity from f2.
I When AT

2 A2 = I, we have xk+1
2 = proxκ−1f2

(AT
2 (b−A1xk+1

1 )− κ−1AT
2 λ

k).

I When AT
2 A2 , I, we can approximate xk+1

2 by linearizing the quadratic term.
I The penalty parameter κ can be updated.
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Convergence of AMA

Observations
I AMA is a proximal-gradient method applying to the Frenchel dual problem:

d̃? := max
λ∈Rp

{
d̃(λ) := −f ∗1 (−AT

1 λ)− f ∗2 (−AT
2 λ)− bTλ

}
. (26)

where f ∗1 and f ∗2 are the Fenchel conjugate of f1 and f2, respectively.
I Since f1 is strongly convex, the conjugate f ∗1 is Lipschitz gradient with Lipschitz
constant Lf∗1

:= µ−1
1 .

I AMA can be accelerated by using Nesterov’s optimal gradient method (see [3]).

Theorem (Convergence theorem [3])
Let {(xk

1,xk
2, λ

k)} be the sequence generated by AMA. Assume that
ρ < 2µ1/λmax(AT

1 A1). Then

d̃? − d̃(λk) ≤
λmax(AT

1 A1)
2µ1(k + 1)

‖λ0 − λ?‖2
2,

where λmax(AT
1 A1) is the maximum eigenvalue of AT

1 A1.
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Example: `1-regularized least squares
Problem (`1-regularized least squares)

min
x∈Rp

(1/2)‖Ax− b‖2
2 + ρ‖x‖1, (27)

where ρ > 0 is a regularization parameter.

Applying AMA
Introducing a slack variable r = Ax− b, we can reformulate (27) as

min
x∈Rp,r∈Rn

(1/2)‖r‖2
2 + ρ‖x‖1, s.t. Ax− r = b.

The main steps of AMA becomes
rk+1 := arg min

r∈Rn

{
(1/2)‖r‖2

2 − (λk)T r
}
≡ λk

xk+1 := arg min
x∈Rp

{
ρ‖x‖1 + (λk)T Ax +

κ

2
‖Ax− rk+1 − b‖2

2

}
,

λk+1 := λk + κ(Axk+1 − rk+1 − b).

For AT A = I, the x-step reduces to:

xk+1 := proxκ−1ρ‖x‖1

(
AT (b + λk)− κ−1ATλk

)
.
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Approaches to solving the subproblem

Problem
I The main computation of AMA is the solution of:

xk+1 := arg min
x∈Rp

{
ρ‖x‖1 + (λk)T Ax +

κ

2
‖Ax− rk+1 − b‖2

2

}
(28)

I (28) has no closed form solution (except for AT A = I ).

Solution
I There are two ways to overcome this drawback:

I Applying FISTA.
I Linearize the quadratic term: q(x) := q(xk) +∇q(xk)T (x− xk) + L

2 ‖x− xk‖2
2

where L is teh Lipschitz constant equal to ‖A‖2
2

Note: Is equivalent to applying FISTA with 1 iteration
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Numerical results - High accuracy

Linearization FISTA
Primal Obj. Value 14.241 14.241

Feas. Gap 0.3 ×10−10 0.3 ×10−17

Iterations 991 23
Inner Iterations 991 13835
CPU time (s) 1.187 15.555
Calls A/AT 992/991 13859/13835

I Parameters: ρ = 0.1, κ = 0.01, η = 1.25
I Input: n = 750, p = 2000, k = 200, Noise ∼ N (0, σ2I) with σ = 10−3

I FISTA: max iterations 1000, stop criteria 10−10 relative change, warm start
I Stopping criteria: ‖Axk − rk − b‖ ≤ 10−10‖b‖ and ‖xk − xk−1‖ ≤ 10−10‖xk‖
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Convergence plots
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Numerical results - Low accuracy

Linearization FISTA
Primal Obj. Value 14.241 14.241

Feas. Gap 0.3 ×10−10 0.29 ×10−10

Iterations 991 154
Inner Iterations 991 758
CPU time (s) 1.187 0.938
Calls A/AT 992/991 913/758

I Parameters: ρ = 0.1, κ = 0.01, η = 1.25
I Input: n = 750, p = 2000, k = 200, Noise ∼ N (0, σ2I) with σ = 10−3

I FISTA: max iterations 5, stop criteria 10−10 relative change, warm start
I Stopping criteria: ‖Axk − rk − b‖ ≤ 10−10‖b‖ and ‖xk − xk−1‖ ≤ 10−10‖xk‖
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Convergence plots
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Recovery error

I ‖x? − x\‖/‖x\‖
I Linearization: 18.88%
I FISTA: 18.88%

I ‖x?Lin − x?FISTA‖/‖x
\‖ = 0.43× 10−8
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Alternating direction method of multipliers (ADMM)

The idea
When f1 is not strongly convex, to overcome the drawback of ALM, by alternating
solving (22).

ADMM

Alternating direction method of multipliers (ADMM):
1. Choose λ0 ∈ Rp, x0

2 ∈ Rp, γ ≥ 0 and κ > 0.
2. For k = 0, 1, · · · , perform:

xk+1
1 := argmin

x1∈X1

{
f1(x1)+

κ

2
‖A1x1+A2xk

2−b−κ−1AT
1 λ

k‖2
2+

γ

2
‖x1−xk

1‖2
2
}
,

xk+1
2 := argmin

x2∈X2

{
f2(x2) +

κ

2
‖A1xk+1

1 + A2x2 − b− κ−1AT
2 λ

k‖2
2
}
,

λk+1 := λk + κ(A1xk+1
1 + A2xk+1

2 − b).

In the original ADMM version, the proximal term (γ/2)‖x1 − xk
1‖2

2 is neglected.
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Enhancements
Update the parameter κ
I Constant step-size: We can fix κk = κ > 0.
I Increasing step-size: κk can be increased as κk+1 := ηκk , for k ≥ 0 and η > 1.
I Adaptive step size: κk can be updated adaptively based on the primal and dual
residuals (see [2]).

Preconditioned ADMM
I Drawback: When X1 and X2 are absent, f1 and f2 possess a tractable
prox-operator, if A1 and A2 are not column orthogonal, then we can not exploit
the proximal tractability of f1 and f2.

I Overcome: Linearize the quadratic terms and using the gradient step to
approximate xk+1

1 and xk+1
2 :

gk
1 := xk

1 − α1
kAT

1 (A1xk
1 + A2xk

2 − b) (gradient step for x1)
xk+1

1 := proxα1
kκ
−1f1

(
gk

1 + κ−1AT
1 λ

k
)

(proximal step for x1)
gk

2 := xk
2 − α2

kAT
2 (A1xk+1

1 + A2xk
2 − b) (gradient step for x2)

xk+1
2 := proxα2

kκ
−1f2

(
gk

2 + κ−1AT
2 λ

k
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(proximal step for x2).

where α1
k and α2

k can be chosen proportionally to ‖A1‖2 and ‖A2‖2, respectively.
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Enhancements
Update the parameter κ
I Constant step-size: We can fix κk = κ > 0.
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Convergence of ADMM

Theorem (Convergence of ADMM [2])
Assume that f1 and f2 are proper, closed and convex and L has a saddle point
(x?, λ?). For γ = 0, we have
I Residual convergence: {rk} converges to zero, where

rk := ‖A1xk
1 + A2xk

2 − b‖2.

I Objective convergence: {f (xk)} converges to f ?.
I Dual variable convergence: {λk} converges to λ?.

Theorem (Convergence rate of ADMM [4])
Let {wk} be the sequence generated by ADMM, where wk := (xk , λk) and
w? := (x?, λ?). Let w̄k := (k + 1)−1

∑k
j=0 wj . Then {w̄k} satisfies

f (x̄k)− f (x?) + (w̄k −w?)T M(w?) ≤
1

2(k + 1)
‖w0 −w?‖2

H, ∀k ≥ 0,

where M(w) :=
[

−ATλ
A1x1 + A2x2 − b

]
and H := diag(√γI, κAT

2 A2, κ−1I).

Consequently, {wk} converges to w? at O(1/k) rate.
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Example 1: Robust principle component analysis (RPCA)

Robust PCA

min
L,S

‖vec(S)‖1 + ρ‖L‖∗,

s.t. S + L = M.
(29)

Here ρ > 0 is a weighted parameter between the sparse and low-rank terms.

Applying ADMM
The main steps of ADMM applying to (29) become:

Sk+1 := proxκ−1‖vec(·)‖1

(
M− Lk + κ−1Wk

)
,

Lk+1 := proxβκ−1‖·‖∗

(
M− Sk+1 + κ−1Wk

)
,

Wk+1 := Wk + κ(Sk + Lk −M).

These prox-operators are computed as

proxτ‖vec(·)‖1 (S) = sign(S1)⊗max
{
|S1| − τ, 0

}
,

proxτ‖·‖∗ (L) = UΣτVT ,

where Στ := sign(Σ)⊗max{|Σ| − τ, 0} and UΣVT = L is the SVD factorization of
L.
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Video surveillance

Frame 1

Frame 67

Frame 34

Frame 100

Unprocessed video from EC Funded CAVIAR project/IST 2001 37540, homepages.inf.ed.ac.uk/rbf/CAVIAR/.
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Numerical test

Exact ALM Inexact ALM
Objective Value 553.5 ×103 553.6 ×103

Feas. Gap 0.33 ×10−5 0.45 ×10−5

‖L‖∗ 474.9 ×103 471.1 ×103

‖vec(S)‖1 22.4616 ×106 23.556 ×106

Iterations 5 25
CPU time (s) 719.7 32.7

SVD Operations 644 25
Rank 1 1

Sparsity (%) 19.3 20.5
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Algorithm

I Input
I M is 110592× 100: 100 frames of 288× 384 pixels as columns

I Algorithm
I ρ = 0.35× 10−2 - tunnebale
I Stopping criteria: ‖M− Lk − Sk‖ < 10−5‖M‖

I (tunneable)
I (tunneable)
I prox op.

Exact ADMM

κ1 = 0.5/max{Σ}
κk+1 = κk ∗ 6
Tolerance: 10−6‖M‖

Inexact ADMM

κ1 = 1.5/max{Σ}
κk+1 = κk ∗ 1.5
Iterations: 1

I Output
I Numerical rounding ⇒ threshold
I Loutput = UΣ0.01 max{Σ}VT

I Soutput = S0.01 max{|S|}

Codes available at perception.csl.illinois.edu/matrix-rank/home.html
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Example 2: Image deblurring

Image deblurring
The image deblurring presented previously can be written as:

min
u∈Rn×p,v

{
(1/2)‖v‖2

F + ρ‖u‖TV
}

s.t. A(u)− v = b.
(30)

Applying ADMM

I We assume that A∗A = I, where A∗ is the adjoint operator of A.
I The v-step can be computed explicitly and the u-step can be computed relying
on the prox-operator of the TV-norm.

I The main steps of ADMM becomes vk+1 := (κ+ 1)−1
(
λk + κ(A(uk)− b)

)
,

uk+1 := proxρκ−1‖·‖TV

(
A∗(b + vk+1 − κ−1λk)

)
,

λk+1 := λk + κ(A(uk+1)− vk+1 − b).
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Wrong regularization parameter

ρ = πe

Original image Blured image
SNR = 40dB

Recoverd image
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Wrong regularization parameter

ρ = πe

Original image Blured image
SNR = 40dB

Recoverd image
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Different values of regularization parameter

ρ = 5× 10−3 ρ = 1× 10−2 ρ = 2.5× 10−2
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Numerical results

ρ = 5× 10−3 ρ = 1× 10−2 ρ = 2.5× 10−2

Objective Value 5317 7600 13344
MSE 24.1 22.8 27.2

ISNR (dB) 7.73 7.97 7.2
Feas. Gap (×10−4) 3.01 3.38 5.45

Iterations 48 47 37
CPU time (s) 3.46 3.24 2.59

Linear Op. Calls∗ 99 97 77

I Algorithm
I κ = ρ/10
I Stopping criteria: |F(uk ,vk)− F(uk−1,vk−1)| < 10−5F(uk ,vk)
I Maximum 5 iterations for TV prox-operator (with warmstart)
I Input: 256px× 256px image

I MSE(Mean Squared Error) = ‖u−u\‖2
np

I ISNR(Improvement in Signal-to-Noise Ratio) = ‖b−u\‖2
npMSE [dB]

∗ number of applications of A and AT operators
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Convergence plots

Objective Feasibility Gap ISNR

ISNR0 = −20dB
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Summary
We have studied several methods for solving the following constrained convex problem:

f ? := min
x
{f (x) : Ax = b, x ∈ X}. (1)

Under different assumptions, we have presented the following methods:
I Null-space, projected gradient and Frank-Wolf’s methods.
I Dual subgradient and augmented Lagrangian methods
I Alternating minimization algorithm (AMA) and alternating direction methods of multipliers (ADMM).

However, such methods still have limitations, few of them are listed below.
Methods Limitations

Null-space method require null-space representation (e.g., QR with O(n2p) complexity), destroy the
original structure of f

Projected gradient require tractability of the projection on X , smooth f
Dual subgradient method

advantage for decomposable structure, but slow convergence rate O(1/
√

k), sen-
sitive with the choices of step-size

Augmented Lagrangian
non-separability of the quadratic term, high-computational cost for subproblems,
no supporting theory for penalty parameter selection

AMA
only application for partly strongly convex objective, not using the tractable proxim-
ity of f due to linear operator, no supporting theory for penalty parameter selection

ADMM
not using the tractable proximity of f due to linear operator, no supporting theory
for penalty parameter selection

In the next lecture, we will present other methods for solving (1) that either use
different set of assumptions or overcome some of these limitations.
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