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Outline

I Today
1. Composite convex minimization
2. Proximal operator and computational complexity
3. Proximal gradient methods

I Next week
1. Proximal Newton-type methods
2. Composite self-concordant minimization
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Motivation

Motivation
Data analytics problems in various disciplines can often be simplified to nonsmooth
composite convex minimization problems. To this end, this lecture provides efficient
numerical solution methods for such problems.

Intriguingly, composite minimization problems are far from generic nonsmooth
problems and we can exploit individual function structures to obtain numerical
solutions nearly as efficiently as if they are smooth problems.
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Composite convex minimization
Problem (Unconstrained composite convex minimization)

F ? := min
x∈Rp

{F (x) := f(x) + g(x)} (1)

I f and g are both proper, closed, and convex.
I dom(F ) := dom(f) ∩ dom(g) , ∅ and −∞ < F ? < +∞.
I The solution set S? := {x? ∈ dom(F ) : F (x?) = F ?} is nonempty.

Two remarks

I Nonsmoothness: At least one of the two functions f and g is nonsmooth

I General nonsmooth convex optimization methods (e.g., classical subgradient methods,
level, or bundle methods) lack efficiency and numerical robustness.

I Require O(ε−2) iterations to reach a point x?ε such that F (x?ε )− F? ≤ ε. Hence, to reach
x?0.01 such that F (x?0.01)− F? ≤ 0.01, we need O(104) iterations.

I Generality: it covers a wider range of problems than smooth unconstrained
problems. E.g. when handling regularized M -estimation,

I f is a loss function, a data fidelity, or negative log-likelihood function.
I g is a regularizer, encouraging structure and/or constraints in the solution.
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Example 1: Sparse regression in generalized linear models (GLMs)

Problem (Sparse regression in GLM)
Our goal is to estimate x\ ∈ Rp given {bi}ni=1 and
{ai}ni=1, knowing that the likelihood function at yi
given ai and x\ is given by L(bi; 〈ai,x\〉), and that
x\ is sparse.

b A x\ w

Optimization formulation

min
x∈Rp

{
−

n∑
i=1

logL(bi; 〈ai,x〉)︸                             ︷︷                             ︸
f(x)

+ ρn‖x‖1︸    ︷︷    ︸
g(x)

}

where ρn > 0 is a parameter which controls the strength of sparsity regularization.

Theorem (cf. [4, 5, 6] for details)
Under some technical conditions, there exists {ρi}∞i=1 such that with high probability,∥∥x? − x\

∥∥2
2

= O
(
s log p
n

)
, supp x? = supp x\.

Recall ML:
∥∥xML − x\

∥∥2

2
= O (p/n).
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Example 2: Image processing

Problem (Imaging denoising/deblurring)
Our goal is to obtain a clean image x given “dirty” observations b ∈ Rn×1 via
b = A(x) + w, where A is a linear operator, which, e.g., captures camera blur as well
as image subsampling, and w models perturbations, such as Gaussian or Poisson noise.

Optimization formulation

Gaussian : min
x∈Rn×p

{
(1/2)‖A(x)− b‖22︸                      ︷︷                      ︸

f(x)

+ ρ‖x‖TV︸     ︷︷     ︸
g(x)

}

Poisson : min
x∈Rn×p

{ 1
n

n∑
i=1

[〈ai,x〉 − bi ln (〈ai,x〉)]︸                                         ︷︷                                         ︸
f(x)

+ ρ‖x‖TV︸     ︷︷     ︸
g(x)

}

where ρ > 0 is a regularization parameter and ‖ · ‖TV is the total variation (TV) norm:

‖x‖TV :=
{∑

i,j
|xi,j+1 − xi,j |+ |xi+1,j − xi,j | anisotropic case,∑

i,j

√
|xi,j+1 − xi,j |2 + |xi+1,j − xi,j |2 isotropic case
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Example 3: Confocal microscopy with camera blur and Poisson
observations

Original image x\ Observed image b Estimate x̂original image input: Noise image output: Denoise image
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Example 4: Sparse inverse covariance estimation
Problem (Graphical model selection)
Given a data set D := {x1, · · · ,xN}, where xi is a Gaussian random variable. Let Σ
be the covariance matrix corresponding to the graphical model of the Gaussian
Markov random field. Our goal is to learn a sparse precision matrix Θ (i.e., the inverse
covariance matrix Σ−1) that captures the Markov random field structure..

Example: Log-determinant for LMIs
• Application: Graphical model selection

Given a data set D := {x1, . . . ,xN}, where xi is a Gaussian random variable.
Let ⌃ be the covariance matrix corresponding to the graphical model of
the Gausian Markov random field. The aim is to learn a sparse matrix ⇥ that
approximates the inverse ⌃�1.

Optimization problem

min
⇥�0

8
><
>:
� log det(⇥) + trace(⌃⇥)| {z }

f(x)

+ ⇢kvec(⇥)k1| {z }
g(x)

9
>=
>;

x2

x3

x4x5

x1

x1 x2 x3 x4 x5

x1

x2

x3

x4

x5

⇥ =

Thursday, June 12, 14

Optimization formulation

min
Θ�0

{
tr(ΣΘ)− log det(Θ)︸                         ︷︷                         ︸

f(x)

+λ‖vec(Θ)‖1︸           ︷︷           ︸
g(x)

}
(2)

where Θ � 0 means that Θ is symmetric and positive definite and λ > 0 is a
regularization parameter and vec is the vectorization operator.
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Question: How do we design algorithms for finding a solution x??

Philosophy

I We cannot immediately design algorithms just based on the original formulation

F ? := min
x∈Rp

{F (x) := f(x) + g(x)} . (1)

I We need intermediate tools to characterize the solutions x? of this problem
I One key tool is called the optimality condition
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Optimality condition

Theorem (Moreau-Rockafellar’s theorem [8])
Let ∂f and ∂g be the subdiffierential of f and g, respectively. If f, g ∈ F(Rp) and
dom(f) ∩ dom(g) , ∅, then:

∂F ≡ ∂(f + g) = ∂f + ∂g.

Note: dom(F ) = dom(f) ∩ dom(g) and ∂f(x) is defined as (cf., Lecture 2):

∂f := {w ∈ Rn : f(y)− f(x) ≥ wT (y− x), ∀y ∈ Rn},

Optimality condition
Generally, the optimality condition for (1) can be written as

0 ∈ ∂F (x?) ≡ ∂f(x?) + ∂g(x?). (3)

If f ∈ F1,1
L (Rp), then (3) features the gradient of f as opposed to the subdifferential

0 ∈ ∂F (x?) ≡ ∇f(x?) + ∂g(x?). (4)
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Necessary and sufficient condition

Lemma (Necessary and sufficient condition)
A point x? ∈ dom(F ) is called a globally optimal solution to (1) (i.e.,
F ? := minx∈Rp{F (x) := f(x) + g(x)}

iff

x? satisfies (3): 0 ∈ ∂f(x?) + ∂g(x?) (or (4): 0 ∈ ∇f(x?) + ∂g(x?) when
f ∈ F1,1

L (Rp) ).

Sketch of the proof.
• ⇒: By definition of ∂F :

F (x)− F (x?) ≥ ξT (x− x?), for any ξ ∈ ∂F (x?), x ∈ Rp.

If (3) (or (4)) is satisfied, then F (x)− F (x?) ≥ 0 ⇒ x? is a global solution to (1).

• ⇐: If x? is a global of (1) then

F (x) ≥ F (x?), ∀ x ∈ dom(F ) ⇔ F (x)− F (x?) ≥ 0T (x− x?),∀x ∈ Rp.

This leads to 0 ∈ ∂F (x?) or (3) (or (4)). �
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A short detour: Proximal-point operators

Definition (Proximal operator [9])
Let g ∈ F(Rp) and x ∈ Rp. The proximal operator (or prox-operator) of f is defined
as:

proxg(x) ≡ arg min
y∈Rp

{
g(y) +

1
2
‖y− x‖22

}
. (5)

Numerical efficiency: Why do we need proximal operator?
For problem (1):
I Many well-known convex functions g, we can compute proxg(x) analytically or
very efficiently.

I If f ∈ F1,1
L (Rp), and proxg(x) is cheap to compute, then solving (1) is as

efficient as solving min
x∈Rp

f(x) in terms of complexity.

I If proxf (x) and proxg(x) are both cheap to compute, then convex splitting (1)
is also efficient (cf., Lecture 8).
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A short detour: Basic properties of prox-operator

Property (Basic properties of prox-operator)
1. proxg(x) is well-defined and single-valued (i.e., the prox-operator (5) has a

unique solution since g(·) + (1/2)‖ · −x‖22 is strongly convex).
2. Optimality condition:

x ∈ proxg(x) + ∂g(proxg(x)), x ∈ Rp.

3. x? is a fixed point of proxg(·):

0 ∈ ∂g(x?) ⇔ x? = proxg(x?).

4. Nonexpansiveness:

‖proxg(x)− proxg(x̃)‖2 ≤ ‖x− x̃‖2, ∀x, x̃ ∈ Rp.
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Fixed-point characterization

Optimality condition as fixed-point formulation
The optimality condition (3): 0 ∈ ∂f(x?) + ∂g(x?) is equivalent to

x? ∈ proxλg (x? − λ∂f(x?)) := Tλ(x?), for any λ > 0. (6)

The optimality condition (4): 0 ∈ ∇f(x?) + ∂g(x?) is equivalent to

x? = proxλg (x? − λ∇f(x?)) := Uλ(x?), for any λ > 0. (7)

Tλ is a set-valued operator and Uλ is a single-valued operator.

Proof.
We prove (7) ((6) is done similarly). (4) implies

0 ∈ ∇f(x?) + ∂g(x?)⇔ x? − λ∇f(x?) ∈ x? + λ∂g(x?) ≡ (I+ λ∂g)(x?).

Using the basic property 2 of proxλg , we have

x? ∈ proxλg(x? − λ∇f(x?)).

Since proxλg and ∇f are single-valued, we obtain (7). �
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Choices of solution methods

Splitting methods/ADMMSmoothing techniques

Proximal gradient/Newton 

F ? = min
x2Rp

{F (x) := f(x) + g(x)}

[Fast] proximal gradient method

f 2 F1,1
L (Rp), g 2 Fprox(Rp) f 2 F2(dom(f)), g 2 Fprox(Rp)

f is smoothable, g 2 Fprox(Rp) f 2 Fprox(Rp), g 2 Fprox(Rp)

Tuesday, June 24, 14

I F1,1
L

and F2 are the class of convex functions with Lipschitz gradient and self-concordant, respectively.

I Fprox is the class of convex functions with proximity operator (defined in the next slides).
I “smoothable” is defined in the next lectures.
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Solution methods

Composite convex minimization

F ? := min
x∈Rp

{
F (x) := f(x) + g(x)

}
. (1)

Choice of numerical solution methods
• Solve (1) = Find xk ∈ Rp such that

F (xk)− F ? ≤ ε

for a given tolerance ε > 0.

• Oracles: We can use one of the following configurations (oracles):
1. ∂f(·) and ∂g(·) at any point x ∈ Rp.
2. ∇f(·) and proxλg(·) at any point x ∈ Rp.
3. proxλf and proxλg(·) at any point x ∈ Rp.

4. ∇f(·), inverse of ∇2f(·) and proxλg(·) at any point x ∈ Rp.

Using different oracle leads to different types of algorithms
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Tractable prox-operators

Processing non-smooth terms in (1)

I We handle the nonsmooth term g in (1) using the proximal mapping principle.
I Computing proximal operator proxg of a general convex function g

proxg(x) ≡ arg min
y∈Rp

{
g(y) + (1/2)‖y− x‖22

}
.

can be computationally demanding.
I If we can efficiently compute proxF , we can use the proximal-point algorithm
(PPA) [3, 9] to solve (1). Unfortunately, PPA is hardly used in practice to solve
(8) since computing proxλF (·) can be as almost hard as solving (1).

Definition (Tractable proximity)
Given g ∈ F(Rp). We say that g is proximally tractable if proxg defined by (5) can be
computed efficiently.
I ”efficiently" = {closed form solution, low-cost computation, polynomial time}.
I We denote Fprox(Rp) the class of proximally tractable convex functions.
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?The proximal-point method
Problem (Unconstrained convex minimization)
Given F ∈ F(Rp), our goal is to solve

F ? := min
x∈Rp

F (x). (8)

Proximal-point algorithm (PPA):
1. Choose x0 ∈ Rp and a positive sequence {λk}k≥0 ⊂ R++.
2. For k = 0, 1, · · · , update:

xk+1 := proxλkF (xk)

Theorem (Convergence [3])
Let {xk}k≥0 be a sequence generated by PPA. If 0 < λk < +∞ then

F (xk)− F ? ≤
‖x0 − x?‖22
2
∑k

j=0 λj
, ∀x? ∈ S?, k ≥ 0.

If λk ≥ λ > 0, then the convergence rate of PPA is O(1/k).
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Tractable prox-operators

Example

I For separable functions, the prox-operator can be efficient. For instance,
g(x) := ‖x‖1 =

∑n

i=1 |xi|, we have

proxλg(x) = sign(x)⊗max{|x| − λ, 0}.

I For smooth functions, we can computer the prox-operator via basic algebra. For
instance, g(x) := (1/2)‖Ax− b‖22, one has

proxλg(x) =
(
I+ λATA

)−1(
x + λAb

)
.

I For the indicator functions of simple sets, e.g., g(x) := δX (x), the prox-operator
is the projection operator

proxλg(x) := πX (x)

the projection of x onto X . For instance, when X = {x : ‖x‖1 ≤ λ}, the
projection can be obtained efficiently.
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Computational efficiency - Example

Proximal operator of quadratic function
The proximal operator of a quadratic function g(x) := 1

2‖Ax− b‖22 is defined as

proxλg(x) := arg min
y∈Rp

{1
2
‖Ay− b‖22 +

1
2λ
‖y− x‖22

}
. (9)

How to compute proxλg(x)?
The optimality condition implies that the solution of (9) should satisfy the following
linear system: AT (Ay− b) + λ−1(y− x) = 0 . As a result, we obtain

proxλg(x) =
(
I+ λATA

)−1
(x + λAb) .

I When ATA is efficiently diagonalizable (e.g., UTATAU := Λ, where U is a
unitary matrix and Λ is a diagonal matrix) then proxλg(x) can be cheap
proxλg(x) = U (I+ λΛ)−1 UT (x + λAb).
I Matrices A such as TV operator with periodic boundary conditions, index subsampling
operators (e.g., as in matrix completion), and circulant matrices (e.g., typical image
blur operators) are efficiently diagonalizable with the Fast Fourier transform U.

I If AAT is diagonalizable (e.g., a tight frame A), then we can use the identity
(I+ λATA)−1 = I−AT (λ−1I+ AAT )−1A.
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A non-exhaustive list of proximal tractability functions

Name Function Proximal operator Complexity
`1-norm f(x) := ‖x‖1 proxλf (x) = sign(x)⊗ [|x| − λ]+ O(p)
`2-norm f(x) := ‖x‖2 proxλf (x) = [1− λ/‖x‖2]+x O(p)
Support function f(x) := maxy∈C xT y proxλf (x) = x− λπC(x)
Box indicator f(x) := δ[a,b](x) proxλf (x) = π[a,b](x) O(p)
Positive semidefinite
cone indicator

f(X) := δ
S
p
+

(X) proxλf (X) = U[Σ]+UT , where X =
UΣUT

O(p3)

Hyperplane indicator f(x) := δX (x), X :=
{x : aT x = b}

proxλf (x) = πX (x) = x +(
b−aT x
‖a‖2

)
a

O(p)

Simplex indicator f(x) = δX (x),X :=
{x : x ≥ 0, 1T x = 1}

proxλf (x) = (x−ν1) for some ν ∈ R,
which can be efficiently calculated

Õ(p)

Convex quadratic f(x) := (1/2)xTQx +
qT x

proxλf (x) = (λI + Q)−1x O(p log p)→
O(p3)

Square `2-norm f(x) := (1/2)‖x‖2
2 proxλf (x) = (1/(1 + λ))x O(p)

log-function f(x) := − log(x) proxλf (x) = ((x2 + 4λ)1/2 + x)/2 O(1)
log det-function f(x) := − log det(X) proxλf (X) is the log-function prox ap-

plied to the individual eigenvalues of X
O(p3)

Here: [x]+ := max{0,x} and δX is the indicator function of the convex set X , sign is the sign function, Sp+
is the cone of symmetric positive semidefinite matrices.

For more functions, see [2, 7].
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Outline

I Today
1. Composite convex minimization
2. Proximal operator and computational complexity
3. Proximal gradient methods

I Next week
1. Proximal Newton-type methods
2. Composite self-concordant minimization
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Proximal-gradient method: A quadratic majorization perspective

Definition (Moreau proximal operator [?, 9])
Let g ∈ F(Rp). The proximal operator (or prox-operator) of g is defined as:

proxg(x) ≡ arg min
y∈Rp

{
g(y) +

1
2
‖y− x‖22

}
.

Quadratic upper bound for f
For f ∈ F1,1

L (Rp), we have, ∀x,y ∈ Rp

f(x) ≤ f(y) +∇f(y)T (x− y) +
L

2
‖x− y‖22 B QL(x,y)

Quadratic majorizer for f + g [?]
Of course, ∀x,y ∈ Rp,

f(x) ≤ QL(x,y) ⇒ f(x) + g(x) ≤ QL(x,y) + g(x) B PL(x,y)

Proximal-gradient from the majorize-minimize perspective [?]

xk+1 = arg min
x
PL(x,xk)

= proxg/L(x−∇f(xk)/L)
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Geometric illustration

xxk+1xk

SL(xk)

x?

xk

PL(x,xk) := f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2 + g(x)F (x)

F (x) = f(x) + g(x)

f(xk) + rf(xk)T (x � xk) + g(x)

Thursday, June 12, 14
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Proximal-gradient algorithm

Basic proximal-gradient scheme (ISTA) [?, ?]
1. Choose x0 ∈ dom(F ) arbitrarily as a starting point.
2. For k = 0, 1, · · · , generate a sequence {xk}k≥0 as:

xk+1 := proxαg
(

xk − α∇f(xk)
)
,

where α := 1
L
.

Theorem (Convergence of ISTA [1])
Let {xk} be generated by ISTA. Then:

F (xk)− F ? ≤
Lf‖x0 − x?‖22

2(k + 1)

The worst-case complexity to reach F (xk)− F ? ≤ ε of (ISTA) is O
(
LfR

2
0

ε

)
, where

R0 := max
x?∈S?

‖x0 − x?‖2.

I A line-search procedure can be used to estimate Lk for L based on (0 < c ≤ 1):

f(xk+1) ≤ f(xk)−
c

2Lk
‖∇f(xk)‖2.
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Fast proximal-gradient algorithm

Fast proximal-gradient scheme (FISTA)
1. Choose x0 ∈ dom(F ) arbitrarily as a starting point.
2. Set y0 := x0 and t0 := 1.
3. For k = 0, 1, . . ., generate two sequences {xk}k≥0 and {yk}k≥0 as:

xk+1 := proxαg
(

yk − α∇f(yk)
)
,

tk+1 := (1 +
√

4t2
k

+ 1)/2,
yk+1 := xk+1 + tk−1

tk+1
(xk+1 − xk).

where α := L−1.

From O
(
LfR

2
0

ε

)
to O

(
R0

√
Lf
ε

)
iterations at almost no additional cost!.

Complexity per iteration

I One gradient ∇f(yk) and one prox-operator of g;
I 8 arithmetic operations for tk+1 and γk+1;
I 2 more vector additions, and one scalar-vector multiplication.

The cost per iteration is almost the same as in gradient scheme if proximal operator
of g is efficient.
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Fast proximal-gradient algorithm

Fast proximal-gradient scheme (FISTA)
1. Choose x0 ∈ dom(F ) arbitrarily as a starting point.
2. Set y0 := x0 and t0 := 1.
3. For k = 0, 1, . . ., generate two sequences {xk}k≥0 and {yk}k≥0 as:

xk+1 := proxαg
(

yk − α∇f(yk)
)
,

tk+1 := (1 +
√

4t2
k

+ 1)/2,
yk+1 := xk+1 + tk−1

tk+1
(xk+1 − xk).

where α := L−1.

From O
(
LfR

2
0

ε

)
to O

(
R0

√
Lf
ε

)
iterations at almost no additional cost!.

Complexity per iteration

I One gradient ∇f(yk) and one prox-operator of g;
I 8 arithmetic operations for tk+1 and γk+1;
I 2 more vector additions, and one scalar-vector multiplication.

The cost per iteration is almost the same as in gradient scheme if proximal operator
of g is efficient.
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Example 1: `1-regularized least squares

Problem (`1-regularized least squares)
Given A ∈ Rn×p and b ∈ Rn, solve:

F ? := min
x∈Rp

{
F (x) :=

1
2
‖Ax− b‖22 + λ‖x‖1

}
, (10)

where λ > 0 is a regularization parameter.

Complexity per iterations

I Evaluating ∇f(xk) = AT (Axk − b) requires one Ax and one ATy.
I One soft-thresholding operator proxλg(x) = sign(x)⊗max{|x| − λ, 0}.
I Optional: Evaluating L = ‖ATA‖ (spectral norm) - via power iterations (e.g.,

20 iterations, each iteration requires one Ax and one ATy).

Synthetic data generation

I A := randn(n, p) - standard Gaussian N (0, I).
I x? is a k-sparse vector generated randomly.
I b := Ax? +N (0, 10−3).
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Example 1: Theoretical bounds vs practical performance

I (Theoretical bounds) FISTA := 2LfR2
0

(k+2)2 and ISTA := LfR
2
0

2(k+2) .
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restricted descent directions

I `1-regularized least squares formulation has restricted strong convexity. The
proximal-gradient method can automatically exploit this structure.
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Adaptive Restart

It is possible the preserve O(1/k2) convergence guarantee !
One needs to slightly modify the algorithm as below.

Generalized fast proximal-gradient scheme
1. Choose x0 = x−1 ∈ dom(F ) arbitrarily as a starting point.
2. Set θ0 = θ−1 = 1
3. For k = 0, 1, . . ., generate two sequences {xk}k≥0 and {yk}k≥0 as:

yk := xk + θk(θ−1
k−1 − 1)(xk − xk−1)

xk+1 := proxλg
(

yk − λ∇f(yk)
)
,

if restart test holds
yk = xk

xk+1 := proxλg
(

yk − λ∇f(yk)
) (11)

where λ := L−1
f

.

θk is chosen so that it satisfies

θk =

√
θ4
k

+ 4θ2
k
− θ2

k

2
<

2
k + 3
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Adaptive Restart: Guarantee

Theorem (Global complexity [10])
The sequence {xk}k≥0 generated by the modified algorithm satisfies

F (xk)−F ? ≤
2Lf

(k + 2)2

(
R2

0 +
∑
ki≤k

(
‖x∗ − xki‖22 − ‖x

∗ − zki‖22
))
∀k ≥ 0. (12)

where R0 := min
x?∈S?

‖x0 − x?‖, zk = xk−1 + θ−1
k−1(xk − xk−1) and ki, i = 1... are

the iterations for which the restart test holds.

Various restarts tests that might coincide with ‖x∗−xki‖2
2 ≤ ‖x∗− zki‖2

2

I Exact non-monotonicity test: F (xk+1)− F (xk) > 0
I Non-monotonicity test: 〈(LF (yk−1 − xk),xk+1 − 1

2 (xk + yk−1)〉 > 0 (implies
exact non-monotonicity and it is advantageous when function evaluations are
expensive)

I Gradient-mapping based test: 〈(Lf (yk − xk+1),xk+1 − xk〉 > 0
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Example 2: Sparse logistic regression

Problem (Sparse logistic regression [?])
Given A ∈ Rn×p and b ∈ {−1,+1}n, solve:

F ? := min
x,β

{
F (x) :=

1
n

n∑
j=1

log
(
1 + exp

(
−bj(aTj x + β)

))
+ ρ‖x‖1

}
.

Real data
I Real data: w8a with n = 49′749 data points, p = 300 features
I Available at

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

Parameters
I ρ = 10−4.
I Number of iterations 5000, tolerance 10−7.
I Ground truth: Solve problem up to 10−9 accuracy by TFOCS to get a high
accuracy approximation of x? and F ?.
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Example 2: Sparse logistic regression - numerical results
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Line Search ISTA
FISTA
FISTA with Restart
Line Search FISTA
Line Search FISTA with Restart

ISTA LS-ISTA FISTA FISTA-R LS-FISTA LS-FISTA-R

Number of iterations 5000 5000 4046 2423 447 317

CPU time (s) 26.975 61.506 21.859 18.444 10.683 6.228

Solution error (×10−7) 29370 2.774 1.000 0.998 0.961 0.985
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Strong convexity case: algorithms

Proximal-gradient scheme (ISTAµ)
1. Given x0 ∈ Rp as a starting point.
2. For k = 0, 1, · · · , generate a sequence {xk}k≥0 as:

xk+1:=proxαkg
(

xk−αk∇f(xk)
)
,

where αk := 2/(Lf + µ) is the optimal step-size.

Fast proximal-gradient scheme (FISTAµ)
1. Given x0 ∈ Rp as a starting point. Set y0 := x0.
2. For k = 0, 1, · · · , generate two sequences {xk}k≥0 and
{yk}k≥0 as:xk+1 := proxαkg

(
yk − αk∇f(yk)

)
,

yk+1 := xk+1 +
( √

cf−1
√
cf+1

)
(xk+1 − xk),

where αk := L−1
f

is the optimal step-size.
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Strong convexity case: Convergence

Assumption
f is strongly convex with parameter µ > 0, i.e., f ∈ F1,1

L,µ(Rp).

Condition number: cf := Lf
µ
≥ 0.

Theorem (ISTAµ [7])

F (xk)−F ? ≤ Lf
2

(
cf−1
cf+1

)2k
‖x0−x?‖22.

Convergence rate: Linear with contraction factor: ω :=
(
cf−1
cf+1

)2
=
(
Lf−µ
Lf+µ

)2
.

Theorem (FISTAµ [7])

F (xk)− F ? ≤ Lf+µ
2

(
1−

√
µ
Lf

)k
‖x0 − x?‖22.

Convergence rate: Linear with contraction factor: ωf =
√
Lf−

√
µ√

Lf
< ω.
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A practical issue

Stopping criterion
Fact: If PGL(x?) = 0, then x? is optimal to (1), where

PGL(x) = L
(

x− prox(1/L)g (x− (1/L)∇f(x))
)
.

Stopping criterion: (relative solution change)

Lk‖xk+1 − xk‖2 ≤ εmax{L0‖x1 − x0‖2, 1},

where ε is a given tolerance.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 38/ 43



Summary of the worst-case complexities

Software
TFOCS is a good software package to learn about first order methods.

http://cvxr.com/tfocs/

Comparison with gradient scheme (F (xk)− F ? ≤ ε)
Complexity Proximal-gradient scheme Fast proximal-gradient

scheme
Complexity [µ = 0] O

(
R2

0(Lf/ε)
)

O
(
R0
√
Lf/ε

)
Per iteration 1-gradient, 1-prox, 1-sv, 1-

v+
1-gradient, 1-prox, 2-sv, 3-
v+

Complexity [µ > 0] O
(
κ log(ε−1)

)
O
(√

κ log(ε−1)
)

Per iteration 1-gradient, 1-prox, 1-sv, 1-
v+

1-gradient, 1-prox, 1-sv, 2-
v+

Here: sv = scalar-vector multiplication, v+=vector addition.
R0 := max

x?∈S?
‖x0 − x?‖ and κ = Lf/µf is the condition number.

Need alternatives when
I f is only self-concordant
I computing ∇f(x) is much costlier than computing proxg
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Examples

Example (Sparse graphical model selection)

min
Θ�0

{
tr(ΣΘ)− log det(Θ)︸                         ︷︷                         ︸

f(x)

+ ρ‖vec(Θ)‖1︸           ︷︷           ︸
g(x)

}
where Θ � 0 means that Θ is symmetric and positive definite, and ρ > 0 is a
regularization parameter and vec is the vectorization operator.
I Computing the gradient is expensive: ∇f(Θ) = Θ−1.
I f ∈ F2 is self-concordant. However, if αI � Θ � βI, then f ∈ F2,1

L,µ with
L = √p/α2 and µ = (β2√p)−1.

Example (`1-regularized Lasso)

min
x

1
2
‖b−Ax‖22︸              ︷︷              ︸

f(x)

+ ρ‖x‖1︸  ︷︷  ︸
g(x)

where n� p, A ∈ Rn×p is a full column-rank
matrix, and ρ > 0 is a regularization parameter.
I f ∈ F2,1

L,µ and computing the gradient is O(n).

= +

n � p

n ⇥ p

x\

Ab w

Wednesday, July 2, 14
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