Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 7: Motivation for Non-Smooth Optimization Problems

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2015)

License Information for Mathematics of Data Slides

This work is released under a <u>Creative Commons License</u> with the following terms:

Attribution

The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

Non-Commercial

 The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.

▶ Share ∆like

- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- ► Full Text of the License

Outline

This lecture

- 1. Deficiency of smooth models
- 2. Motivation for non-smooth models
- 3. Compressive sensing
- 4. Subgradient descent

Next lecture

- 1. Unconstrained, non-smooth composite minimization
- 2. Convergence and convergence rate characterization of various approaches

Recommended Reading

- Chapter 2 in S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing. Birkhäuser, 2013.
- Section 3.2.3 in Y. Nesterov, Introductory Lectures on Convex Optimization.
 Springer Science + Business Media, 2004.

Motivation

Motivation

Nonsmooth convex optimization problems arise frequently in applications.

In some cases, nonsmooth *regularizers* are intentionally introduced to improve statistical accuracy in estimation.

This lecture gives an introduction to nonsmooth functions and optimization, including a number of specific motivating examples based on linear inverse problems.

Recap: Oracle information

Oracle Information

Algorithms are assumed to have access to *oracle information*:

- Function value $f(\mathbf{x})$
- Gradient $\nabla f(\mathbf{x})$
- Hessian $\nabla^2 f(\mathbf{x})$
- **.**

Note: How we get such information varies between problems and applications

Recap: Oracle information

Oracle Information

Algorithms are assumed to have access to oracle information:

- Function value $f(\mathbf{x})$
- Gradient $\nabla f(\mathbf{x})$
- Hessian $\nabla^2 f(\mathbf{x})$
- **.**..

Note: How we get such information varies between problems and applications

For smooth objective functions, we have seen that various properties can significantly help speed up the optimization:

Differentiability in functions

Definition (Differentiability classes)

A function $f:\mathbb{R}\to\mathbb{R}$ is in the differentiability class C^k if its derivatives up to order k exist and are continuous.

- **Note:** In some fields, the word "smooth" refers specifically to the class C^{∞} . In optimization, it usually refers to C^1 with Lipschitz gradient.
- Some examples:

Figure: (Left panel) ∞ -times continuously differentiable function in \mathbb{R} . (Right panel) Non-differentiable f(x) = |x| in \mathbb{R} .

Differentiability in functions

Useful Fact 1

All convex functions are continuous (except possibly on the boundary of their domain/effective domain)

However, they need not even be differentiable: e.g. f(x) = |x|

Non-differentiable \implies No gradient descent, no Newton's method...

Useful fact 2:

Non-differentiable functions can still be strongly convex and/or Lipschitz continuous (but of course not Lipschitz gradient)

Non-smoothness

Many optimization problems that we would like to solve are non-smooth – how do we solve them?

This lecture: Some motivating examples, and simple techniques for solving them.

Simple examples of non-smoothness

Example 1: Simultaneously maximizing multiple objectives

What if we simultaneously want $f_1(x), f_2(x), \dots, f_k(x)$ to be small?

A natural approach in some cases: Minimize $f(x) = \max\{f_1(x), \dots, f_k(x)\}$

- ▶ The good news: If each $f_i(x)$ is convex, then f(x) is convex
- ▶ The bad (?) news: Even if each $f_i(x)$ is smooth, f(x) may be non-smooth
 - e.g. $f(x) = \max\{x, x^2\}$

Figure: Maximum of two smooth convex functions.

Simple examples of non-smoothness

Example 2: Linear Regression

Consider the classical linear regression problem:

$$\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$$

with $\mathbf{b} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{n \times p}$ are known, \mathbf{x}^{\natural} is unknown, and \mathbf{w} is noise. Assume for now that $n \geq p$ (more later).

Simple examples of non-smoothness

Example 2: Linear Regression

Consider the classical linear regression problem:

$$\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$$

with $\mathbf{b} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{n \times p}$ are known, \mathbf{x}^{\natural} is unknown, and \mathbf{w} is noise. Assume for now that $n \geq p$ (more later).

Standard approach: Least squares: $\hat{\mathbf{x}}_{LS} \in \arg\min_{\mathbf{x}} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2$

• Convex, smooth, and an explicit solution: $\hat{\mathbf{x}}_{LS} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b} = \mathbf{A}^{\dagger} \mathbf{b}$

Alternative approach: Least absolute value deviation: $\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_1$

- ► The advantage: Improved robustness against outliers (high noise values)
- ► The bad (?) news: A non-differentiable objective function

Our main motivating example this lecture: The case $n \ll p$ (!)

Deficiency of smooth models

Recall the practical performance of an estimator $\hat{\boldsymbol{x}}.$

Practical performance

Denote the numerical approximation by $\mathbf{x}_{\epsilon}^{\star}.$ The practical performance is determined by

$$\left\|\mathbf{x}_{\epsilon}^{\star}-\mathbf{x}^{\natural}\right\|_{2} \leq \underbrace{\left\|\mathbf{x}_{\epsilon}^{\star}-\hat{\mathbf{x}}\right\|_{2}}_{\text{approximation error}} + \underbrace{\left\|\hat{\mathbf{x}}-\mathbf{x}^{\natural}\right\|_{2}}_{\text{statistical error}}.$$

Sometimes *non-smooth* estimators of \mathbf{x}^{\natural} can help *reduce the statistical error*.

Example: Least-squares estimation in the linear model

Recall the linear model and the LS estimator.

LS estimation in the linear model

Let $\mathbf{x}^{\natural} \in \mathbb{R}^p$ and $\mathbf{A} \in \mathbb{R}^{n \times p}$. The samples are given by $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$, where \mathbf{w} denotes the unknown noise.

The LS estimator for x^{\natural} given A and b is defined as

$$\hat{\mathbf{x}}_{\mathsf{LS}} \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2 \right\}.$$

- ▶ If **A** has full column rank, $\hat{\mathbf{x}}_{LS} = \mathbf{A}^{\dagger}\mathbf{b}$ is uniquely defined.
- ▶ In the case that n < p, A cannot have full column rank, and we can only conclude that $\hat{x}_{LS} \in \left\{A^{\dagger}b + h : h \in \operatorname{null}\left(A\right)\right\}$.

Observation: The estimation error $\|\hat{\mathbf{x}}_{LS} - \mathbf{x}^{\sharp}\|_2$ can be arbitrarily large!

A candidate solution

Continuing the LS example:

- In other words, there are infinitely many solutions x such that b = Ax
- Suppose that $\mathbf{w}=0$ (i.e. no noise). Should we just choose the one $\hat{\mathbf{x}}_{candidate}$ with the smallest norm $\|\mathbf{x}\|_2$?

Unfortunately, this still fails when n < p

A candidate solution contd.

Proposition ([7])

Suppose that $A\in\mathbb{R}^{n\times p}$ is a matrix of i.i.d. standard Gaussian random variables, and w=0. We have

$$(1-\epsilon)\left(1-\frac{n}{p}\right)\left\|\mathbf{x}^{\natural}\right\|_{2}^{2} \leq \left\|\hat{\mathbf{x}}_{\mathrm{candidate}} - \mathbf{x}^{\natural}\right\|_{2}^{2} \leq (1-\epsilon)^{-1}\left(1-\frac{n}{p}\right)\left\|\mathbf{x}^{\natural}\right\|_{2}^{2}$$

with probability at least $1 - 2\exp\left[-(1/4)(p-n)\epsilon^2\right] - 2\exp\left[-(1/4)p\epsilon^2\right]$, for all $\epsilon > 0$ and $\mathbf{x}^{\natural} \in \mathbb{R}^p$.

Observation: The estimation error may *not* diminish unless n is very close to p.

Intuition: The relation n < p means that the dimension of the sample **b** exceeds the number of unknown variables in \mathbf{x}^{\natural} to be solved.

Impact: It is impossible to estimate \mathbf{x}^{\dagger} accurately using $\hat{\mathbf{x}}_{\mathrm{candidate}}$ when $n \ll p$ even if $\mathbf{w} = \mathbf{0}$.

► The statistical error $\|\hat{\mathbf{x}}_{\mathrm{candidate}} - \mathbf{x}^{\sharp}\|_{2}^{2}$ can also be arbitrarily large when $\mathbf{w} \neq \mathbf{0}$. Hence, the solution is also not robust.

Summarizing the findings so far

The message so far:

- Fiven in the absence of noise, we cannot recover ${\bf x}^{\natural}$ from the observations ${\bf b}={\bf A}{\bf x}^{\natural}$ unless $n\geq p$
- ▶ But in applications, p might be thousands, millions, billions...
- ▶ Can we get away with $n \ll p$ under some further assumptions on x?

A natural signal model

Definition (s-sparse vector)

A vector $\mathbf{x} \in \mathbb{R}^p$ is s-sparse if it has at most s non-zero entries.

Sparse representations

 x^{\dagger} : sparse transform coefficients

- ▶ Basis representations $\Psi \in \mathbb{R}^{p \times p}$
 - ► Wavelets, DCT, ...
- Frame representations
 - $\Psi \in \mathbb{R}^{m \times p}, \ m > p$
 - Gabor, curvelets, shearlets, ...
- Other dictionary representations...

 $\mathbf{b} \in \mathbb{R}^n$, $\tilde{\mathbf{A}} \in \mathbb{R}^{n \times p}$, and n < p

- $\mathbf{b} \in \mathbb{R}^n$, $\tilde{\mathbf{A}} \in \mathbb{R}^{n \times p}$, and n < p
- $\Psi \in \mathbb{R}^{p \times p}$, $\mathbf{x}^{
 atural} \in \mathbb{R}^{p}$, and $\|\mathbf{x}^{
 atural}\|_{0} \leq s < n$

 $\mathbf{b} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{n \times p}$, and $\mathbf{x}^{
atural} \in \mathbb{R}^p$, and $\|\mathbf{x}^{
atural}\|_0 \le s < n < p$

A fundamental impact:

The matrix A effectively becomes overcomplete.

We could solve for x^{\natural} if we knew the location of the non-zero entries of x^{\natural} .

Stability and robustness

The most basic problem is to recover \mathbf{x}^{\natural} from noiseless measurements $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural}$, also given knowledge of \mathbf{A} . However, in practice we usually need more.

Robustness

A robust recovery algorithm is one that is robust to noise: If $\mathbf{b} = \mathbf{A} \mathbf{x}^{\natural} + \mathbf{w}$, then the effect of \mathbf{w} on the error $\|\hat{\mathbf{x}} - \mathbf{x}^{\natural}\|_2^2$ is small when $\|\mathbf{w}\|_2^2$ is small.

Stability

A stable recovery algorithm is one that is robust to signals that are not exactly sparse: If $\mathbf{x}^{\natural} = \mathbf{x}_s + \mathbf{x}'$ for some s-sparse signal \mathbf{x}_s , then the effect of \mathbf{x}' on the error $\|\hat{\mathbf{x}} - \mathbf{x}^{\natural}\|_2^2$ is small when $\|\mathbf{x}'\|_2^2$ is small.

Compressible signals

Real signals may not be exactly sparse, but approximately sparse, or compressible.

Roughly speaking, a vector $\mathbf{x} := (x_1, \dots, x_p)^T \in \mathbb{R}^p$ is compressible if the number of its significant components, $|\{k: |x_k| \geq t, 1 \leq k \leq p\}|$, is small.

Cameraman@MIT.

- Solid curve: Sorted wavelet coefficients of the cameraman image.
- Dashed curve: Expected order statistics of generalized Pareto distribution with shape parameter 1.67.

A different tale of the linear model b = Ax + w

A realistic linear model

Let $\mathbf{b} := \tilde{\mathbf{A}} \mathbf{y}^{\natural} + \tilde{\mathbf{w}} \in \mathbb{R}^n$.

- Let $\mathbf{y}^{
 atural} := \Psi \mathbf{x}_{\mathsf{real}} \in \mathbb{R}^m$ that admits a *compressible* representation $\mathbf{x}_{\mathsf{real}}$.
- ▶ Let $\mathbf{x}_{\mathsf{real}} \in \mathbb{R}^p$ that is *compressible* and let \mathbf{x}^{\natural} be its *best s-term approximation*.
- Let $\tilde{\mathbf{w}} \in \mathbb{R}^n$ denote the possibly nonzero *noise* term.
- Assume that $\Psi \in \mathbb{R}^{m \times p}$ and $\tilde{\mathbf{A}} \in \mathbb{R}^{n \times m}$ are known.

Then we have

$$\begin{split} \mathbf{b} &= \tilde{\mathbf{A}} \Psi \left(\mathbf{x}^{\natural} + \mathbf{x}_{\text{real}} - \mathbf{x}^{\natural} \right) + \tilde{\mathbf{w}}. \\ &:= \underbrace{\left(\tilde{\mathbf{A}} \Psi \right)}_{\mathbf{A}} \mathbf{x}^{\natural} + \underbrace{\left[\tilde{\mathbf{w}} + \tilde{\mathbf{A}} \Psi \left(\mathbf{x}_{\text{real}} - \mathbf{x}^{\natural} \right) \right]}_{\mathbf{w}}, \end{split}$$

equivalently, $\mathbf{b} = \mathbf{A}\mathbf{x}^{\dagger} + \mathbf{w}$.

Peeling the onion

The realistic linear model uncovers yet another level of difficulty

Practical performance

The practical performance is determined by

$$\left\|\mathbf{x}_{\epsilon}^{\star}-\mathbf{x}_{\mathsf{real}}\right\|_{2} \leq \underbrace{\left\|\mathbf{x}_{\epsilon}^{\star}-\hat{\mathbf{x}}\right\|_{2}}_{\text{approximation error}} + \underbrace{\left\|\hat{\mathbf{x}}-\mathbf{x}^{\natural}\right\|_{2}}_{\text{statistical error}} + \underbrace{\left\|\mathbf{x}_{\mathsf{real}}-\mathbf{x}^{\natural}\right\|_{2}}_{\text{model error}}.$$

A great deal of research goes into learning representations that renders the model error negligible while still keeping statistical error low.

Approach 1: Sparse recovery via exhaustive search

Approach 1 for estimating \mathbf{x}^{\natural} from $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$

We may search over all $\binom{p}{s}$ subsets $S \subset \{1,\ldots,p\}$ of cardinality s, solve the restricted least least-squared problem $\min_{\mathbf{x}_S} \|\mathbf{b} - \mathbf{A}_S \mathbf{x}_S\|_2^2$, and return the resulting \mathbf{x} corresponding to the smallest error, putting zeros in the entries of \mathbf{x} outside S.

With this approach, the stable and robust recovery of any s-sparse signal is possible using just n=2s measurements.

Approach 1: Sparse recovery via exhaustive search

Approach 1 for estimating \mathbf{x}^{\natural} from $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$

We may search over all $\binom{p}{s}$ subsets $S \subset \{1,\ldots,p\}$ of cardinality s, solve the restricted least least-squared problem $\min_{\mathbf{x}_S} \|\mathbf{b} - \mathbf{A}_S \mathbf{x}_S\|_2^2$, and return the resulting \mathbf{x} corresponding to the smallest error, putting zeros in the entries of \mathbf{x} outside S.

With this approach, the stable and robust recovery of any s-sparse signal is possible using just n=2s measurements.

Issues

- $\binom{p}{s}$ is a huge number too many to search!
- s is not known in practice

The ℓ_1 -norm heuristic

 $\begin{array}{ll} \textbf{Heuristic:} & \text{The ℓ_1-ball with radius c_∞ is an "approximation" of the set of sparse} \\ \text{vectors } \hat{\mathbf{x}} \in \left\{\mathbf{x}: \|\mathbf{x}\|_0 \leq s, \|\mathbf{x}\|_\infty \leq c_\infty\right\} \text{ parameterized by their sparsity s and maximum amplitude c_∞.} \end{aligned}$

$$\hat{\mathbf{x}} \in \left\{\mathbf{x}: \left\|\mathbf{x}\right\|_1 \leq c_{\infty}\right\} \quad \text{ with some } c_{\infty} > 0.$$

The unit ℓ_1 -norm ball $\left\{\mathbf{x}: \left\|\mathbf{x}\right\|_1 \leq 1, \mathbf{x} \in \mathbb{R}^3 \right\}$

This heuristic leads to the so-called *Lasso* optimization problem.

Sparse recovery via the Lasso

Definition (Least absolute shrinkage and selection operator (Lasso))

$$\hat{\mathbf{x}}_{\textit{lasso}} := \arg\min_{\mathbf{x} \in \mathbb{R}^p} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2 + \rho \|\mathbf{x}\|_1$$

with some $\rho \geq 0$.

The second term in the objective function is called the *regularizer*.

The parameter ρ is called the *regularization parameter*. It is used to trade off the objectives:

- Minimize $\|\mathbf{b} \mathbf{A}\mathbf{x}\|_2^2$, so that the solution is consistent with the observations
- ightharpoonup Minimize $\|\mathbf{x}\|_1$, so that the solution has the desired sparsity structure

Note: The Lasso has a convex but non-smooth objective function

Performance of the Lasso

Theorem (Existence of a stable solution in polynomial time [10])

This Lasso convex formulation is a second order cone program, which can be solved in polynomial time in terms of the inputs n and p. Surprisingly, if the signal \mathbf{x}^{\natural} is s-sparse and the noise \mathbf{w} is sub-Gaussian (e.g., Gaussian or bounded) with parameter σ , then choosing $\rho=\sqrt{\frac{16\sigma^2\log p}{n}}$ yields an error of

$$\left\|\hat{\mathbf{x}}_{lasso} - \mathbf{x}^{\natural}\right\|_{2} \leq \frac{8\sigma}{\mu(\mathbf{A})} \sqrt{\frac{s \ln p}{n}},$$

with probability at least $1 - c_1 \exp(-c_2 n \rho^2)$, where c_1 and c_2 are absolute constants, and $\mu(\mathbf{A}) > 0$ encodes the difficulty of the problem.

Hence, the number of measurements is $\mathcal{O}\!\left(s\ln p\right)$ — this may be much smaller than p

Other models with simplicity

There are many models extending far beyond sparsity, coming with other non-smooth regularizers.

Generalization via simple representations

Definition (Atomic sets & atoms [3])

An atomic set A is a set of vectors in \mathbb{R}^p . An atom is an element in an atomic set.

Terminology (Simple representation [3])

A parameter $\mathbf{x}^{\natural} \in \mathbb{R}^p$ admits a simple representation with respect to an atomic set $\mathcal{A} \subseteq \mathbb{R}^p$, if it can be represented as a non-negative combination of few atoms, i.e., $\mathbf{x}^{\natural} = \sum_{i=1}^k c_i \mathbf{a}_i, \quad \mathbf{a}_i \in \mathcal{A}, \ c_i \geq 0.$

Example (Sparse parameter)

Let \mathbf{x}^{\natural} be s-sparse. Then \mathbf{x}^{\natural} can be represented as the non-negative combination of s elements in \mathcal{A} , with $\mathcal{A} := \{ \pm \mathbf{e}_1, \dots, \pm \mathbf{e}_p \}$, where $\mathbf{e}_i := (\delta_{1,i}, \delta_{2,i}, \dots, \delta_{p,i})$ for all i.

Example (Sparse parameter with a dictionary)

Let $\Psi \in \mathbb{R}^{m \times p}$, and let $\mathbf{y}^{\natural} := \Psi \mathbf{x}^{\natural}$ for some s-sparse \mathbf{x}^{\natural} . Then \mathbf{y}^{\natural} can be represented as the non-negative combination of s elements in \mathcal{A} , with $\mathcal{A} := \{\pm \psi_1, \dots, \pm \psi_p\}$, where ψ_k denotes the kth column of Ψ .

Atomic norm

Recall that we handled sparse (or compressible) vectors by solving the Lasso problem

$$\hat{\mathbf{x}}_{\mathsf{lasso}} := \arg\min_{\mathbf{x} \in \mathbb{R}^p} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2 + \rho \|\mathbf{x}\|_1$$

We observe that the ℓ_1 -norm is the *atomic norm* associated with the atomic set $\mathcal{A}:=\{\pm \mathbf{e}_1,\dots,\pm \mathbf{e}_p\}$, which is indeed the convex hull of the set.

This same principle leads to effective regularizers for a wide range of atomic structures.

$$\begin{split} \mathcal{A} &:= \left\{ \left[\begin{array}{c} 1 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 1 \end{array} \right], \left[\begin{array}{c} -1 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ -1 \end{array} \right] \right\}. \\ \mathcal{C} &:= \operatorname{conv} \left(\mathcal{A} \right). \end{split}$$

Gauge functions and atomic norms

Definition (Gauge function)

Let $\mathcal C$ be a convex set in $\mathbb R^p$, the gauge function associated with $\mathcal C$ is given by

$$g_{\mathcal{C}}(\mathbf{x}) := \inf \{ t > 0 : \mathbf{x} = t\mathbf{c} \text{ for some } \mathbf{c} \in \mathcal{C} \}$$
 .

Definition (Atomic norm)

Let \mathcal{A} be a symmetric atomic set in \mathbb{R}^p such that if $\mathbf{a} \in \mathcal{A}$ then $-\mathbf{a} \in \mathcal{A}$ for all $\mathbf{a} \in \mathcal{A}$. Then, the atomic norm associated with a symmetric atomic set A is given by

$$\|\mathbf{x}\|_{\mathcal{A}} := g_{\text{conv}(\mathcal{A})}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^p,$$

where conv(A) denotes the *convex hull* of A.

A Generalization of the Lasso

Given an atomic set A, solve the following regularized least-squares problem:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x} \in \mathbb{R}^p} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2 + \rho \|\mathbf{x}\|_{\mathcal{A}}$$
 (1)

Slide 30 / 42

Pop quiz

Let $\mathcal{A}:=\left\{(1,0)^T,(0,1)^T,(-1,0)^T,(0,-1)^T\right\}$, and let $\mathbf{x}:=(-\frac{1}{5},1)^T.$ What is $\|\mathbf{x}\|_{\mathcal{A}}$?

Pop quiz

Let
$$\mathcal{A}:=\left\{(1,0)^T,(0,1)^T,(-1,0)^T,(0,-1)^T\right\}$$
, and let $\mathbf{x}:=(-\frac{1}{5},1)^T.$ What is $\|\mathbf{x}\|_{\mathcal{A}}$?

ANS: $\|\mathbf{x}\|_{\mathcal{A}} = \frac{6}{5}$.

Application: Multi-knapsack feasibility problem

Problem formulation [9]

Let $\mathbf{x}^{\natural} \in \mathbb{R}^p$ which is a convex combination of k vectors in $\mathcal{A} := \{-1, +1\}^p$, and let $\mathbf{A} \in \mathbb{R}^{n \times p}$. How can we recover \mathbf{x}^{\natural} given \mathbf{A} and $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural}$?

In this case, $\left\|\cdot\right\|_{A}$ is the $\ell_{\infty}\text{-norm,}$ and the regularized least-squares problem is

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x} \in \mathbb{R}^p} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2 + \rho \|\mathbf{x}\|_{\infty}$$

Application: Matrix completion

Problem formulation [2, 5]

Let $\mathbf{X}^{\natural} \in \mathbb{R}^{p \times p}$ with $\mathrm{rank}(\mathbf{X}^{\natural}) = r$, and let $\mathbf{A}_1, \ldots, \mathbf{A}_n$ be matrices in $\mathbb{R}^{p \times p}$. How do we estimate \mathbf{X}^{\natural} given $\mathbf{A}_1, \ldots, \mathbf{A}_n$ and $b_i = \mathrm{Tr}\left(\mathbf{A}_i\mathbf{X}^{\natural}\right) + w_i, \ i = 1, \ldots, n$, where $\mathbf{w} := (w_1, \ldots, w_n)^T$ denotes unknown noise?

This is a special case of the atomic norm formulation with $\mathcal{A} = \left\{ \mathbf{X} : \mathrm{rank} \; (\mathbf{X}) = 1, \|\mathbf{X}\|_F = 1, \mathbf{X} \in \mathbb{R}^{p \times p} \right\}.$ It can be shown that $\|\cdot\|_{\mathcal{A}}$ is the nuclear norm, $\|\cdot\|_{\star}$. The regularized least-squares problem is

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{X} \in \mathbb{R}^{p \times p}} \sum_{i=1}^{n} (b_i - \text{Tr}(\mathbf{A}_i \mathbf{X}))^2 + \rho \|\mathbf{X}\|_*$$

Structured Sparsity

There exist many more structures that we have not covered here, each of which is handled using different non-smooth regularizers. Some examples [1, 8]:

- Group Sparsity: Many signals are not only sparse, but the non-zero entries tend to cluster according to known patterns.
- ► Tree Sparsity: When natural images are transformed to the Wavelet domain, their significant entries form a rooted connected tree.

Figure: (Left panel) Natural image in the Wavelet domain. (Right panel) Rooted connected tree containing the significant coefficients.

Selection of the Parameters

In all of these problems, there remain the issues of how to design A and how to choose ρ .

Design of A:

- Sometimes A is given "by nature", whereas sometimes it can be designed
- For the latter case, i.i.d. Gaussian designs provide good theoretical guarantees, whereas in practice we must resort to structured matrices permitting more efficient storage and computation
- ► See [6] for an extensive study in the context of compressive sensing

Selection of ρ :

- Theoretical bounds provide some insight, but usually the direct use of the theoretical choice does not suffice
- In practice, a common approach is cross-validation [4], which involves searching for a parameter that performs well on a set of known training signals
- Other approaches include covariance penalty [4] and upper bound heuristic [11]

How can we optimize non-smooth functions?

Recall: Gradient methods, Newton's method, etc. no longer applicable

Rest of this lecture: A simple extension of the gradient method

Next lecture: More sophisticated approaches

Figure: Non-differentiable at the origin

Subdifferentials and (sub)gradients in convex functions

ightharpoonup Subdifferential: generalizes abla to nondifferentiable functions

Definition

Let $f:\mathcal{Q}\to\mathbb{R}\cup\{+\infty\}$ be a convex function. The subdifferential of f at a point $\mathbf{x}\in\mathcal{Q}$ is defined by the set:

$$\partial f(\mathbf{x}) = \left\{ \mathbf{v} \in \mathbb{R}^p \ : \ f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{v}, \ \mathbf{y} - \mathbf{x} \rangle \text{ for all } \mathbf{y} \in \mathcal{Q} \right\}.$$

Each element \mathbf{v} of $\partial f(\mathbf{x})$ is called *subgradient* of f at \mathbf{x} .

Definition

Let $f: \mathcal{Q} \to \mathbb{R} \cup \{+\infty\}$ be a differentiable convex function. Then, the subdifferential of f at a point $\mathbf{x} \in \mathcal{Q}$ contains only the gradient, i.e., $\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}$.

Figure: (Left) Non-differentiability at point y. (Right) Gradient as a subdifferential with a singleton entry.

Subdifferentials and (sub)gradients in convex functions

Example

- $f(\mathbf{x}) = \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2 \longrightarrow \nabla f(\mathbf{x}) = -2\mathbf{A}^T (\mathbf{y} \mathbf{A}\mathbf{x}).$
- $f(\mathbf{X}) = -\log \det(\mathbf{X}) \longrightarrow \nabla f(\mathbf{X}) = \mathbf{X}^{-1}$
- $\qquad \qquad f(x) = |x| \qquad \qquad \longrightarrow \quad \partial |x| = \left\{ \operatorname{sgn}(x) \right\}, \text{ if } x \neq 0, \text{ but } [-1,1], \text{ if } x = 0.$

Figure: Subdifferential of f(x) = |x| in \mathbb{R} .

Non-smooth unconstrained convex minimization

Problem (Mathematical formulation)

How can we find an optimal solution to the following optimization problem?

$$F^* := \min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x})$$
 (2)

where f is proper, closed, convex, but not everywhere differentiable, $f \in \mathcal{F}$. Note that (2) is unconstrained.

Subgradient method

The subgradient method relies on the fact that even though f is non-smooth, we can still compute its subgradients, informing of the local descent directions.

Subgradient method

- 1. Choose $\mathbf{x}^0 \in \mathbb{R}^p$ as a starting point. 2. For $k=0,1,\cdots$, perform:

$$\left\{ \mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \mathbf{d}^k, \right. \tag{3}$$

where $\mathbf{d}^k \in \partial f(\mathbf{x}^k)$ and $\alpha_k \in (0,1]$ is a given step size.

Convergence of the subgradient method

Theorem

Assume that the following conditions are satisfied:

- 1. $\|\mathbf{g}\|_2 \leq G$ for all $\mathbf{g} \in \partial f(\mathbf{x})$ for any $\mathbf{x} \in \mathbb{R}^p$.
- 2. $\|\mathbf{x}^0 \mathbf{x}^*\|_2 \le R$

Let the stepsize be chosen as

$$\alpha_k = \frac{R}{G\sqrt{k}}$$

then the iterates generated by the subgradient method satisfy

$$\min_{0 \le i \le k} f(\mathbf{x}^i) - f^* \le \frac{RG}{\sqrt{k}}.$$

Remarks

- ► Condition (1) holds, for example, when *f* is *G*-Lipschitz.
- ▶ The convergence rate of $\mathcal{O}(1/\sqrt{k})$ is the slowest we have seen so far!

Next lecture: Achieving guarantees for (many) non-smooth optimization problems that are just as good as those for smooth ones

References |

[1] R.G. Baraniuk, V. Cevher, M.F. Duarte, and C. Hegde. Model-based compressive sensing. Information Theory, IEEE Transactions on, 56(4):1982–2001, 2010,

[2] Emmanuel Candès and Benjamin Recht. Exact matrix completion via convex optimization. Found, Comput. Math., 9:717-772, 2009.

- [3] Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, and Alan S. Willsky. The convex geometry of linear inverse problems. Found. Comput. Math., 12:805-849, 2012.
- [4] Bradley Efron. The estimation of prediction error: Covariance penalities and cross-validation. J. Am. Stat. Assoc., 99(467):619-632, September 2004.
- [5] Steven T. Flammia, David Gross, Yi-Kai Liu, and Jens Eisert. Quantum tomography via compressed sensing: Error bounds, sample complexity and efficient estimators. New J. Phys., 14, 2012.
- [6] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing. Springer, 2013.

References II

- [7] Rémi Gribonval, Volkan Cevher, and Mike E. Davies. Compressible distributions for high-dimensional statistics. *IEEE Trans. Inf. Theory*, 58(8):5016–5034, 2012.
- [8] Marwa El Halabi and Volkan Cevher. A totally unimodular view of structured sparsity. http://arxiv.org/abs/1411.1990, 2014.
- [9] O. L. Mangasarian and Benjamin Recht. Probability of unique integer solution to a system of linear equations. Eur. J. Oper. Res., 214:27–30, 2011.
- [10] Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright, and Bin Yu. A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers. Stat. Sci., 27(4):538–557, 2012.
- [11] Christos Thrampoulidis, Samet Oymak, and Babak Hassibi. Simple error bounds for regularized noisy linear inverse problems. 2014. arXiv:1401.6578v1 [math.OC].