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Outline

» This lecture

1. Deficiency of smooth models

2. Motivation for non-smooth models
3. Compressive sensing

4. Subgradient descent

» Next lecture

1. Unconstrained, non-smooth composite minimization
2. Convergence and convergence rate characterization of various approaches
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Recommended Reading

» Chapter 2 in S. Foucart and H. Rauhut, A Mathematical Introduction to
Compressive Sensing. Birkhauser, 2013.

> Section 3.2.3 in Y. Nesterov, Introductory Lectures on Convex Optimization.
Springer Science + Business Media, 2004.
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Motivation

Motivation
Nonsmooth convex optimization problems arise frequently in applications.
In some cases, nonsmooth regularizers are intentionally introduced to improve

statistical accuracy in estimation.

This lecture gives an introduction to nonsmooth functions and optimization, including
a number of specific motivating examples based on linear inverse problems.

Slide 5/ 42 HOHW
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Recap: Oracle information

Oracle Information

Algorithms are assumed to have access to oracle information:
> Function value f(x)
> Gradient V f(x)
> Hessian V2 f(x)

1= cac

Note: How we get such information varies between problems and applications
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Recap: Oracle information

Oracle Information

Algorithms are assumed to have access to oracle information:
> Function value f(x)
> Gradient V f(x)
> Hessian V2 f(x)

L

Note: How we get such information varies between problems and applications

For smooth objective functions, we have seen that various properties can significantly
help speed up the optimization:

L — Lipschitz gradient

1 — strongly convex Self-concordant

3 V
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Differentiability in functions

Definition (Differentiability classes)

A function f : R — R is in the differentiability class C¥ if its derivatives up to order k

exist and are continuous.

> Note: In some fields, the word “smooth” refers specifically to the class C*°. In

optimization, it usually refers to C! with Lipschitz gradient.
» Some examples:

f(=)

flx) =22 -sin(1/z), >0

Figure: (Left panel) co-times continuously differentiable function in R. (Right panel)

Non-differentiable f(z) = |z| in R.
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Differentiability in functions

Useful Fact 1

All convex functions are continuous (except possibly on the boundary of their
domain/effective domain)

However, they need not even be differentiable: e.g. f(z) = |z|

Non-differentiable — No gradient descent, no Newton’s method...

Useful fact 2:

Non-differentiable functions can still be strongly convex and/or Lipschitz continuous
(but of course not Lipschitz gradient)
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Non-smoothness

Many optimization problems that we would like to solve are non-smooth — how do
we solve them?

This lecture: Some motivating examples, and simple techniques for solving them.
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Simple examples of non-smoothness

Example 1: Simultaneously maximizing multiple objectives

What if we simultaneously want f1(x), f2(z), ..., fr(x) to be small?

A natural approach in some cases: Minimize f(z) = max{fi(z),..., fx(z)}
> The good news: If each f;(x) is convex, then f(x) is convex

> The bad (7) news: Even if each f;(z) is smooth, f(z) may be non-smooth

> eg. f(z) = max{z,z%}

f(x) = max{f1(2), fa(x)}
k\
— T
fx(r)\; /J(.):%r’

Figure: Maximum of two smooth convex functions.
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Simple examples of non-smoothness

Example 2: Linear Regression
Consider the classical linear regression problem:
b = Ax" +w

with b € R, A € R"*P are known, x5 is unknown, and w is noise. Assume for now
that n > p (more later).

LG
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Simple examples of non-smoothness

Example 2: Linear Regression
Consider the classical linear regression problem:
b = Ax" +w

with b € R, A € R"*P are known, x5 is unknown, and w is noise. Assume for now
that n > p (more later).

Standard approach: Least squares: X5 € arg miny ||b — Ax||2
» Convex, smooth, and an explicit solution: X s = (ATA)*lATb =Ab

Alternative approach: Least absolute value deviation: X € arg minx ||b — Ax||1
» The advantage: Improved robustness against outliers (high noise values)

> The bad (?) news: A non-differentiable objective function

Our main motivating example this lecture: The case n < p (!)
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Deficiency of smooth models

Recall the practical performance of an estimator x.

Practical performance

Denote the numerical approximation by x*. The practical performance is determined
by

[[xe =%, < Ixi-%ll, +
~———

5(—th
2

approximation error  gtatistical error

Sometimes non-smooth estimators of x! can help reduce the statistical error.
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Example: Least-squares estimation in the linear model

Recall the linear model and the LS estimator.

LS estimation in the linear model
Let x! € R? and A € R™*P. The samples are given by b = Ax? + w, where w
denotes the unknown noise.

The LS estimator for x% given A and b is defined as

Xis € arg){relilg’ {||b = Ax||g} .

> If A has full column rank, %5 = Afb is uniquely defined.

> In the case that n < p, A cannot have full column rank, and we can only
conclude that X5 € {ATb +h:henul (A)}
Observation: The estimation error qu_s — xf H2 can be arbitrarily large!

-
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A candidate solution

Continuing the LS example:
> In other words, there are infinitely many solutions x such that b = Ax

> Suppose that w = 0 (i.e. no noise). Should we just choose the one Xcandidate
with the smallest norm ||x||5?

x4+ h, h € null(A)
Unfortunately, this still fails when n < p

el Mathematics of Data: From Theory to Computation | Prof. Volkan Cevher, volkan.cevher@epfl.ch Siide 14/ 42 MKW




A candidate solution contd.

Proposition ([7])
Suppose that A € R"*P s a matrix of i.i.d. standard Gaussian random variables, and
w = 0. We have

(=9 (1= 2) ] < [[eamaase =y < =07 (1=

with probability at least 1 — 2 exp [—(1/4)(;; - n)eQ] — 2exp [—(1/4);752], for all
€e>0 and x? € RP.

Observation: The estimation error may not diminish unless n is very close to p.

Intuition: The relation n < p means that the dimension of the sample b exceeds the
number of unknown variables in x to be solved.

Impact: It is impossible to estimate x% accurately using Xcandidate When n < p even
if w=0.

. ~ 2 . .
» The statistical error chandidate — xb H2 can also be arbitrarily large when w # 0.
Hence, the solution is also not robust.
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Summarizing the findings so far

The message so far:

» Even in the absence of noise, we cannot recover x5 from the observations
b = Ax" unless n > p

> But in applications, p might be thousands, millions, billions...

> Can we get away with n < p under some further assumptions on x?

L]
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A natural signal model

Definition (s-sparse vector)

A vector x € RP is s-sparse if it has at
most s non-zero entries.

RP

xh

Sparse representations

xU: sparse transform coefficients

> Basis representations ¥ € RPXP
> Wavelets, DCT, ...
> Frame representations
W eRM™XP, m>p
> Gabor, curvelets, shearlets, ...

» Other dictionary representations...

3 |
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Sparse representations strike back!

b A y"

»beR?, AcR"™ P andn <p

3 N
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Sparse representations strike back!
A 1\ d

“u_

»

8

[HEE EEEEE EECEEE

»beR”, AcR"P, and n < p
» e RPXP, xI € RP, and ||x!|lo <s<n
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Sparse representations strike back!

x_ﬂ_

(T TTTTTITT]

»beER®, ACR"P, and x" €RP, and ||x¥|p <s<n<p
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Sparse representations strike back!

b A x’
| ]

n X1 nxs sx1

A fundamental impact:
The matrix A effectively becomes overcomplete.

We could solve for x! if we knew the location of the non-zero entries of x".
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Stability and robustness

The most basic problem is to recover xU from noiseless measurements b = Axh, also
given knowledge of A. However, in practice we usually need more.

Robustness

A robust recovery algorithm is one that is robust to noise: If b = AxI + w, then the
effect of w on the error [|% — x7||2 is small when ||w||2 is small.

Stability

A stable recovery algorithm is one that is robust to signals that are not exactly sparse:
If x! = x; + x/ for some s-sparse signal x, then the effect of x’ on the error
1% — x%||2 is small when ||x||2 is small.

. V
ICLHEI{]  Mathematics of Data: From Theory to Computation | Prof. Volkan Cevher, volkan.cevher@epfi.ch Slide 19/ 42 -ﬂ ﬂ-




Compressible signals
Real signals may not be exactly sparse, but approximately sparse, or compressible.

Roughly speaking, a vector x := (z1,...,2,)7 € RP is compressible if the number of
its significant components, |{k : |zx| > ¢,1 < k < p}|, is small.

10
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10° 100 10° 100 10t 10
sorted index [log]
> Cameraman@MIT. . ..
> Solid curve: Sorted wavelet coefficients of

the cameraman image.

> Dashed curve: Expected order statistics of
generalized Pareto distribution with shape
parameter 1.67.
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A different tale of the linear model b = Ax +w

A realistic linear model
Let b := Ayl + w € R™.
> Let ytl := WX, € R™ that admits a compressible representation Xie,).
> Let X.a € RP that is compressible and let xU be its best s-term approximation.
> Let w € R™ denote the possibly nonzero noise term.
> Assume that U € R™*P and A € R™X™ are known.

Then we have
b=AV (xh + Xreal — x”) + W.
(A\Il) x! + [W + AT (Xreal - xh)]7

N
A w

equivalently, b = Ax + w.

. V
ICLHEN  Mathematics of Data: From Theory to Computation | Prof. Volkan Cevher, volkan.cevher@epfi.ch Slide 21/ 42 -ﬂ ﬂ-




Peeling the onion

The realistic linear model uncovers yet another level of difficulty

Practical performance

The practical performance is determined by

2°

e N

IxF = *Xweallly < lIxE =%l +
~——

approximation error  statistical error  model error

> A great deal of research goes into learning representations that renders the model
error negligible while still keeping statistical error low.

e
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Approach 1: Sparse recovery via exhaustive search

Approach 1 for estimating x” from b = Ax! + w

We may search over all (’;) subsets S C {1,...,p} of cardinality s, solve the

restricted least least-squared problem minxg ||[b — Agxg||2, and return the resulting x
corresponding to the smallest error, putting zeros in the entries of x outside S.

With this approach, the stable and robust recovery of any s-sparse signal is possible
using just n = 2s measurements.
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Approach 1: Sparse recovery via exhaustive search

Approach 1 for estimating x” from b = Ax! + w

We may search over all (’;) subsets S C {1,...,p} of cardinality s, solve the

restricted least least-squared problem minxg ||[b — Agxg||2, and return the resulting x
corresponding to the smallest error, putting zeros in the entries of x outside S.

With this approach, the stable and robust recovery of any s-sparse signal is possible
using just n = 2s measurements.

Issues

> (f) is a huge number - too many to search!

> s is not known in practice
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The /;-norm heuristic

Heuristic: The /1 -ball with radius co is an “approximation” of the set of sparse
vectors X € {x Ixllg £ 85 1%l oo £ coo} parameterized by their sparsity s and
maximum amplitude coo.

X € {x Hxlly < Coo} with some coo > 0.

The set The unit ¢1-norm ball
{x:lxllp < 1, Il < 1,x €R3} {x:lxll, <1,x R}

This heuristic leads to the so-called Lasso optimization problem.

. V
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Sparse recovery via the Lasso

Definition (Least absolute shrinkage and selection operator (Lasso))

)A(Iasso = arg;gi]é;lp Hb - AX”% + 14 ”X”l

with some p > 0.

The second term in the objective function is called the regularizer.

The parameter p is called the regularization parameter. It is used to trade off the
objectives:

> Minimize ||b — Ax||2, so that the solution is consistent with the observations

> Minimize ||x]||1, so that the solution has the desired sparsity structure

Note: The Lasso has a convex but non-smooth objective function

. V
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Performance of the Lasso

Theorem (Existence of a stable solution in polynomial time [10])

This Lasso convex formulation is a second order cone program, which can be solved in
polynomial time in terms of the inputs n and p. Surprisingly, if the signal x% is
s-sparse and the noise w is sub-Gaussian (e.g., Gaussian or bounded) with parameter

. /1602 .
o, then choosing p = w yields an error of

< 8o slnp
27 u(A) n

Hx/asso - xn H

with probability at least 1 — ¢ exp(—cgan), where c1 and co are absolute constants,
and p(A) > 0 encodes the difficulty of the problem.

Hence, the number of measurements is O(slnp) — this may be much smaller than p
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Other models with simplicity

Information
level:

s p
large
wavelet
coefficients
(blue = 0)

RP RP

x! X!
sparse low-rank nonlinear
signals matrices models

There are many models extending far beyond sparsity, coming with other
non-smooth regularizers.
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Generalization via simple representations

Definition (Atomic sets & atoms [3])
An atomic set A is a set of vectors in RP. An atom is an element in an atomic set.

Terminology (Simple representation [3])

A parameter x% € RP admits a simple representation with respect to an atomic set
A C RP, if it can be represented as a non-negative combination of few atoms, i.e.,

k
xI = Zi:l cia;, a;c .A, c; > 0.

Example (Sparse parameter)

Let x? be s-sparse. Then x% can be represented as the non-negative combination of s
elements in A, with A := {%e1,...,*ep}, where e; := (§1,4,02,i,...,0p,;) for all i.

Example (Sparse parameter with a dictionary)

Let ¥ € R™*P, and let y% := Ux4 for some s-sparse x%. Then y can be represented
as the non-negative combination of s elements in A, with A := {£¢1,...,t¢p},
where 1), denotes the kth column of .

-
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Atomic norm

Recall that we handled sparse (or compressible) vectors by solving the Lasso problem
- . 2
Xiasso -= arg min Hb - AX||2 +p ”x“l
xERP

We observe that the £1-norm is the atomic norm associated with the atomic set
A :={te1,...,%ep}, which is indeed the convex hull of the set.

This same principle leads to effective regularizers for a wide range of atomic
structures.

>
i

oL LT

C:=conv(A).

. V
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Gauge functions and atomic norms

Definition (Gauge function)

Let C be a convex set in RP, the gauge function associated with C is given by

gc(x) :=inf {t > 0 : x = tc for some c € C}.

Definition (Atomic norm)

Let A be a symmetric atomic set in RP such that if a € A then —a € A for all a € A.
Then, the atomic norm associated with a symmetric atomic set A is given by

IIXII_A ‘= Gconv(A) (X), Vx € RP,

where conv(A) denotes the convex hull of A.

A Generalization of the Lasso

Given an atomic set A, solve the following regularized least-squares problem:

% = arg min b — Ax||3 + pIx|| 4 (1)

. V
ILHEIHN  Mathematics of Data: From Theory to Computation | Prof. Volkan Cevher, volkan.cevher@epfi.ch Slide 30/ 42 -ﬂ ﬂ.



Pop quiz

Let A:={(1,0)7,(0,)7,(~1,0)7,(0,~1)T }, and let x := (=%, 1)T. What is

lIx[[47
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Pop quiz
Let A:={(1,0)7,(0,)7,(~1,0)7,(0,~1)T }, and let x := (=%, 1)T. What is
%Il 47

ANS: |[|x]| 4 = £

(L]
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Application: Multi-knapsack feasibility problem

Problem formulation [9]

Let x? € RP which is a convex combination of k vectors in A := {—1,+1}?, and let
A € R"*P_ How can we recover x% given A and b = Ax?

In this case, ||-|| 4 is the £oo-norm, and the regularized least-squares problem is

~ . 2
x = arg min |[b — Ax|l; + pllx[lo

. V
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Application: Matrix completion

Problem formulation [2, 5]

Let X! € RPXP with rank(Xh) =r,and let Aqy,..., A, be matrices in RP*P. How
do we estimate X given A1,...,A, and b; = Tr (AiX”) +w;, ¢ =1,...,n, where
w = (w1, ..., wn)T denotes unknown noise?

This is a special case of the atomic norm formulation with
A= {X srank (X) =1, X||, =1,X € RPXP}. It can be shown that ||| 4 is the

nuclear norm, ||-||,.. The regularized least-squares problem is
n
x=arg_min Y (b~ Tr (A,X))* + p |XII,
XERPXP
i=1

-
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Structured Sparsity

There exist many more structures that we have not covered here, each of which is
handled using different non-smooth regularizers. Some examples [1, 8]:
> Group Sparsity: Many signals are not only sparse, but the non-zero entries tend
to cluster according to known patterns.
> Tree Sparsity: When natural images are transformed to the Wavelet domain,
their significant entries form a rooted connected tree.

Figure: (Left panel) Natural image in the Wavelet domain. (Right panel) Rooted connected tree
containing the significant coefficients.

Side 3442 MY
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Selection of the Parameters

In all of these problems, there remain the issues of how to design A and how to
choose p.

Design of A:
> Sometimes A is given “by nature”, whereas sometimes it can be designed

> For the latter case, i.i.d. Gaussian designs provide good theoretical guarantees,
whereas in practice we must resort to structured matrices permitting more
efficient storage and computation

> See [6] for an extensive study in the context of compressive sensing

Selection of p:

> Theoretical bounds provide some insight, but usually the direct use of the
theoretical choice does not suffice

> In practice, a common approach is cross-validation [4], which involves searching
for a parameter that performs well on a set of known training signals

» Other approaches include covariance penalty [4] and upper bound heuristic [11]

. V
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How can we optimize non-smooth functions?

Recall: Gradient methods, Newton’s method, etc. no longer applicable

Rest of this lecture: A simple extension of the gradient method
Next lecture: More sophisticated approaches

S ()

Figure: Non-differentiable at the origin
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Subdifferentials and (sub)gradients in convex functions

> Subdifferential: generalizes V to nondifferentiable functions
Definition
Let f: ©Q - RU {400} be a convex function. The subdifferential of f at a point
x € Q is defined by the set:

0f(x) ={veRP : f(y) 2 f(x)+(v, y—x) forally € Q}.

Each element v of df(x) is called subgradient of f at x.
Definition

Let f: Q@ — RU{+oo} be a differentiable convex function. Then, the subdifferential
of f at a point x € Q contains only the gradient, i.e., 9f(x) = {Vf(x)}.

--------- FG) + vy =x)

@+ vy —x) X

R y “x_f(x)w(wry) y-x X
Figure: (Left) Non-differentiability at point y. (Right) Gradient as a subdifferential with a
singleton entry.
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Subdifferentials and (sub)gradients in convex functions
Example

s fx) =lly - Ax[l; —  Vf(x)=-2AT (y - Ax).
» f(X) = —logdet(X) — Vf(X)=X"1

> f(z) = |=| —  Olz| = {sgn(z)}, if z # 0, but [-1,1], if z = 0.
f(z)
f(z) = |z

Figure: Subdifferential of f(z) = |z| in R.
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Non-smooth unconstrained convex minimization

Problem (Mathematical formulation)

How can we find an optimal solution to the following optimization problem?

F* = min f(x) @)

where f is proper, closed, convex, but not everywhere differentiable, f € F.
Note that (2) is unconstrained.

Subgradient method

The subgradient method relies on the fact that even though f is non-smooth, we can
still compute its subgradients, informing of the local descent directions.

Subgradient method
1. Choose xV € RP as a starting point.
2. For k=0,1,---, perform:

{ xk+l = xk _ q,dF, (3)

where d* € 9f(x*) and a;, € (0,1] is a given step size.

o
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Convergence of the subgradient method

Theorem

Assume that the following conditions are satisfied:
1. |lgll2 < G for all g € f(x) for any x € RP.
2. X0 —x*|2 <R

Let the stepsize be chosen as
R

ap = ——
GVk
then the iterates generated by the subgradient method satisfy
RG

Orgliigkf(xi) - < v

Remarks
> Condition (1) holds, for example, when f is G-Lipschitz.

> The convergence rate of O(1//k) is the slowest we have seen so far!

Next lecture: Achieving guarantees for (many) non-smooth optimization problems
that are just as good as those for smooth ones
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