Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch
Lecture 7: Stochastic gradient methods
Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)
EE-556 (Fall 2017)

erc

License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes - unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

- This class

1. Stochastic gradient methods
2. Stochastic gradient methods with averaging
3. Accelerated stochastic gradient methods
4. Stochastic variance reduced gradient methods

- Next class

1. Composite convex minimization

Recommended reading materials

1. V. Cevher; S. Becker, and M. Schmidt. Convex optimization for big data. IEEE Signal Process. Mag., vol. 31, pp. 32-43, 2014.
2. A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM J. Optim., vol. 19, pp. 1574-1609, 2008.
3. L. Xiao and T. Zhang, A proximal stochastic gradient method with progressive variance reduction, SIAM J. Optim., vol. 24, pp. 2057-2075, 2014.

What is this class about?

Recall: Gradient method

Choose a starting point \mathbf{x}^{0} and iterate

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma_{k} \nabla f\left(\mathbf{x}^{k}\right)
$$

where γ_{k} is a step-size to be chosen so that \mathbf{x}^{k} converges to \mathbf{x}^{\star}.

What is this class about?

Recall: Gradient method

Choose a starting point \mathbf{x}^{0} and iterate

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma_{k} \nabla f\left(\mathbf{x}^{k}\right)
$$

where γ_{k} is a step-size to be chosen so that \mathbf{x}^{k} converges to \mathbf{x}^{\star}.

- Least squares: $\min _{\mathbf{x} \in \mathbb{R}^{p}}\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}$, where $\mathbf{A} \in \mathbb{R}^{n \times p}$.
- 1 epoch means 1 'pass' over the full gradient, i.e., 1 epoch $=n$.

What is this class about?

Stochastic gradient method

Let $G\left(\mathbf{x}^{k}, \theta_{k}\right)$ be an unbiased estimate of the gradient $\nabla f\left(\mathbf{x}^{k}\right)$, i.e.,

$$
\mathbb{E}_{\theta_{k}}\left[G\left(\mathbf{x}^{k}, \theta_{k}\right)\right]=\nabla f\left(\mathbf{x}^{k}\right) .
$$

Choose a starting point \mathbf{x}^{0} and iterate

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma_{k} G\left(\mathbf{x}^{k}, \theta_{k}\right) .
$$

What is this class about?

Stochastic gradient method

Let $G\left(\mathbf{x}^{k}, \theta_{k}\right)$ be an unbiased estimate of the gradient $\nabla f\left(\mathbf{x}^{k}\right)$, i.e.,

$$
\mathbb{E}_{\theta_{k}}\left[G\left(\mathbf{x}^{k}, \theta_{k}\right)\right]=\nabla f\left(\mathbf{x}^{k}\right) .
$$

Choose a starting point \mathbf{x}^{0} and iterate

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma_{k} G\left(\mathbf{x}^{k}, \theta_{k}\right) .
$$

Claim: The stochastic gradient computation can be super cheap!

What is this class about?

Stochastic gradient method

Let $G\left(\mathbf{x}^{k}, \theta_{k}\right)$ be an unbiased estimate of the gradient $\nabla f\left(\mathbf{x}^{k}\right)$, i.e.,

$$
\mathbb{E}_{\theta_{k}}\left[G\left(\mathbf{x}^{k}, \theta_{k}\right):=\nabla f_{i}\left(\mathbf{x}^{k}\right)\right]=\nabla f\left(\mathbf{x}^{k}\right) .
$$

Choose a starting point \mathbf{x}^{0} and iterate

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma_{k} G\left(\mathbf{x}^{k}, \theta_{k}\right) .
$$

Example: Large scale optimization

Convex optimization with finite sums

$$
\underset{\mathbf{x} \in \mathbb{R}^{p}}{\arg \min }\left\{f(\mathbf{x}):=\frac{1}{n} \sum_{j=1}^{n} f_{j}(\mathbf{x})\right\}
$$

Example: Large scale optimization

Convex optimization with finite sums

$$
\underset{\mathbf{x} \in \mathbb{R}^{p}}{\arg \min }\left\{f(\mathbf{x}):=\frac{1}{n} \sum_{j=1}^{n} f_{j}(\mathbf{x})\right\}
$$

Gradient descent method (GD)

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma_{k} \frac{1}{n} \sum_{j=1}^{n} \nabla f_{j}\left(\mathbf{x}^{k}\right)
$$

The computational cost of the deterministic gradient method per iteration is proportional to n. Hence, it can be expensive for a large n.

Example: Statistical learning with ERM

Recall:

A basic statistical learning model [1]

A statistical learning model consists of the following three elements.

1. A sample of i.i.d. random variables $\left(\mathbf{a}_{j}, b_{j}\right) \in \mathcal{A} \times \mathcal{B}, j=1, \ldots, n$, following an unknown probability distribution \mathbb{P}.
2. A class (set) \mathcal{F} of functions $f: \mathcal{A} \rightarrow \mathcal{B}$.
3. A loss function $L: \mathcal{B} \times \mathcal{B} \rightarrow \mathbb{R}$.

Example: Statistical learning with ERM

Recall:

A basic statistical learning model [1]

A statistical learning model consists of the following three elements.

1. A sample of i.i.d. random variables $\left(\mathbf{a}_{j}, b_{j}\right) \in \mathcal{A} \times \mathcal{B}, j=1, \ldots, n$, following an unknown probability distribution \mathbb{P}.
2. A class (set) \mathcal{F} of functions $f: \mathcal{A} \rightarrow \mathcal{B}$.
3. A loss function $L: \mathcal{B} \times \mathcal{B} \rightarrow \mathbb{R}$.

Definition (Risk)

Let (\mathbf{a}, b) follow the probability distribution \mathbb{P} and be independent of $\left\{\left(\mathbf{a}_{i}, b_{i}\right)\right\}_{i=1}^{n}$. Then, the risk corresponding to any $f \in \mathcal{F}$ is its expected loss:

$$
R(f):=\mathbb{E}_{(\mathbf{a}, b)}[L(f(\mathbf{a}), b)] .
$$

Statistical learning seeks to find a $f^{\star} \in \mathcal{F}$ that minimizes the risk, i.e., it solves

$$
f^{\star} \in \underset{f \in \mathcal{F}}{\arg \min } R(f) .
$$

Many problems in machine learning cast into this formulation!

Recall: Empirical risk minimization (ERM)

- By the law of large numbers, we can expect that for each $f \in \mathcal{F}$,

$$
R(f):=\mathbb{E}[L(f(\mathbf{a}), b)] \approx \frac{1}{n} \sum_{j=1}^{n} L\left(f\left(\mathbf{a}_{j}\right), b_{j}\right)
$$

when n is large enough, with high probability.

Empirical risk minimization (ERM) [1]

We approximate f^{\star} by minimizing the empirical average of the loss instead of the risk.

$$
\hat{f}_{n} \in \underset{f \in \mathcal{F}}{\arg \min }\left\{R_{n}(f):=\frac{1}{n} \sum_{j=1}^{n} L\left(f\left(\mathbf{a}_{j}\right), b_{j}\right)\right\}
$$

Recall: Empirical risk minimization (ERM)

- By the law of large numbers, we can expect that for each $f \in \mathcal{F}$,

$$
R(f):=\mathbb{E}[L(f(\mathbf{a}), b)] \approx \frac{1}{n} \sum_{j=1}^{n} L\left(f\left(\mathbf{a}_{j}\right), b_{j}\right)
$$

when n is large enough, with high probability.

Empirical risk minimization (ERM) [1]

We approximate f^{\star} by minimizing the empirical average of the loss instead of the risk.

$$
\hat{f}_{n} \in \underset{f \in \mathcal{F}}{\arg \min }\left\{R_{n}(f):=\frac{1}{n} \sum_{j=1}^{n} L\left(f\left(\mathbf{a}_{j}\right), b_{j}\right)\right\} .
$$

Least squares

Recall that the LS estimator is given by

$$
\hat{\mathbf{x}}_{\mathrm{LS}} \in \underset{\mathbf{x} \in \mathbb{R}^{p}}{\arg \min }\left\{\frac{1}{2 n}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}\right\}=\underset{\mathbf{x} \in \mathbb{R}^{p}}{\arg \min }\left\{\frac{1}{2 n} \sum_{j=1}^{n}\left(b_{j}-\left\langle\mathbf{a}_{j}, \mathbf{x}\right\rangle\right)^{2}\right\}
$$

where we define $\mathbf{b}:=\left(b_{1}, \ldots, b_{n}\right)^{T}$ and \mathbf{a}_{j}^{T} to be the j-th row of \mathbf{A}.

Recall: Empirical risk minimization (ERM)

- By the law of large numbers, we can expect that for each $f \in \mathcal{F}$,

$$
R(f):=\mathbb{E}[L(f(\mathbf{a}), b)] \approx \frac{1}{n} \sum_{j=1}^{n} L\left(f\left(\mathbf{a}_{j}\right), b_{j}\right)
$$

when n is large enough, with high probability.

Empirical risk minimization (ERM) [1]

We approximate f^{\star} by minimizing the empirical average of the loss instead of the risk.

$$
\hat{f}_{n} \in \underset{f \in \mathcal{F}}{\arg \min }\left\{R_{n}(f):=\frac{1}{n} \sum_{j=1}^{n} L\left(f\left(\mathbf{a}_{j}\right), b_{j}\right)\right\}
$$

SVM

Recall the unconstrained SVM formulation

$$
\hat{\mathbf{x}} \in \underset{\mathbf{x} \in \mathbb{R}^{p}}{\arg \min }\left\{\frac{1}{n} \sum_{j=1}^{n} \max \left\{1-b_{j}\left\langle\mathbf{a}_{j}, \mathbf{x}\right\rangle, 0\right\}+\lambda\|\mathbf{x}\|_{2}^{2}\right\}
$$

where $\mathbf{b}:=\left(b_{1}, \ldots, b_{n}\right)^{T} \in\{-1,1\}^{n}$.

Recall: Empirical risk minimization (ERM)

- By the law of large numbers, we can expect that for each $f \in \mathcal{F}$,

$$
R(f):=\mathbb{E}[L(f(\mathbf{a}), b)] \approx \frac{1}{n} \sum_{j=1}^{n} L\left(f\left(\mathbf{a}_{j}\right), b_{j}\right)
$$

when n is large enough, with high probability.

Empirical risk minimization (ERM) [1]

We approximate f^{\star} by minimizing the empirical average of the loss instead of the risk.

$$
\hat{f}_{n} \in \underset{f \in \mathcal{F}}{\arg \min }\left\{R_{n}(f):=\frac{1}{n} \sum_{j=1}^{n} L\left(f\left(\mathbf{a}_{j}\right), b_{j}\right)\right\} .
$$

Logistic regression

Recall the logistic regression formulation

$$
\hat{\mathbf{x}} \in \underset{\mathbf{x}, \mu}{\arg \min }\left\{\frac{1}{n} \sum_{j=1}^{n} \log \left(1+e^{-b_{j}\left(\left\langle\mathbf{x}, \mathbf{a}_{j}\right\rangle+\mu\right)}\right): \mathbf{x} \in \mathbb{R}^{p}, \mu \in \mathbb{R}\right\}
$$

where $\mathbf{b}:=\left(b_{1}, \ldots, b_{n}\right)^{T} \in\{-1,1\}^{n}$.

*Motivation: Statistical learning with streaming data (self-study)

Recall that statistical learning seeks to find a $f^{\star} \in \mathcal{F}$ that minimizes the expected risk,

$$
f^{\star} \in \underset{f \in \mathcal{F}}{\arg \min }\left\{R(f):=\mathbb{E}_{(\mathbf{a}, b)}[L(f(\mathbf{a}), b)]\right\},
$$

In practice, data can arrive in a streaming way.

Example: Markowitz portfolio optimization

$$
f^{\star}:=\min _{\mathbf{x} \in \mathcal{X}}\left\{\mathbb{E}\left[\left|\rho-\left\langle\mathbf{x}, \theta_{t}\right\rangle\right|^{2}\right]\right\}
$$

- $\rho \in \mathbb{R}$ is the desired return.
- \mathcal{X} is intersection of the standard simplex and the constraint: $\left\langle\mathbf{x}, \mathbb{E}\left[\theta_{t}\right]\right\rangle \geq \rho$.

Gradient method

$$
f^{k+1}=f^{k}-\gamma_{k} \nabla R(f)=f^{k}-\gamma_{k} \mathbb{E}_{(\mathbf{a}, b)}\left[\nabla L\left(f^{k}(\mathbf{a}), b\right)\right] .
$$

This can not be implemented in practice as the distribution of (\mathbf{a}, b) is unknown.

Unconstrained convex minimization

Problem (Mathematical formulation)

Consider the following convex minimization problem:

$$
f^{\star}=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}):=\mathbb{E}[h(\mathbf{x}, \theta)]\}
$$

- θ is a random vector whose probability distribution is supported on set Θ.
- $f(\mathbf{x}):=\mathbb{E}[h(\mathbf{x}, \theta)]$ is proper, closed, and convex.
- The solution set $\mathcal{S}^{\star}:=\left\{\mathbf{x}^{\star} \in \operatorname{dom}(f): f\left(\mathbf{x}^{\star}\right)=f^{\star}\right\}$ is nonempty.

Unconstrained convex minimization

Problem (Mathematical formulation)

Consider the following convex minimization problem:

$$
f^{\star}=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}):=\mathbb{E}[h(\mathbf{x}, \theta)]\}
$$

- θ is a random vector whose probability distribution is supported on set Θ.
- $f(\mathbf{x}):=\mathbb{E}[h(\mathbf{x}, \theta)]$ is proper, closed, and convex.
- The solution set $\mathcal{S}^{\star}:=\left\{\mathbf{x}^{\star} \in \operatorname{dom}(f): f\left(\mathbf{x}^{\star}\right)=f^{\star}\right\}$ is nonempty.

Example: Convex optimization with finite sums

The problem

$$
\underset{\mathbf{x} \in \mathbb{R}^{p}}{\arg \min }\left\{f(\mathbf{x}):=\frac{1}{n} \sum_{j=1}^{n} f_{j}(\mathbf{x})\right\}
$$

can be rewritten as

$$
\underset{\mathbf{x} \in \mathbb{R}^{p}}{\arg \min }\left\{f(\mathbf{x}):=\mathbb{E}_{i}\left[f_{i}(\mathbf{x})\right]\right\}, \quad i \text { is uniformly distributed over }\{1,2, \cdots, n\}
$$

Stochastic gradient method (SG)

Stochastic gradient method (SG)

1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}$ and $\left.\left(\gamma_{k}\right)_{k \in \mathbb{N}} \in\right] 0,+\infty \mathbb{N}^{\mathbb{N}}$.
2. For $k=0,1, \ldots$ perform:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma_{k} G\left(\mathbf{x}^{k}, \theta_{k}\right) .
$$

- $G\left(\mathbf{x}^{k}, \theta_{k}\right)$ is an unbiased estimate of the full gradient, i.e., it satisfies

$$
\mathbb{E}\left[G\left(\mathbf{x}^{k}, \theta_{k}\right)\right]=\nabla f\left(\mathbf{x}^{k}\right)
$$

Stochastic gradient method (SG)

Stochastic gradient method (SG)

1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}$ and $\left.\left(\gamma_{k}\right)_{k \in \mathbb{N}} \in\right] 0,+\infty \mathbb{N}^{\mathbb{N}}$.
2. For $k=0,1, \ldots$ perform:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma_{k} G\left(\mathbf{x}^{k}, \theta_{k}\right) .
$$

- $G\left(\mathbf{x}^{k}, \theta_{k}\right)$ is an unbiased estimate of the full gradient, i.e., it satisfies

$$
\mathbb{E}\left[G\left(\mathbf{x}^{k}, \theta_{k}\right)\right]=\nabla f\left(\mathbf{x}^{k}\right)
$$

Remark

- The cost of computing $G\left(\mathbf{x}^{k}, \theta_{k}\right)$ is typically much cheaper than that of $\nabla f\left(\mathbf{x}^{k}\right)$.
- As $G\left(\mathbf{x}^{k}, \theta_{k}\right)$ is an unbiased estimate of the full gradient, we expect that SG would also perform well.
- We assume that $\left\{\theta_{k}\right\}$ are jointly independent.
- SG is not a monotonic descent method.

Example: Convex optimization with finite sums

Consider the problem:

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x})=\frac{1}{n} \sum_{j=1}^{n} f_{j}(\mathbf{x})\right\}
$$

Example: Convex optimization with finite sums

Consider the problem:

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x})=\frac{1}{n} \sum_{j=1}^{n} f_{j}(\mathbf{x})\right\}
$$

Stochastic gradient methods (SG)

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma_{k} \nabla f_{i}\left(\mathbf{x}^{k}\right) \quad i \text { is uniformly distributed } \operatorname{over}\{1, \ldots, n\}
$$

- Note: $\mathbb{E}_{i}\left[\nabla f_{i}\left(\mathbf{x}^{k}\right)\right]=\sum_{j=1}^{n} \nabla f_{j}\left(\mathbf{x}^{k}\right) / n=\nabla f\left(\mathbf{x}^{k}\right)$.
- The computational cost of SG per iteration is independent of n.

Theoretical analysis

Recall: convergence of gradient descent method

- strong convexity and smoothness assumptions imply linear convergence, i.e.,

$$
f\left(\mathbf{x}^{k}\right)-f^{\star} \leq O\left(\rho^{k}\right), \quad \rho<1 .
$$

- smoothness assumption implies

$$
f\left(\mathbf{x}^{k}\right)-f^{\star} \leq O(1 / k)
$$

For SG methods, we will show that

Convergence of SG

- strong convexity implies

$$
\mathbb{E} f\left(\mathbf{x}^{k}\right)-f^{\star} \leq O(1 / k)
$$

- without strong convexity,

$$
\mathbb{E} f\left(\mathbf{x}^{k}\right)-f^{\star} \leq O(1 / \sqrt{k})
$$

Convergence of SG I: strongly convex case

Theorem (Convergence in expectation [2])

Suppose that:

1. f is μ-strongly convex,
2. $\mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, \theta_{k}\right)\right\|^{2}\right] \leq M^{2}$,
3. $\gamma_{k}=\gamma_{0} /(k+1)$ with $\gamma_{0}>\frac{1}{2 \mu}$.

Then,

$$
\mathbb{E}\left[\left\|\mathbf{x}^{k}-\mathbf{x}^{\star}\right\|^{2}\right] \leq \frac{C}{k}, \quad C=\max \left\{\frac{\gamma_{0}^{2} M^{2}}{2 \gamma_{0} \mu-1},\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|^{2}, \gamma_{0}^{2} M^{2}\right\} .
$$

If, in addition, ∇f is L-Lipschitz continuous, then,

$$
\mathbb{E}\left[f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{\star}\right)\right] \leq \frac{C L}{2 k} .
$$

- $\mathcal{O}(1 / k)$ rate is optimal for SG under strong convexity
- As will be given in Lecture 9, Assumption 2 can be replaced by a less strict condition, $\mathbb{E}\left[\|G(\mathbf{x}, \theta)-\nabla f(\mathbf{x})\|^{2}\right] \leq M^{2}$.

Convergence of SG II: non-strongly convex case

Theorem (Convergence in expectation [8])
Suppose that:

1. $\mathbb{E}\left[\left\|\mathbf{x}^{k}-\mathbf{x}^{\star}\right\|^{2}\right] \leq D^{2}$ for all k,
2. $\mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, \theta_{k}\right)\right\|^{2}\right] \leq M^{2}$,
3. $\gamma_{k}=\gamma_{0} / \sqrt{k}$.

Then,

$$
\mathbb{E}\left[f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{\star}\right)\right] \leq\left(\frac{D^{2}}{\gamma_{0}}+\gamma_{0} M^{2}\right) \frac{2+\log k}{\sqrt{k}} .
$$

- Proof of this theorem can be found in [8].

Example: SG method with different step sizes

$$
\min _{\mathbf{x}}\left\{f(\mathbf{x}):=\frac{1}{2 n}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}
$$

Synthetic problem setup

- A $:=\operatorname{randn}(n, p)$ - standard Gaussian $\mathcal{N}(0, \mathbb{I})$, with $n=10^{4}, p=10^{2}$.
- \mathbf{x}^{\natural} is 50 sparse with zero mean Gaussian i.i.d. entries, normalized to $\left\|\mathbf{x}^{\natural}\right\|_{2}=1$.
- $\mathbf{b}:=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$, where \mathbf{w} is Gaussian white noise with variance 1 .
- $\gamma_{k}=\gamma_{0} /\left(k+k_{0}\right)$.

Example: SG method with different step sizes

$$
\min _{\mathbf{x}}\left\{f(\mathbf{x}):=\frac{1}{2 n}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}
$$

Synthetic problem setup

- $\mathbf{A}:=\operatorname{randn}(n, p)$ - standard Gaussian $\mathcal{N}(0, \mathbb{I})$, with $n=10^{4}, p=10^{2}$.
- \mathbf{x}^{\natural} is 50 sparse with zero mean Gaussian i.i.d. entries, normalized to $\left\|\mathbf{x}^{\natural}\right\|_{2}=1$.
- $\mathbf{b}:=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$, where \mathbf{w} is Gaussian white noise with variance 1.
- $\gamma_{k}=\gamma_{0} /\left(k+k_{0}\right)$.

$$
\gamma_{0}=1 / \mu \text { is the best choice. }
$$

Convergence for SG-A I: strongly convex case

Stochastic gradient method with averaging (SG-A)

1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}$ and $\left.\left(\gamma_{k}\right)_{k \in \mathbb{N}} \in\right] 0,+\infty \mathbb{N}^{\mathbb{N}}$.

2a. For $k=0,1, \ldots$ perform:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma_{k} G\left(\mathbf{x}^{k}, \theta_{k}\right) .
$$

2b. $\overline{\mathbf{x}}^{k}=\frac{1}{k} \sum_{j=1}^{k} \mathbf{x}^{j}$.

Theorem (Convergence of SG-A [9])

Assume

1. f is μ-strongly convex,
2. $\mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, \theta_{k}\right)\right\|^{2}\right] \leq M^{2}$,
3. $\gamma_{k}=\gamma_{0} / k$ for some $\gamma_{0} \geq 1 / \mu$.

Then,

$$
\mathbb{E}\left[f\left(\overline{\mathbf{x}}^{k}\right)-f\left(\mathbf{x}^{\star}\right)\right] \leq \frac{\gamma_{0} M^{2}(1+\log k)}{2 k}
$$

Convergence for SG-A II: non-strongly convex case

Stochastic gradient method with averaging (SG-A)

1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}$ and $\left.\left(\gamma_{k}\right)_{k \in \mathbb{N}} \in\right] 0,+\infty \mathbb{N}^{\mathbb{N}}$.

2a. For $k=0,1, \ldots$ perform:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma_{k} G\left(\mathbf{x}^{k}, \theta_{k}\right) .
$$

2b. $\overline{\mathbf{x}}^{k}=\left(\sum_{j=0}^{k} \gamma_{j}\right)^{-1} \sum_{j=0}^{k} \gamma_{j} \mathbf{x}^{j}$.

Theorem (Convergence of SG-A [2])

Denote $D=\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|$ and assume $\mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, \theta_{k}\right)\right\|^{2}\right] \leq M^{2}$.
Then,

$$
\mathbb{E}\left[f\left(\overline{\mathbf{x}}^{k+1}\right)-f\left(\mathbf{x}^{\star}\right)\right] \leq \frac{D^{2}+M^{2} \sum_{j=0}^{k} \gamma_{j}^{2}}{2 \sum_{j=0}^{k} \gamma_{j}}
$$

In addition, choosing $\gamma_{k}=D /(M \sqrt{k+1})$, we get,

$$
\mathbb{E}\left[f\left(\overline{\mathbf{x}}^{k}\right)-f\left(\mathbf{x}^{\star}\right)\right] \leq \frac{M D(2+\log k)}{\sqrt{k}} .
$$

Example: SG-A method with different step sizes

$$
\min _{\mathbf{x}}\left\{f(\mathbf{x}):=\frac{1}{2 n}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}
$$

Synthetic problem setup

- A $:=\operatorname{randn}(n, p)$ - standard Gaussian $\mathcal{N}(0, \mathbb{I})$, with $n=10^{4}, p=10^{2}$.
- \mathbf{x}^{\natural} is 50 sparse with zero mean Gaussian i.i.d. entries, normalized to $\left\|\mathbf{x}^{\natural}\right\|_{2}=1$.
- $\mathbf{b}:=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$, where \mathbf{w} is Gaussian white noise with variance 1 .
- $\overline{\mathbf{x}}^{k}=\frac{1}{k} \sum_{i=0}^{k-1} \mathbf{x}^{i}$, and $\gamma_{k}=\gamma_{0} /\left(k+k_{0}\right)$.

Example: SG-A method with different step sizes

$$
\min _{\mathbf{x}}\left\{f(\mathbf{x}):=\frac{1}{2 n}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}
$$

Synthetic problem setup

- $\mathbf{A}:=\operatorname{randn}(n, p)$ - standard Gaussian $\mathcal{N}(0, \mathbb{I})$, with $n=10^{4}, p=10^{2}$.
- \mathbf{x}^{\natural} is 50 sparse with zero mean Gaussian i.i.d. entries, normalized to $\left\|\mathbf{x}^{\natural}\right\|_{2}=1$.
- $\mathbf{b}:=\mathbf{A x}{ }^{\natural}+\mathbf{w}$, where \mathbf{w} is Gaussian white noise with variance 1 .
- $\overline{\mathbf{x}}^{k}=\frac{1}{k} \sum_{i=0}^{k-1} \mathbf{x}^{i}$, and $\gamma_{k}=\gamma_{0} /\left(k+k_{0}\right)$.

SG-A is more stable than SG. $\gamma_{0}=2 / \mu$ is the best choice.

*Adaptive stochastic gradient methods (Adagrad)

AdaGrad (diagonal form) [11]

1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}$ and δ.
2. For $k=0,1, \ldots$ perform:

$$
\left\{\begin{array}{l}
H_{k}=\delta I+\operatorname{diag}\left(\sum_{i=1}^{k} G\left(\mathbf{x}^{i}, \theta_{i}\right) G\left(\mathbf{x}^{i}, \theta_{i}\right)^{T}\right) \\
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma H_{k}^{-1 / 2} G\left(\mathbf{x}^{k}, \theta_{k}\right) .
\end{array}\right.
$$

- The step-size for each coordinate is different.
- The algorithm is a stochastic version of the adaptive GD from Lecture 4.

*Example: AdaGrad vs SG

$$
\min _{\mathbf{x}}\left\{f(\mathbf{x}):=\frac{1}{2 n}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}
$$

Synthetic problem setup

- A $:=\operatorname{randn}(n, p)$ - standard Gaussian $\mathcal{N}(0, \mathbb{I})$, with $n=10^{4}, p=10^{2}$.
- \mathbf{x}^{\natural} is 50 sparse with zero mean Gaussian i.i.d. entries, normalized to $\left\|\mathbf{x}^{\natural}\right\|_{2}=1$.
- $\mathbf{b}:=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$, where \mathbf{w} is Gaussian white noise with variance 1 .
- $\gamma_{k}=1 /\left(\mu\left(k+k_{0}\right)\right)$ for SG. $\delta=10^{-2}$ for AdaGrad.

Important remark!

All the results we have shown so far can be generalized for the non-smooth objectives, simply by replacing the gradient with a subgradient.

We will talk about the subgradient methods in the next lecture.

Recall: Accelerated gradient descent algorithm

- In what follows, we will assume that ∇f is L-Lipschitz continuous.

Accelerated Gradient algorithm for $\mathcal{F}_{L}^{1,1}$ (smoothness)

1. Set $\mathbf{x}^{0}=\mathbf{y}^{0} \in \operatorname{dom}(f)$ and $t_{0}:=1$.
2. For $k=0,1, \ldots$, iterate

$$
\begin{cases}\mathbf{y}^{k+1} & =\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right) \\ t_{k+1} & =\left(1+\sqrt{4 t_{k}^{2}+1}\right) / 2 \\ \mathbf{x}^{k+1} & =\mathbf{y}^{k+1}+\frac{\left(t_{k}-1\right)}{t_{k+1}}\left(\mathbf{y}^{k+1}-\mathbf{y}^{k}\right.\end{cases}
$$

Recall: Accelerated gradient descent algorithm

- In what follows, we will assume that ∇f is L-Lipschitz continuous.

Accelerated Gradient algorithm for $\mathcal{F}_{L}^{1,1}$ (smoothness)
1. Set $\mathbf{x}^{0}=\mathbf{y}^{0} \in \operatorname{dom}(f)$ and $t_{0}:=1$.
2. For $k=0,1, \ldots$, iterate
$\begin{cases}\mathbf{y}^{k+1}= & =\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right) \\ t_{k+1} & =\left(1+\sqrt{4 t_{k}^{2}+1}\right) / 2 \\ \mathbf{x}^{k+1} & =\mathbf{y}^{k+1}+\frac{\left(t_{k}-1\right)}{t_{k+1}}\left(\mathbf{y}^{k+1}-\mathbf{y}^{k}\right.\end{cases}$

Accelerated Gradient algorithm for $\mathcal{F}_{L, \mu}^{1,1}$ (smoothness + stronglyConvex)

1. Choose $\mathbf{x}^{0}=\mathbf{y}^{0} \in \operatorname{dom}(f)$
2. For $k=0,1, \ldots$, iterate

$$
\left\{\begin{aligned}
\mathbf{y}^{k+1} & =\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right) \\
\mathbf{x}^{k+1} & =\mathbf{y}^{k+1}+\gamma\left(\mathbf{y}^{k+1}-\mathbf{y}^{k}\right) \\
& \sqrt{L}-\sqrt{\mu}
\end{aligned}\right.
$$

where $\gamma=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}$.

Recall: Accelerated gradient descent algorithm

- In what follows, we will assume that ∇f is L-Lipschitz continuous.
\(\left.$$
\begin{array}{|l|}\hline \begin{array}{c}\text { Accelerated } \\
\mathcal{F}_{L}^{1,1} \\
\text { (smoothness) }\end{array}
$$

\hline 1. Set \mathbf{x}^{0}=\mathbf{y}^{0} \in \operatorname{dom}(f) and t_{0}:=1 .

2. For k=0,1, ···, iterate\end{array}\right\}\)| $\mathbf{y}^{k+1}=\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right)$ |
| :--- |
| $t_{k+1}=\left(1+\sqrt{4 t_{k}^{2}+1}\right) / 2$ |
| $\mathbf{x}^{k+1}=\mathbf{y}^{k+1}+\frac{\left(t_{k}-1\right)}{t_{k+1}}\left(\mathbf{y}^{k+1}-\mathbf{y}^{k}\right.$ |

Accelerated Gradient algorithm for $\mathcal{F}_{L, \mu}^{1,1}$ (smoothness + stronglyConvex)

1. Choose $\mathbf{x}^{0}=\mathbf{y}^{0} \in \operatorname{dom}(f)$
2. For $k=0,1, \ldots$, iterate

$$
\left\{\begin{aligned}
\mathbf{y}^{k+1} & =\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right) \\
\mathbf{x}^{k+1} & =\mathbf{y}^{k+1}+\gamma\left(\mathbf{y}^{k+1}-\mathbf{y}^{k}\right) \\
& \sqrt{L}-\sqrt{\mu}
\end{aligned}\right.
$$

where $\gamma=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}$.

Can we use similar accelerated techniques for stochastic gradient methods?

Accelerated stochastic gradient method I

Accelerated stochastic gradient method (AccSG)

0 . $\quad 0 \leq \mu$-strong convexity of F.

1. Choose $\left.\mathbf{y}^{0}=\mathbf{z}^{0}=\mathbf{0},\left(\gamma_{k}\right)_{k \in \mathbb{N}},\left(\alpha_{k}\right)_{k \in \mathbb{N}} \in\right] 0,+\infty\left[{ }^{\mathbb{N}}, \alpha_{0}=1, \gamma_{0}=L+\mu\right.$.
2. For $k=0,1, \ldots$ perform:

2a. $\mathbf{x}^{k+1}=\left(1-\alpha_{k}\right) \mathbf{y}^{k}+\alpha_{k} \mathbf{z}^{k}$.
2b. $\mathbf{y}^{k+1}=\mathbf{x}^{k+1}-\frac{1}{\gamma_{k}} G\left(\mathbf{x}^{k+1}, \theta_{k}\right)$.
2c. $\mathbf{z}^{k+1}=\mathbf{z}^{k}-\frac{1}{\gamma_{k} \alpha_{k}+\mu}\left(\gamma_{k}\left(\mathbf{x}^{k+1}-\mathbf{y}^{k+1}\right)+\mu\left(\mathbf{z}^{k}-\mathbf{x}^{k+1}\right)\right)$.

Accelerated stochastic gradient method I

Theorem (Convergence of AccSG with strong convexity [3]) Define $\lambda_{k}=\prod_{j=1}^{k}\left(1-\alpha_{j}\right)$ and $\lambda_{0}=1$. Let

1. f is μ-strongly convex,
2. $\mathbb{E}\left[\left\|\mathbf{z}^{k}-\mathbf{x}^{\star}\right\|^{2}\right] \leq D^{2}$,
3. $\mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, \theta_{k}\right)-\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}\right] \leq M^{2}$.
4. $\gamma_{k}=L+\frac{\mu}{\lambda_{k-1}}$ and $\alpha_{k}=\sqrt{\lambda_{k-1}+\frac{\lambda_{k-1}^{2}}{4}}-\frac{\lambda_{k-1}}{2}$.

Then,

$$
\mathbb{E}\left[f\left(\mathbf{y}^{k+1}\right)-f\left(\mathbf{x}^{\star}\right)\right] \leq \frac{2(L+\mu) D^{2}}{k^{2}}+\frac{6 M^{2}}{\mu k} .
$$

The accelerated technique can be used to reduce the error term related to

$$
\mathbb{E}\left[\left\|\mathbf{z}^{k}-\mathbf{x}^{\star}\right\|^{2}\right] .
$$

Accelerated stochastic gradient method II

Accelerated stochastic gradient method (AccSG)

1. Choose $\left.\mathbf{y}^{0}=\mathbf{z}^{0}=\mathbf{0},\left(\gamma_{k}\right)_{k \in \mathbb{N}},\left(\alpha_{k}\right)_{k \in \mathbb{N}} \in\right] 0,+\infty \mathbb{N}^{\mathbb{N}}, \alpha_{0}=1, \gamma_{0}=L$.
2. For $k=0,1, \ldots$ perform:

2a. $\mathbf{x}^{k+1}=\left(1-\alpha_{k}\right) \mathbf{y}^{k}+\alpha_{k} \mathbf{z}^{k}$.
2b. $\mathbf{y}^{k+1}=\mathbf{x}^{k+1}-\frac{1}{\gamma_{k}} G\left(\mathbf{x}^{k+1}, \theta_{k}\right)$.
2c. $\mathbf{z}^{k+1}=\mathbf{z}^{k}-\frac{1}{\alpha_{k}}\left(\mathbf{x}^{k+1}-\mathbf{y}^{k+1}\right)$.

Theorem (Convergence of AccSG without strong convexity [3])

Let:

1. $\mathbb{E}\left[\left\|\mathbf{z}^{k}-\mathbf{x}^{\star}\right\|^{2}\right] \leq D^{2}$,
2. $\mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, \theta_{k}\right)-\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}\right] \leq M^{2}$,
3. $\gamma_{k}=c(k+1)^{3 / 2}+L$ for a fixed $c>0$, and $\alpha_{k}=2 /(k+2)$.

Then,

$$
\mathbb{E}\left[f\left(\mathbf{y}^{k+1}\right)-f\left(\mathbf{x}^{\star}\right)\right] \leq \frac{3 D^{2} L}{k^{2}}+\left(3 D^{2} c+\frac{5 M^{2}}{3 c}\right) \frac{1}{\sqrt{k}} .
$$

Example: AccSG

$$
\min _{\mathbf{x}}\left\{f(\mathbf{x}):=\frac{1}{2 n}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}
$$

Synthetic problem setup

- A $:=\operatorname{randn}(n, p)$ - standard Gaussian $\mathcal{N}(0, \mathbb{I})$, with $n=10^{4}, p=10^{2}$.
- \mathbf{x}^{\natural} is 10 sparse with zero mean Gaussian i.i.d. entries, normalized to $\left\|\mathbf{x}^{\natural}\right\|_{2}=1$.
- $\mathbf{b}:=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$, where \mathbf{w} is Gaussian white noise. SNR is 30 dB .
- $\gamma_{k}=c_{0}(N+1)^{3 / 2}+L$, where N is the number of total iterations.

Convex optimization with finite sums

Problem (Convex optimization with finite sums)

We consider the following simple example in the next few slides:

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x}):=\frac{1}{n} \sum_{j=1}^{n} f_{j}(\mathbf{x})\right\}
$$

- f_{j} is proper, closed, and convex.
- ∇f_{j} is L_{j}-Lipschitz continuous for $j=1, \ldots, n$.
- The solution set $\mathcal{S}^{\star}:=\left\{\mathbf{x}^{\star} \in \operatorname{dom}(f): f\left(\mathbf{x}^{\star}\right)=f^{\star}\right\}$ is nonempty.
- One prevalent choice is given by

$$
G\left(\mathbf{x}^{k}, i_{k}\right)=\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right), \quad i_{k} \text { is uniformly distributed over }\{1,2, \cdots, n\}
$$

An observation of SG

Lemma B

Assume f is Lipschitz smooth with constant L and $\left\{\mathrm{x}^{k}\right\}$ is generated by SG. Then,

$$
\mathbb{E}\left[f\left(\mathbf{x}^{k+1}\right)-f\left(\mathbf{x}^{k}\right)\right] \leq\left(\gamma_{k}^{2} L-\gamma_{k}\right) \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}\right]+L \gamma_{k}^{2} \mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, i_{k}\right)-\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}\right]
$$

An observation of SG

Lemma B

Assume f is Lipschitz smooth with constant L and $\left\{\mathbf{x}^{k}\right\}$ is generated by SG. Then,

$$
\mathbb{E}\left[f\left(\mathbf{x}^{k+1}\right)-f\left(\mathbf{x}^{k}\right)\right] \leq\left(\gamma_{k}^{2} L-\gamma_{k}\right) \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}\right]+L \gamma_{k}^{2} \mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, i_{k}\right)-\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}\right]
$$

*Proof. From the smoothness of f,

$$
\left\langle\nabla f\left(\mathbf{x}^{k+1}\right)-\nabla f\left(\mathbf{x}^{k}\right), \mathbf{x}^{k+1}-\mathbf{x}^{k}\right\rangle \leq L\left\|\mathbf{x}^{k+1}-\mathbf{x}^{k}\right\|^{2},
$$

and by the convexity of f,

$$
\mathbb{E}\left[f\left(\mathbf{x}^{k+1}\right)-f\left(\mathbf{x}^{k}\right)\right] \leq \mathbb{E}\left[\left\langle\nabla f\left(\mathbf{x}^{k+1}\right), \mathbf{x}^{k+1}-\mathbf{x}^{k}\right\rangle\right] .
$$

Thus,

$$
\begin{aligned}
\mathbb{E}\left[f\left(\mathbf{x}^{k+1}\right)-f\left(\mathbf{x}^{k}\right)\right] & \leq \mathbb{E}\left[\left\langle\nabla f\left(\mathbf{x}^{k}\right), \mathbf{x}^{k+1}-\mathbf{x}^{k}\right\rangle\right]+L \mathbb{E}\left[\left\|\mathbf{x}^{k+1}-\mathbf{x}^{k}\right\|^{2}\right] \\
& =-\gamma_{k} \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}\right]+L \gamma_{k}^{2} \mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, i_{k}\right)\right\|^{2}\right] \\
& =\left(\gamma_{k}^{2} L-\gamma_{k}\right) \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}\right]+L \gamma_{k}^{2} \mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, i_{k}\right)-\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}\right] .
\end{aligned}
$$

An observation of SG

Lemma B

Assume f is Lipschitz smooth with constant L and $\left\{\mathrm{x}^{k}\right\}$ is generated by SG. Then,

$$
\mathbb{E}\left[f\left(\mathbf{x}^{k+1}\right)-f\left(\mathbf{x}^{k}\right)\right] \leq\left(\gamma_{k}^{2} L-\gamma_{k}\right) \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}\right]+L \gamma_{k}^{2} \mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, i_{k}\right)-\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}\right]
$$

- Here, $G\left(\mathbf{x}^{k}, i_{k}\right)=\nabla f_{i_{k}}$.
- The first term dominates at the beginning, and the variance in gradient will dominate later (as if $\nabla f\left(\mathbf{x}^{k}\right) \rightarrow 0$).
- To ensure convergence, $\gamma_{k} \rightarrow 0 . \Longrightarrow$ Slow convergence!

Can we decrease the variance while using a constant step-size?

- Choose a stochastic gradient, s.t. $\mathbb{E}\left[\left\|G\left(\mathbf{x}^{k} ; i_{k}\right)\right\|^{2}\right] \rightarrow 0$.

Variance reduction techniques: SVRG

- Select the stochastic gradient $\nabla f_{i_{k}}$, and computes a gradient estimate

$$
\mathbf{r}_{k}=\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)-\nabla f_{i_{k}}(\tilde{\mathbf{x}})+\nabla f(\tilde{\mathbf{x}})
$$

where $\tilde{\mathbf{x}}$ is a good approximation of \mathbf{x}^{\star}. As $\tilde{\mathbf{x}} \rightarrow \mathbf{x}^{\star}$ and $\mathbf{x}^{k} \rightarrow \mathbf{x}^{\star}$,

$$
\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)-\nabla f_{i_{k}}(\tilde{\mathbf{x}})+\nabla f(\tilde{\mathbf{x}}) \rightarrow 0
$$

Therefore,

$$
\mathbb{E}\left[\left\|\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)-\nabla f_{i_{k}}(\tilde{\mathbf{x}})+\nabla f(\tilde{\mathbf{x}})\right\|^{2}\right] \rightarrow 0
$$

Stochastic gradient algorithm with variance reduction

Stochastic gradient algorithm with variance reduction (SVRG) [10, 5]

1. Choose $\widetilde{\mathbf{x}}^{0} \in \mathbb{R}^{p}$ as a starting point and $\gamma>0$ and $q \in \mathbb{N}+$.
2. For $s=0,1,2 \cdots$, perform:

2a. $\widetilde{\mathbf{x}}=\widetilde{\mathbf{x}}^{s}, \quad \widetilde{\mathbf{v}}=\nabla f(\widetilde{\mathbf{x}}), \quad \mathbf{x}^{0}=\widetilde{\mathbf{x}}$.
2b. For $k=0,1, \cdots q-1$, perform:

$$
\left\{\begin{array}{l}
\text { Pick } i_{k} \in\{1, \ldots, n\} \text { uniformly at random } \tag{1}\\
\mathbf{r}_{k}=\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)-\nabla f_{i_{k}}(\widetilde{\mathbf{x}})+\widetilde{\mathbf{v}} \\
\mathbf{x}^{k+1}:=\mathbf{x}^{k}-\gamma \mathbf{r}_{k},
\end{array}\right.
$$

2c. Update $\widetilde{\mathbf{x}}^{s+1}=\frac{1}{m} \sum_{j=0}^{q-1} \mathbf{x}^{j}$.

Common features

- The SVRG method uses a multistage scheme to reduce the variance of the stochastic gradient r_{k} where \mathbf{x}^{k} and $\widetilde{\mathbf{x}}^{s}$ tend to x_{\star}.
- Learning rate γ is not necessarily tend to 0 .
- Each stage, SVRG uses $n+2 q$ component gradient evaluations: n for the full gradient at the beginning of each stage, and $2 q$ for each of the q stochastic gradient steps.

Convergence analysis

Assumption A5.

(i) f is μ-strongly convex
(ii) The learning rate $0<\gamma<1 /\left(4 L_{\max }\right)$, where $L_{\max }=\max _{1 \leq j \leq n} L_{j}$.
(iii) q is large enough such that

$$
\kappa=\frac{1}{\mu \gamma\left(1-4 \gamma L_{\max }\right) q}+\frac{4 \gamma L_{\max }(q+1)}{\left(1-4 \gamma L_{\max }\right) q}<1 .
$$

Theorem

Assumptions:

- The sequence $\left\{\widetilde{\mathbf{x}^{s}}\right\}_{k \geq 0}$ is generated by SVRG.
- Assumption A5 is satisfied.

Conclusion: Linear convergence is obtained:

$$
\mathbb{E} f\left(\widetilde{\mathbf{x}^{s}}\right)-f\left(\mathrm{x}^{\star}\right) \leq \kappa^{s}\left(f\left(\widetilde{\mathbf{x}^{0}}\right)-f\left(\mathrm{x}^{\star}\right)\right) .
$$

Choice of γ and q, and complexity

Chose γ and q such that $\kappa \in(0,1)$:

For example

$$
\gamma=0.1 / L_{\max }, q=100\left(L_{\max } / \mu\right) \Longrightarrow \kappa \approx 5 / 6
$$

Complexity

$\mathbb{E} f\left(\widetilde{\mathbf{x}^{s}}\right)-f\left(\mathbf{x}^{\star}\right) \leq \varepsilon, \quad$ when $s \geq \log \left(\left(f\left(\widetilde{\mathbf{x}^{0}}\right)-f\left(\mathbf{x}^{\star}\right)\right) / \epsilon\right) / \log \left(\kappa^{-1}\right)$
Since at each stage needs $n+2 q$ component gradient evaluations, with $q=\mathcal{O}\left(L_{\text {max }} / \mu\right)$, we get the overall complexity is

$$
\mathcal{O}\left(\left(n+L_{\max } / \mu\right) \log (1 / \epsilon)\right) .
$$

Taxonomy of algorithms

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x}):=\frac{1}{n} \sum_{j=1}^{n} f_{j}(\mathbf{x})\right\}
$$

- $f(\mathbf{x})=\frac{1}{n} \sum_{j=1}^{n} f_{j}(\mathbf{x}): \mu$-strongly convex with L-Lipschitz continuous gradient.

Gradient descent	Acc. MB SVRG	SVRG/SAGA/SARAH	SGM
Linear	Linear	Linear	Sublinear

Table: Rate of convergence.

- $\kappa=L / \mu$ and $s_{0}=8 \sqrt{\kappa} n(\sqrt{2} \alpha(n-1)+8 \sqrt{\kappa})^{-1}$ for $0<\alpha \leq 1 / 8$.

SVRG/SAGA/SARAH	Acc. MB SVRG $s<\left\lceil s_{0}\right\rceil$	AccGrad
$\mathcal{O}((n+\kappa) \log (1 / \varepsilon))$	$\mathcal{O}\left(\left(n+\kappa \frac{n-s}{n-1}\right) \log (1 / \varepsilon)\right)$	$\mathcal{O}((n \kappa) \log (1 / \varepsilon))$

Table: Complexity to obtain ε-solution.
SAGA/SARAH/AccMBSVRG can be found in the next few slides.

*Another way of parsing data

Example (Least squares): $\min _{\mathbf{x}}\left\{f(\mathbf{x}):=\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}$

Using a subset of rows

We have mainly focused on using a subset of rows instead of the full data at each iteration.
This way, we compute an unbiased estimate $G\left(\mathbf{x}^{k}, i_{k}\right)$ of the gradient using

- a subset of data points: $\left(\mathbf{a}_{i_{k}}, b_{i_{k}}\right)$,
- and the whole decision variable: \mathbf{x}^{k} :

$$
G\left(\mathbf{x}^{k}, i_{k}\right)=\mathbf{a}_{i_{k}}^{T}\left(\left\langle\mathbf{a}_{i_{k}}^{T}, \mathbf{x}\right\rangle-\mathbf{b}_{i_{k}}\right)
$$

Estimate $G\left(\mathbf{x}^{k}, i_{k}\right)$ is dense, so we update the whole decision variable.
Next: Using a subset of columns.

*Another way of parsing data

Example (Least squares): $\min _{\mathbf{x}}\left\{f(\mathbf{x}):=\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}$

Using a subset of columns

Denote the standard basis vectors by \mathbf{e}_{i}, and the corresponding directional derivatives by ∇_{i}. Let \mathbf{a}_{i} represent the i th column of matrix \mathbf{A}. Consider the following unbiased estimate:

$$
G\left(\mathbf{x}^{k}, i_{k}\right)=p \nabla_{i_{k}} f\left(\mathbf{x}^{k}\right) \mathbf{e}_{i_{k}}=p\left\langle\mathbf{a}_{i_{k}}, \mathbf{a}_{i_{k}} \mathbf{x}_{i_{k}}^{k}-\mathbf{b}\right\rangle \mathbf{e}_{i_{k}}
$$

This way, we compute an unbiased estimate $G\left(\mathbf{x}^{k}, i_{k}\right)$ of the gradient using

- a subset of columns ($\mathbf{a}_{i_{k}}$) and the whole measurement vector \mathbf{b},
- and only the chosen coordinates of decision variable: $\mathbf{x}_{i_{k}}^{k}$.

Estimate $G\left(\mathbf{x}^{k}, i_{k}\right)$ is sparse, only coordinates chosen by i_{k} are nonzero. Hence, we update these coordinates only.

*Variance reduction techniques: SAGA

Stochastic Average Gradient (SAGA) [6]

1a. Choose $\tilde{\mathbf{x}}_{i}^{0}=\mathbf{x}^{0} \in \mathbb{R}^{p}, \forall i, q \in \mathbb{N}_{+}$and stepsize $\gamma>0$.
1b. Store $\nabla f_{i}\left(\tilde{\mathbf{x}}_{i}^{0}\right)$ in a table data-structure with length n.
2. For $k=0,1 \ldots$ perform:

2a. pick $i_{k} \in\{1, \ldots, n\}$ uniformly at random
2b. Take $\tilde{\mathbf{x}}_{i_{k}}^{k+1}=\mathbf{x}^{k}$, store $\nabla f_{i_{k}}\left(\tilde{\mathbf{x}}_{i_{k}}^{k+1}\right)$ in the table and leave other entries the same.
2c. $\mathbf{r}_{k}=\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)-\nabla f_{i_{k}}\left(\tilde{\mathbf{x}}_{i_{k}}^{k}\right)+\frac{1}{n} \sum_{j=1}^{n} \nabla f_{j}\left(\tilde{\mathbf{x}}_{j}^{k}\right)$
3. $\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma \mathbf{r}_{k}$

Recipe:

In each iteration:

- Store last gradient evaluated at each datapoint.
- Previous gradient for datapoint j is $\nabla f_{j}\left(\tilde{\mathbf{x}}_{j}^{k}\right)$.
- Perform SG-iterations with the following stochastic gradient

$$
\mathbf{r}_{k}=\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)-\nabla f_{i_{k}}\left(\tilde{\mathbf{x}}_{i_{k}}^{k}\right)+\frac{1}{n} \sum_{j=1}^{n} \nabla f_{j}\left(\tilde{\mathbf{x}}_{j}^{k}\right)
$$

*Variance reduction techniques: SAGA

- Select the stochastic gradient \mathbf{r}_{k} as

$$
\mathbf{r}_{k}=\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)-\nabla f_{i_{k}}\left(\tilde{\mathbf{x}}_{i_{k}}^{k}\right)+\frac{1}{n} \sum_{j=1}^{n} \nabla f_{j}\left(\tilde{\mathbf{x}}_{j}^{k}\right)
$$

where, at each iteration, $\tilde{\mathbf{x}}$ is updated as $\tilde{\mathbf{x}}_{i_{k}}^{k}=\mathbf{x}^{k}$ and $\tilde{\mathbf{x}}_{j}^{k}$ stays the same for $j \neq i_{k}$. As $\tilde{\mathbf{x}}_{j}^{k} \rightarrow \mathbf{x}^{\star}$ and $\mathbf{x}^{k} \rightarrow \mathbf{x}^{\star}$,

$$
\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)-\nabla f_{i_{k}}\left(\tilde{\mathbf{x}}_{i_{k}}^{k}\right)+\frac{1}{n} \sum_{j=1}^{n} \nabla f_{j}\left(\tilde{\mathbf{x}}_{j}^{k}\right) \rightarrow 0
$$

Therefore,

$$
\mathbb{E}\left[\left\|\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)-\nabla f_{i_{k}}\left(\tilde{\mathbf{x}}_{i_{k}}^{k}\right)+\frac{1}{n} \sum_{j=1}^{n} \nabla f_{j}\left(\tilde{\mathbf{x}}_{j}^{k}\right)\right\|^{2}\right] \rightarrow 0
$$

*Convergence of SAGA

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x}):=\frac{1}{n} \sum_{j=1}^{n} f_{j}(\mathbf{x})\right\} .
$$

Theorem (Convergence of SAGA [6])

Suppose that f is μ-strongly convex and that the stepsize is $\gamma=\frac{1}{2(\mu n+L)}$ with

$$
\begin{gathered}
\rho=1-\frac{\mu}{2(\mu n+L)}<1, \\
C=\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|^{2}+\frac{n}{\mu n+L}\left[f\left(\mathbf{x}^{0}\right)-\left\langle\nabla f\left(\mathbf{x}^{\star}\right), \mathbf{x}^{0}-\mathbf{x}^{\star}\right\rangle-f\left(\mathbf{x}^{\star}\right)\right]
\end{gathered}
$$

Then

$$
\mathbb{E}\left[\left\|\mathbf{x}^{k}-\mathbf{x}^{\star}\right\|^{2}\right] \leq \rho^{k} C .
$$

- Allows the constant step-size.
- Obtains linear rate convergence.
*Variance reduction techniques: SARAH
- Select the stochastic gradient \mathbf{r}_{k}

$$
\mathbf{r}_{k}=\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)-\nabla f_{i_{k}}\left(\mathbf{x}^{k-1}\right)+\mathbf{r}_{k-1}
$$

The variance reduction in SARAH can be characterized as

$$
\mathbb{E}\left[\left\|\mathbf{r}_{k}\right\|^{2}\right] \leq\left[1-\left(\frac{2}{\gamma L}-1\right) \mu^{2} \gamma^{2}\right]^{k} \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}^{0}\right)\right\|^{2}\right] .
$$

*Variance reduction techniques: SARAH

Stochastic Recursive Gradient Algorithm (SARAH) [7]

1. Choose $\overline{\mathbf{x}}^{0} \in \mathbb{R}^{p}, q \in \mathbb{N}_{+}$and stepsize $\gamma>0$.
2. For $k=0,1 \ldots$ perform:
3. $\mathbf{x}^{0}=\overline{\mathbf{x}}^{k}, \mathbf{r}_{0}=\frac{1}{n} \sum_{j=1}^{n} f_{j}\left(\overline{\mathbf{x}}^{0}\right)$

2a. $\mathbf{x}^{1}=\mathrm{x}^{0}-\gamma \mathbf{r}_{0}$
2b. For $l=1 \ldots, q-1$, perform:

$$
\left\{\begin{array}{l}
\text { pick } i_{l} \in\{1, \ldots, n\} \text { uniformly at random, } \\
\mathbf{r}_{l}=\nabla f_{i_{l}}\left(\mathbf{x}^{l}\right)-\nabla f_{i_{l}}\left(\mathbf{x}^{l-1}\right)+\mathbf{r}_{l-1}, \\
\mathbf{x}^{l+1}=\mathbf{x}^{l}-\gamma \mathbf{r}_{l} .
\end{array}\right.
$$

3 Update $\overline{\mathbf{x}}^{k+1}=\mathbf{x}^{l}$ where l is chosen uniformly at random from $\{0, \ldots, q\}$.

Recipe:

In a cycle of q inner iterations:

- Compute stochastic step direction by recursively adding and subtracting component gradients to and from the previous direction.

$$
\mathbf{r}_{l}=\nabla f_{i_{l}}\left(\mathbf{x}^{l}\right)-\nabla f_{i_{l}}\left(\mathbf{x}^{l-1}\right)+\mathbf{r}_{l-1} .
$$

- Perform q SG-iterations with \mathbf{r}_{l}.
- Update next iteration by picking uniformly at random from q previous iterations.

*Convergence of SARAH

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x}):=\frac{1}{n} \sum_{j=1}^{n} f_{j}(\mathbf{x})\right\}
$$

Theorem (Convergence of SARAH [7])

Suppose that f is μ-strongly convex and that the stepsize γ and number of inner iterations q satisfies

$$
\rho_{q}=\frac{1}{\mu \gamma(1+q)}+\frac{L_{\max } \gamma}{2-L_{\max } \gamma}<1 .
$$

Then

$$
\mathbb{E}\left[\left\|\nabla f\left(\overline{\mathbf{x}}^{k}\right)\right\|^{2}\right] \leq \rho_{q}^{k}\left\|\nabla f\left(\overline{\mathbf{x}}^{0}\right)\right\|^{2}
$$

*Variance reduction techniques: Mini-batch variance reduction

Accelerated mini-batch SVRG (Acc. MB SVRG)

1. Choose $q \in \mathbb{N}_{+}$, initialization $\overline{\mathbf{x}}^{0} \in \mathbb{R}^{p}$, stepsize $\gamma>0$, accelerated stepsize $\beta=(1-\sqrt{\mu \gamma}) /(1+\sqrt{\mu \gamma})$.
2. For $k=0,1, \ldots$ perform:

2a. $\overline{\mathbf{x}}=\overline{\mathbf{x}}^{k}, \mathbf{x}^{0}=\mathbf{y}^{1}=\overline{\mathbf{x}} ; \nabla f(\overline{\mathbf{x}})=\frac{1}{n} \sum_{j=1}^{n} \nabla f_{j}(\overline{\mathbf{x}})$.
2b. For $l=0,1, \ldots, q-1$, perform:

$$
\left\{\begin{array}{l}
\text { pick } I_{l} \subset\{1, \ldots, n\}: \text { mini-batch of sizes }, \\
\mathbf{r}_{l}=\nabla f_{I_{l}}\left(\mathbf{y}_{l}\right)-\nabla f_{I_{l}}(\overline{\mathbf{x}})+\nabla f(\overline{\mathbf{x}}) \\
\mathbf{x}^{l+1}=\mathbf{y}^{l}-\gamma \mathbf{r}_{l} \\
\mathbf{y}^{l+1}=\mathbf{x}^{l+1}+\beta\left(\mathbf{x}^{l+1}-\mathbf{x}^{l}\right)
\end{array}\right.
$$

3. Update $\overline{\mathbf{x}}^{k+1}=\mathbf{x}^{q}$.

- A mini-batch of size s is indexed by $I=\left\{i_{1}, \ldots, i_{s}\right\}$, where each $i_{j} \in\{1, \ldots, n\}$ is chosen uniformly at random, and

$$
f_{I}=\frac{1}{s} \sum_{j=1}^{s} f_{i_{j}} .
$$

- s components are chosen instead of one + an accelerated step.

*Convergence of Acc. MB SVRG

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x}):=\frac{1}{n} \sum_{j=1}^{n} f_{j}(\mathbf{x})\right\}
$$

Theorem (Convergence of Acc. MB SVRG [4])

Suppose that:

1. $0<\gamma \leq \gamma_{\max }=\min \left\{\frac{(\alpha q)^{2}(n-1)^{2} \mu}{64(n-s)^{2} L_{\max }^{2}}, \frac{1}{2 L_{\text {max }}}\right\}$ for some $0<\alpha<1 / 8$.
2. $q \geq \frac{1}{(1-\alpha) \sqrt{\mu \gamma}} \log \frac{1-\alpha}{\alpha}$.

Then,

$$
\mathbb{E}\left[f\left(\overline{\mathbf{x}}^{k}\right)-f^{\star}\right] \leq \rho^{k}\left(f\left(\overline{\mathbf{x}}^{0}\right)-f^{\star}\right),
$$

where $\rho=2 \alpha(2+\alpha) /(1-\alpha)<1$.

References I

[1] V. N. Vapnik.
An overview of statistical learning theory.
IEEE Trans. Inf. Theory, vol. 10, no. 5, pp. 988-999, Sep. 1999.
[2] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro.
Robust stochastic approximation approach to stochastic programming.
SIAM J. Optim., vol. 19, pp. 1574-1609, 2008.
[3] J. T. Kwok, C. Hu and W. Pan.
Accelerated gradient methods for stochastic optimization and online learning.
Advances in Neural Information Processing Systems, vol. 22, pp. 781-789, 2009.
[4] A. Nitanda.
Stochastic proximal gradient descent with acceleration techniques.
Advances in Neural Information Processing Systems, pp. 1574-1582, 2014.
[5] L. Xiao, and T. Zhang.
A proximal stochastic gradient method with progressive variance reduction.
SIAM Journal on Optimization 2057-2075, 2014.
[6] A. Defazio, F. Bach, and S. Lacoste-Julien.
SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives.
Advances in Neural Information Processing Systems, pp. 1646-1654, 2014.

References II

[7] L. Nguyen, J. Liu, K. Scheinberg, and M. Takac.
SARAH: A novel method for machine learning problems using stochastic recursive gradient.
International Conference on Machine Learning, 2017.
[8] S., Ohad, and T. Zhang.
Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes.
International Conference on Machine Learning, 2013.
[9] S.-S., Shai, et al.
Pegasos: Primal estimated sub-gradient solver for svm.
Mathematical Programming 127.1 (2011): 3-30.
[10] R. Johnson, and T. Zhang.
Accelerating stochastic gradient descent using predictive variance reduction.
Advances in neural information processing systems 315-323, 2013
[11] J. Duchi, E. Hazan, and Y. Singer.
Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research 12, 2121-2159.

*Proof: A Basic Lemma for SG

Lemma A

Let f be μ-strongly convex $(\mu \geq 0)$ and $\mathbb{E}\left\|G\left(\mathbf{x}^{k}, \theta_{k}\right)\right\|^{2} \leq M^{2}$. For all fixed $\mathbf{x} \in \mathbb{R}^{p}$,

$$
\mathbb{E}\left\|\mathbf{x}^{k+1}-\mathbf{x}\right\|^{2} \leq\left(1-\gamma_{k} \mu\right) \mathbb{E}\left\|\mathbf{x}^{k}-\mathbf{x}\right\|^{2}-2 \gamma_{k} \mathbb{E}\left(f\left(\mathbf{x}^{k}\right)-f(\mathbf{x})\right)+\gamma_{k}^{2} M^{2}
$$

*Proof: A Basic Lemma for SG

Lemma A

Let f be μ-strongly convex $(\mu \geq 0)$ and $\mathbb{E}\left\|G\left(\mathbf{x}^{k}, \theta_{k}\right)\right\|^{2} \leq M^{2}$. For all fixed $\mathbf{x} \in \mathbb{R}^{p}$,

$$
\mathbb{E}\left\|\mathbf{x}^{k+1}-\mathbf{x}\right\|^{2} \leq\left(1-\gamma_{k} \mu\right) \mathbb{E}\left\|\mathbf{x}^{k}-\mathbf{x}\right\|^{2}-2 \gamma_{k} \mathbb{E}\left(f\left(\mathbf{x}^{k}\right)-f(\mathbf{x})\right)+\gamma_{k}^{2} M^{2} .
$$

- $\mu=0$ corresponds to the non-strongly convex case.
- This lemma will be used several times in this lecture.

*Proof: A Basic Lemma for SG

Lemma A

Let f be μ-strongly convex $(\mu \geq 0)$ and $\mathbb{E}\left\|G\left(\mathbf{x}^{k}, \theta_{k}\right)\right\|^{2} \leq M^{2}$. For all fixed $\mathbf{x} \in \mathbb{R}^{p}$,

$$
\mathbb{E}\left\|\mathbf{x}^{k+1}-\mathbf{x}\right\|^{2} \leq\left(1-\gamma_{k} \mu\right) \mathbb{E}\left\|\mathbf{x}^{k}-\mathbf{x}\right\|^{2}-2 \gamma_{k} \mathbb{E}\left(f\left(\mathbf{x}^{k}\right)-f(\mathbf{x})\right)+\gamma_{k}^{2} M^{2}
$$

Proof of Lemma A. According to the iterative relationship, and expanding the inner product,

$$
\begin{aligned}
& \left\|\mathbf{x}^{k+1}-\mathbf{x}\right\|^{2}=\left\|\mathbf{x}^{k}-\gamma_{k} G\left(\mathbf{x}^{k}, \theta_{k}\right)-\mathbf{x}\right\|^{2} \\
& =\left\|\mathbf{x}^{k}-\mathbf{x}\right\|^{2}-2 \gamma_{k}\left\langle G\left(\mathbf{x}^{k}, \theta_{k}\right), \mathbf{x}^{k}-\mathbf{x}\right\rangle+\gamma_{k}^{2}\left\|G\left(\mathbf{x}^{k}, \theta_{k}\right)\right\|^{2} .
\end{aligned}
$$

Noting that \mathbf{x}_{k} is independent from θ_{k}, thus $\mathbb{E}_{\theta_{k}}\left[G\left(\mathbf{x}^{k}, \theta_{k}\right)\right]=\nabla f\left(\mathbf{x}^{k}\right)$. Taking the expectation with respect to the random variable θ_{k} on both sides,

$$
\mathbb{E}_{\theta_{k}}\left\|\mathbf{x}^{k+1}-\mathbf{x}\right\|^{2}=\left\|\mathbf{x}^{k}-\mathbf{x}\right\|^{2}-2 \gamma_{k}\left\langle\nabla f\left(\mathbf{x}^{k}\right), \mathbf{x}^{k}-\mathbf{x}\right\rangle+\gamma_{k}^{2} \mathbb{E}_{\theta_{k}}\left\|G\left(\mathbf{x}^{k}, \theta_{k}\right)\right\|^{2} .
$$

Using the strong convexity of f which implies

$$
\begin{gathered}
\left\langle\nabla f\left(\mathbf{x}^{k}\right), \mathbf{x}^{k}-\mathbf{x}\right\rangle \geq f\left(\mathbf{x}^{k}\right)-f(\mathbf{x})+\frac{\mu}{2}\left\|\mathbf{x}^{k}-\mathbf{x}\right\|^{2} \\
\mathbb{E}_{\theta_{k}}\left\|\mathbf{x}^{k+1}-\mathbf{x}\right\|^{2} \leq\left(1-\gamma_{k} \mu\right)\left\|\mathbf{x}^{k}-\mathbf{x}\right\|^{2}-2 \gamma_{k}\left(f\left(\mathbf{x}^{k}\right)-f(\mathbf{x})\right)+\gamma_{k}^{2} \mathbb{E}_{\theta_{k}}\left\|G\left(\mathbf{x}^{k}, \theta_{k}\right)\right\|^{2}
\end{gathered}
$$

*Proof for Slide 14

Since f is μ-strongly convex,

$$
f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{\star}\right)+\left\langle\nabla f\left(\mathbf{x}^{\star}\right), \mathbf{x}^{\star}-\mathbf{x}^{k}\right\rangle \geq \frac{\mu}{2}\left\|\mathbf{x}^{k}-\mathbf{x}^{\star}\right\|^{2} .
$$

Moreover, as \mathbf{x}^{\star} is a minimizer, we have $\nabla f\left(\mathbf{x}^{\star}\right)=0$ and as a result,

$$
f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{\star}\right) \geq \frac{\mu}{2}\left\|\mathbf{x}^{k}-\mathbf{x}^{\star}\right\|^{2}
$$

Applying the above and Lemma A, one can easily show that

$$
\mathbb{E}\left\|\mathbf{x}^{k+1}-\mathbf{x}^{\star}\right\|^{2} \leq\left(1-2 \gamma_{k} \mu\right) \mathbb{E}\left\|\mathbf{x}^{k}-\mathbf{x}^{\star}\right\|^{2}+\gamma_{k}^{2} M^{2}
$$

Introducing with $\gamma_{k}=\frac{\gamma_{0}}{k+1}$,

$$
\mathbb{E}\left\|\mathbf{x}^{k}-\mathbf{x}^{\star}\right\|^{2} \leq\left(1-2 \gamma_{0} \mu k^{-1}\right) \mathbb{E}\left\|\mathbf{x}^{k-1}-\mathbf{x}^{\star}\right\|^{2}+\gamma_{0}^{2} M^{2} k^{-2} .
$$

By an inductive argument, one can prove the theorem.

*Proof for Slide 17

By Lemma A,

$$
2 \gamma_{k} \mathbb{E}\left(f\left(\mathbf{x}^{k}\right)-f(\mathbf{x})\right) \leq\left(1-\gamma_{k} \mu\right) \mathbb{E}\left\|\mathbf{x}^{k}-\mathbf{x}\right\|^{2}-\mathbb{E}\left\|\mathbf{x}^{k+1}-\mathbf{x}\right\|^{2}+\gamma_{k}^{2} M^{2}
$$

Dividing both sides by γ_{k}, and then introducing with $\gamma_{k}=\gamma_{0} / k\left(\gamma_{0} \geq 1 / \mu\right)$,

$$
\begin{aligned}
& 2 \mathbb{E}\left(f\left(\mathbf{x}^{k}\right)-f(\mathbf{x})\right) \leq\left(\frac{k}{\gamma_{0}}-\mu\right) \mathbb{E}\left\|\mathbf{x}^{k}-\mathbf{x}\right\|^{2}-\frac{k}{\gamma_{0}} \mathbb{E}\left\|\mathbf{x}^{k+1}-\mathbf{x}\right\|^{2}+\frac{\gamma_{0}}{k} M^{2} \\
& \leq \frac{k-1}{\gamma_{0}} \mathbb{E}\left\|\mathbf{x}^{k}-\mathbf{x}\right\|^{2}-\frac{k}{\gamma_{0}} \mathbb{E}\left\|\mathbf{x}^{k+1}-\mathbf{x}\right\|^{2}+\frac{\gamma_{0}}{k} M^{2} .
\end{aligned}
$$

Summing up over $k=1,2, \cdots, t$,

$$
2 \mathbb{E} \sum_{k=1}^{t}\left(f\left(\mathbf{x}^{k}\right)-f(\mathbf{x})\right) \leq \sum_{k=1}^{t} \frac{\gamma_{0}}{k} M^{2} \leq \gamma_{0} M^{2}(1+\log t)
$$

Dividing both sides by $2 t$, and using the convexity of f which implies

$$
\frac{1}{t} \sum_{k=1}^{t} f\left(\mathbf{x}^{k}\right) \geq f\left(\frac{1}{t} \sum_{k=1}^{t} \mathbf{x}^{k}\right)=f\left(\overline{\mathbf{x}}^{t}\right)
$$

one can get the desired results.

*Proof for Slide 18

Applying Lemma A, we have

$$
\mathbb{E}\left\|\mathbf{x}^{k+1}-\mathbf{x}^{\star}\right\|^{2} \leq \mathbb{E}\left\|\mathbf{x}^{k}-\mathbf{x}^{\star}\right\|^{2}-2 \gamma_{k} \mathbb{E}\left(f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{\star}\right)\right)+\gamma_{k}^{2} M^{2}
$$

Rearranging terms,

$$
2 \gamma_{k} \mathbb{E}\left(f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{\star}\right)\right) \leq \mathbb{E}\left\|\mathbf{x}^{k}-\mathbf{x}^{\star}\right\|^{2}-\mathbb{E}\left\|\mathbf{x}^{k+1}-\mathbf{x}^{\star}\right\|^{2}+\gamma_{k}^{2} M^{2}
$$

Summing up over $k=1, \cdots, t$,

$$
2 \mathbb{E} \sum_{k=1}^{t} \gamma_{k}\left(f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{\star}\right)\right) \leq\left\|\mathbf{x}^{1}-\mathbf{x}^{\star}\right\|^{2}-\mathbb{E}\left\|\mathbf{x}^{t+1}-\mathbf{x}^{\star}\right\|^{2}+\sum_{k=1}^{t} \gamma_{k}^{2} M^{2} .
$$

Dividing both sides by $2 \sum_{k=1}^{t} \gamma_{k}$, and noting that the convexity of f implies

$$
\frac{\sum_{k=1}^{t} \gamma_{k} f\left(\mathbf{x}^{k}\right)}{\sum_{k=1}^{t} \gamma_{k}} \geq f\left(\frac{\sum_{k=1}^{t} \gamma_{k} \mathbf{x}^{k}}{\sum_{j=1}^{t} \gamma_{j}}\right)=f(\overline{\mathbf{x}})
$$

we get

$$
\mathbb{E}\left(f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{\star}\right)\right) \leq \frac{\left\|\mathbf{x}^{1}-\mathbf{x}^{\star}\right\|^{2}}{2 \sum_{k=1}^{t} \gamma_{k}}+\frac{\sum_{k=1}^{t} \gamma_{k}^{2} M^{2}}{2 \sum_{k=1}^{t} \gamma_{k}}
$$

